Projeto e Analise de Algoritmos
Analise de Complexidade

Antonio Alfredo Ferreira Loureiro

loureiro@dcc.ufmg.br

http://www.dcc.ufmg.br/~loureiro

@©uFMG/ICEx/DCC PAA o Andlise de Complexidade


loureiro@dcc.ufmg.br
http://www.dcc.ufmg.br/~loureiro

Algoritmos

e Os algoritmos fazem parte do dia-a-dia das pessoas. Exemplos de algorit-
mos:
— Instrugoes para o uso de medicamentos;
— Indicacoes de como montar um aparelho;
— uma receita de culinaria.

e Seqgléncia de acdes executaveis para a obtencao de uma solucédo para um
determinado tipo de problema.

e Segundo Dijkstra, um algoritmo corresponde a uma descricao de um padrao
de comportamento, expresso em termos de um conjunto finito de agoes.
— Executando a operacao a + b percebemos um padrao de comportamento,
mesmo que a operacao seja realizada para valores diferentes de a € b.
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O papel de algoritmos em computacao

e Definicao: um algoritmo € um conjunto finito de instrugcdes precisas para

executar uma computacao.
=» Um algoritmo pode ser visto como uma ferramenta para resolver um pro-
blema computacional bem especificado.

e Um algoritmo pode receber como entrada um conjunto de valores e pode
produzir como saida um outro conjunto de valores.
=» Um algoritmo descreve uma sequéncia de passos computacionais que
transforma a entrada numa saida, ou seja, uma relacdo entrada/saida.

e O vocabulo algoritmo origina do nome al-Khowarizmi.
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Origem do vocabulo algoritmo

Abu Ja’Far Mohammed
Ibn Musa al-Khowarizmi
(780-850), astrbnomo e
matematico arabe. Era
membro da “Casa da
Sabedoria”, uma academia
de cientistas em Bagda.

P e G e | O nome  al-Khowarizmi

ol g .| significa da cidade de
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) \__w o R fran ‘men | &lgebra foi introduzida na
C A - | xsom asnanisan | Eyropa ocidental através
ol : Ocean msmp.m | 250km @©Graphictaps.com KW paisean de seus trabalhos. A

palavra algebra vem do
arabe al-jabr, parte do titulo de seu livro Kitab al-jabr w’al muquabala. Esse livro foi traduzido
para o latim e foi usado extensivamente. Seu livro sobre o uso dos numerais hindu descreve
procedimentos para operacoes aritméticas usando esses numerais. Autores europeus usaram
uma adaptacao latina de seu nome, até finalmente chegar na palavra algoritmo para descrever
a area da aritmética com numerais hindu.
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Algoritmo: Etimologial

e Do antropdnimo? &rabe al-Khuwarizmi (matematico arabe do século IX)
formou-se o arabe al-Khuwarizmi ‘numeracao decimal em arabicos’ que pas-
sou ao latim medieval algorismus com influéncia do grego arithmos ‘numero’;
forma histérica 1871 algorithmo.

1 Estudo da origem e da evolugao das palavras.
2 Nome proprio de pessoa ou de ser personificado

Referéncia: Dicionario Houaiss da Lingua Portuguesa, 2001, 12 edicao.
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Algoritmos: Definicoes

e Dicionario Houaiss da Lingua Portuguesa, 2001, 12 edigdo:
— Conjunto das regras e procedimentos ldgicos perfeitamente definidos que
levam a solucao de um problema em um numero de etapas.

e Dicionario Webster da Lingua Inglesa:
— An Algorithm is a procedure for solving a mathematical problem in a finite

number of steps that frequently involves a repetition of an operation
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Algoritmos: Definicoes

e Introduction to Algorithms, CIRS, 2001, 2nd edition:

— Informally, an algorithm is any well-defined computational procedure that
takes some value, or set of values, as input and produces some value, or
set of values, as output. An algorithm is thus a sequence of computational
steps that transform the input onto the output.

e Algorithms in C, Sedgewick, 1998, 3rd edition:
— The term algorithm is used in computer science to describe a problem-
solving method suitable for implementation as a computer program.
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Observacoes sobre as definicoes

e Regras sao precisas
e Conjunto de regras é finito
e Tempo finito de execucao

e Regras sao executadas por um computador
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Consequeéncias

e Deve-se definir um repertorio finito de regras
=» Linguagem de programacgao

e A maior parte dos algoritmos utiliza métodos de organizacao de dados en-
volvidos na computacao
=» Estruturas de dados

e Tempo finito nao € uma eternidade
=» A maior parte das pessoas nao esta interessada em algoritmos que levam
anos, décadas, séculos, milénios para executarem

e Existem diferentes “tipos de computadores”
=» Existem diferentes modelos computacionais
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Algoritmos: Aspectos

e Estatico:
— Texto contendo instrugdes que devem ser executadas em uma ordem

definida, independente do aspecto temporal

e Dinamico:
— Execucao de instrucdes a partir de um conjunto de valores iniciais, que
evolui no tempo

e Dificuldade:
— Relacionamento entre o aspecto estatico e dinamico
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Algumas perguntas importantes
Apresente as justificativas

e Um programa pode ser visto como um algoritmo codificado em uma lin-
guagem de programacao que pode ser executado por um computador. Qual-
quer computador pode executar qualquer programa?

e Todos os problemas ligados as ciéncias exatas possuem algoritmos?

e Todos os problemas computacionais tém a mesma dificuldade de resolugao?

e Como algoritmos diferentes para um mesmo problema podem ser compara-
dos/avaliados?
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Natureza da Ciencia da Computacao

e Referéncia: Juris Hartmanis. On Computational Complexity and the Nature of Computer Science. Communica-
tions of the ACM, 37(10):37—43, October 1994

In his Turing Award Lecture, Juris Hartmanis gives some personal insights about the nature of computer science,
the perfil of computer scientist, the computer as a tool.

“Looking at all of computer science and its history, | am very impressed by the scientific and technological achieve-
ments, and they far exceed what | had expected. Computer science has grown into an important science with rich
intellectual achievements, an impressive arsenal of practical results and exciting future challenges. Equally impres-
sive are the unprecedented technological developments in computing power and communication capacity that have
amplified the scientific achievements and have given computing and computer science a central role in our scientific,
intellectual and commercial activities.

| personally believe that computer science is not only a rapidly maturing science, but that it is more. Computer
science differs so basically from the other sciences that is has to be viewed as a new species among the sciences,
and it must be so understood. Computer science deals with information, its creation and processing, and with the
systems that perform it, much of which is not directly restrained and governed by physical laws. Thus computer
science is laying the foundations and developing the research paradigms and scientific methods for the exploration
of the world of information and intellectual processes that are not directly governed by physical laws. This is what
sets it apart from the other sciences and what we vaguely perceived and found fascinating in our early exploration
of computational complexity.

@) UFMG/ICEx/DCC PAA o Anilise de Complexidade 12



Natureza da Ciencia da Computacao

One of the defining characteristics of computer science is the immense difference in scale of the phenomena
computer science deals with. From the individual bits of programs and data in the computers to billions of operations
per second on this information by the highly complex machines, their operating systems and the various languages
in which the problems are described, the scale changes through many orders of magnitude. Donald Knuth (Personal
communication between Juris Hartmanis and Donald Knuth, March 10, 1992 letter) put it nicely: Computer Science
and Engineering is a field that attracts a different kind of thinker. | believe that one who is a natural computer
scientist thinks algorithmically. Such people are especially good at dealing with situations where different rules
apply in different cases; they are individuals who can rapidly change levels of abstraction, simultaneously seeing
things “in the large” and “in the small”

The computer scientist has to create many levels of abstractions to deal with these problems. One has to create
intellectual tools to conceive, design, control, program, and reason about the most complicated of human creations.
Furthermore, this has to be done with unprecedented precision. The underlying hardware that executes the com-
putations are universal machines and therefore they are chaotic systems: the slightest change in their instructions
or data can result in arbitrarily large differences in the results.”
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Algoritmo e modelo computacional (1)

e Modelo:
— Esquema que possibilita a representacao de uma entidade (Houaiss).
=» No modelo, s6 se deve incluir o que for relevante para a modelagem do

objeto em questao.

e Computacional:
— Relativo ao processamento (Houaiss.)

e Definicao (nosso contexto):
— Esquema que descreve como € o modelo abstrato do processamento de

algoritmos.
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Algoritmo e modelo computacional (2)

e Importéancia:
— Um algoritmo n&o existe, ou seja, nao é possivel escrevé-lo, se antes nao
for definido o modelo computacional associado (como sera executado).
=» Conceito basico no projeto de qualquer algoritmo.

e Questao decorrente:
— Dado um problema qualquer, existe sempre um algoritmo que pode ser
projetado para um dado modelo computacional?
-» Nao! Em varios casos é possivel mostrar que nao existe um algoritmo
para resolver um determinado problema considerando um modelo com-
putacional.
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Algoritmo e modelo computacional (3)

e Que modelos existem?
— Literalmente dezenas deles.
— Se nao estiver satisfeito, invente o seul!

e O mais popular (usado) de todos:
— RAM — Random Access Machine.
-> Modela o computador tradicional e outros elementos computacionais.

Computador Laptop Telefone Sensor
pessoal celular
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Algoritmo e modelo computacional:
Modelo RAM (4)

e Elementos do modelo:
— um unico processador;
— memoria.

e Observacoes:
— Podemos ignorar os dispositivos de entrada e saida (teclado, monitor, etc)

assumindo que a codificacao do algoritmo e os dados ja estao armazena-

dos na memoria.
— Em geral, ndo é relevante para a modelagem do problema saber como o

algoritmo e os dados foram armazenados na memoria.
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Algoritmo e modelo computacional:
Modelo RAM (5)

e Computacao nesse modelo:
— Processador busca instrugao/dado da memoria.
— Uma unica instrucao é executada de cada vez.
— Cada instrucao € executada sequencialmente.

e Cada operacao executada pelo processador, incluindo céalculos aritméticos,
|0gicos e acesso a memoria, implica num custo de tempo:
-» Funcao de complexidade de tempo.

e Cada operacao e dado armazenado na memodria, implica num custo de es-

paco:
=» Funcao de complexidade de espaco.
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Complexidade de tempo e espaco

e A complexidade de tempo nao representa tempo diretamente, mas o numero
de vezes que determinada operag¢ao considerada relevante € executada.

e A complexidade de espaco representa a quantidade de memoéria (numa
unidade qualquer) que é necessario para armazenar as estruturas de dados
associadas ao algoritmo.

e Usa-se a notagao assintotica para representar essas complexidades:
— O (O grande);
— 2 (Omega grande);
— O (Teta);
— o (0 pequeno);
— w (6bmega pequeno).
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Modelo computacional para sistemas distribuidos

e Mundo distribuido:

— Normalmente os elementos computacionais seguem o modelo RAM que
sao interconectados através de algum meio e s6 comunicam entre Si
através de troca de mensagens.

-» Nao existe compartilhamento de memoria.

e Elementos desse modelo:
— N6 computacional representado pelo modelo RAM.
— Canal normalmente representado pelo modelo FIFQO (first-in, first-out).
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Problema dos dois exercitos (1)

Na Grécia antiga, lugares maravilhosos ...podiam se transformar em cenarios de

como este ... guerra.

Vale perto de Almfiklia, Grécia

-» E quando algum filésofo propée o “Problema dos dois exércitos”.
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Problema dos dois exércitos (2)
Cenario inicial

Exército Gama
Cen’;ro do vale

R L T e

Exeército
Lateral do vale

Exeército
Lateral do vale

Vale perto de Almfiklia, Grécia

— Exército Alfa esta em maior niumero que o exército Gama mas esta dividido em duas meta-

des, cada uma numa lateral do vale.
— Cada metade do exército Alfa esta em menor niumero que o exército Gama.
— Objetivo do exército Alfa: coordenar um ataque ao exército Gama para ganhar a guerra.
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Problema dos dois exercitos (3)
O problema da coordenacao

Exeército Exército
Lateral do vale Exército Gama Lateral do vale

Centro do vale

Vale perto de Almfiklia, Grécia

1. General do exército Alfa, do lado esquerdo do vale, chama o seu melhor soldado para
levar uma mensagem para o general do exército Alfa do lado direito:

Vamos atacar conjuntamente o exército Gama amanha as 6:00h?
Observacoes: — A unica possibilidade de comunicacao entre os dois generais é através
de um mensageiro.
— Os dois generais tém um “relégio perfeitamente sincronizado”, ou seja,
eles sabem pela posicao do sol quando € 6:00h.
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Problema dos dois exércitos (4)
O problema da coordenacao

Exeército Exército
Lateral do vale Exército Gama Lateral do vale

Centro do vale

Vale perto de Almfiklia, Grécia

2. O soldado do exército Alfa atravessa as linhas inimigas e leva a mensagem até o general
do outro lado.
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Problema dos dois exércitos (5)
O problema da coordenacao

Exeército Exército
Lateral do vale Exército Gama Lateral do vale

Centro do vale

Vale perto de Almfiklia, Grécia

3. O general do exército Alfa do lado direito concorda em atacar o exército Gama no dia
seguinte as 6:00h.
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Problema dos dois exércitos (6)
O problema da coordenacao

Exeército Exército
Lateral do vale Exército Gama Lateral do vale

Centro do vale

Vale perto de Almfiklia, Grécia

4. O soldado do exército Alfa atravessa novamente as linhas inimigas e confirma com seu

general o0 ataque para o dia seguinte.
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Problema dos dois exércitos (7)
O problema da coordenacao

Exeército Exército
Lateral do vale Exército Gama Lateral do vale

Centro do vale

Vale perto de Almfiklia, Grécia

=> Apds esses quatro passos terem sido realizados com sucesso, vai haver ataque amanha as
6:00h?
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O problema dos dois robos (1)

e Imagine dois ou mais rob0s que vao carregar uma mesa de tal forma que um
ficara de frente para outro.

e Problema:
— Projete um algoritmo para coordenar a velocidade e direcao do movimento

de cada rob0 para que a mesa nao caia.
=» Os rob6s s6 podem comunicar entre si através de um canal de comuni-
cacao sem fio.
=» Variante do problema anterior!
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O problema dos dois robos (2)

-» E possivel projetar um algoritmo distribuido para esse problema?
NAO! Nao existe um algoritmo distribuido para o problema de coordenacao
considerando o modelo computacional proposto!
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Alguns comentarios sobre algoritmos distribuidos

e S30 a base do mundo distribuido, ou seja, de sistemas distribuidos.

e Sistemas distribuidos podem ser:
— Tempo real ou nao;
— Reativos ou nao.

e Sistemas distribuidos podem ser especificados tomando-se como base:
— tempo;
— eventos.
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Modelagem Matematica

e Metodologia: conjunto de conceitos que traz coesao a principios e técnicas
mostrando quando, como e porque usa-los em situagdoes diferentes.

e A metodologia que usa matematica na resolucao de problemas é conhecida
como modelagem matematica.

e O processo de modelagem:

Solucéo para
Problema 0 problema
Modelo Modelo
P
Abstrato Transformado
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Exemplo de modelagem:
Malha rodoviaria (1)

Suponha a malha rodoviaria entre as seis cidades A, B, C,D, E, e F.

Problema: Achar um subconjunto da malha rodoviaria representada pela tabela
abaixo que ligue todas as cidades e tenha um comprimento total minimo.

B C D E F
A|S5|—-]10] — | —
B 510 |20 | —
C 20| — | 30
D 20 | —
E 10
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Exemplo de modelagem:
Malha rodoviaria (2)

e Tabela ja € um modelo da situacao do mundo real.

e A tabela pode ser transformada numa representacao grafica chamada

GRAFO, que sera o0 modelo matematico.
20

A s B s &
AO
L 2 E 10 F
Grafo GG
e Grafo (definicao informal): conjunto de pontos chamados de vértices ou nos,

e um conjunto de linhas (normalmente nao-vazio) conectando um veértice ao

outro.
— Neste caso, cidades sao representadas por vertices e estradas por linhas

(arestas).
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Exemplo de modelagem:
Malha rodoviaria (3)

e Qual é o préximo passo?
— Achar uma solucao em termos desse modelo.
— Nesse caso, achar um grafo G’ com o mesmo nimero de vértices e um
conjunto minimo de arestas que conecte todas as cidades e satisfaca a
condicao do problema.

e Observacao: o modelo matematico é escolhido, em geral, visando a solucao.

e A solucao sera apresentada na forma de um algoritmo.
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Exemplo de modelagem:
Malha rodoviaria (4)

Algoritmo:

1. Selecione arbitrariamente qualquer vértice e o coloque no conjunto de vértices ja conecta-
dos.

2. Escolha dentre os vértices ndo conectados aquele mais proximo de um vértice ja conec-

tado. Se existir mais de um vértice com essa caracteristica escolha aleatoriamente qual-
quer um deles.

3. Repita 0 passo 2 até que todos os vértices ja estejam conectados.

=» Este é um exemplo de um “algoritmo guloso” (greedy algorithm).

20
C
A 5 B 5
AO
L0 10 F
Grafo G
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C C
A 5 B 5 A 5 B 5 A s B 5 A 5 B 5
10 10
YE "\ C‘z
10 10 10 10
D E F D E F DZOE F D20E F

Grafo G1

Exemplo de modelagem:
Malha rodoviaria — Solucoes (5)

20
A s B s L
AO
10
20 F
D E
Grafo G
Solucdes:

C

Grafo G» Grafo G3

Grafo G4

C
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Exemplo de modelagem:
Malha rodoviaria (6)

e O que foi feito?
1. Obtencao do modelo matematico para o problema.
2. Formulacado de um algoritmo em termos do modelo.
=» Ou seja, essa € a técnica de resolucao de problemas em Ciéncia da Com-
putacao.

e Nem todos os problemas considerados terao como solugao um algoritmo,
mas muitos terao.
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Exemplo de modelagem:
Sudoku e Godoku (1)
O objetivo do Sudoku

1|8 3 A (Godoku) é preencher
4(9|7|1|6 8 C todos os espagos em
2 9 B El1 D bra_nco do qua}dra_d_o
maior, que esta divi-
4 2 A B dido em nove grids,
6 11| 8 E G com 0S numeros de 1
a 9 (letras). Os alga-
rismos nao podem se
3 D E repetir na mesma co-
116 8 I B luna, linha ou grid.

7 2 1 A Sudoku: A palavra

Sudoku significa

Sudoku Godoku “nimero sozinho” em

japonés, o que mostra

exatamente o objetivo

do jogo. O Sudoku existe desde a década de 1970, mas comegou a ganhar popularidade no

final de 2004 quando comecou a ser publicado diariamente na sessao de puzzles do jornal

The Times. Entre abril e maio de 2005 o puzzle comecou a ganhar um espaco na publicacao

de outros jornais britanicos e, poucos meses depois, ganhou popularidade mundial. Fonte:
wikipedia.org

Godoku: O jogo Godoku € similar ao Sudoku mas formado apenas por letras.
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Exemplo de modelagem:

SuperSudoku (2)

6(1|B|2 3 A |D 8 F
08 |6 |F S5
4|9 D} 2 0| 8 B 1
F 3B 1 E
3 4 S| A 7 2 C
6 A B
0 E B|D 911 |4 A
5|9 87
B 5|3 E
F > A 4 8
8 4 ClF|2 1 A
2 7 E 6
cC/,o|4 2 1B S
/| E 5 49 0|3 8
5 8 6 E|F |3
8 1 3 B|C 7 D

O jogo SuperSudoku € similar
ao Sudoku e Godoku formado
por numeros e letras. Cada grid
tem 16 entradas, sendo nove
dos numeros (0 a 9) e seis le-
tras (AaF).

@) UFMG/ICEx/DCC

PAA e Andlise de Complexidade

39



Exemplo de modelagem:
Mais informacoes sobre o Sudoku e jogos
similares (3)

©J Scientific American Brasil - Imprimir matéria - Mozilla Firefox

Arquiva  Editar Ewbir Ir Faworitos Ferramentas  Ajuda

-~ r'\'\. 7
*\::I r Ll/) A |§] |_| @ ||_| http: w2, 0ol com. brfsciamfconteude fmateria/materia_imprimir_39, html

|| Firefox Help = Firefox Support | | Plug-n FAQ

SCIENTIFIC
AMERICAN srasi

Edicdo N° 50 - julho de 2006

A ciéncia do Sudoku

Para mais detalhes sobre o Sudoku e variantes desse jogo, veja o artigo “A ciéncia do Sudoku”
por Jean-Paul Delahaye, na revista Scientific American Brasil, edicao n° 50 de julho de 2006, ou
nas paginas:
http://www2.uol.com.br/sciam/conteudo/materia/materia_99.html
http://www2.uol.com.br/sciam/conteudo/materia/materia_imprimir_99.html
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Exemplo de modelagem:
Kasparov x Deep Blue

In the first ever traditional chess match between a man (world
champion Garry Kasparov) and a computer (IBM’s Deep Blue) in
1996, Deep Blue won one game, tied two and lost three. The next
year, Deep Blue defeated Kasparov in a six-game match — the first
time a reigning world champion lost a match to a computer oppo-
nent in fournament play. Deep Blue was a combination of special
purpose hardware and software with an IBM RS/6000 SP2 (seen
here) — a system capable of examining 200 million moves per sec-
ond, or 50 billion positions, in the three minutes allocated for a
single move in a chess game.

Referéncia: http://www—03.1ibm.com/ibm/history/
exhibits/vintage/vintage_4506VV1001.html
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Questoes sobre a modelagem (1)

e O objetivo é projetar um algoritmo para resolver o problema.
— Veja que o Sudoku e o Deep Blue tém caracteristicas bem diferentes!

e Esse projeto envolve dois aspectos:
1. O algoritmo propriamente dito, e
2. A estrutura de dados a ser usada nesse algoritmo.

e Em geral, a escolha do algoritmo influencia a estrutura de dados e vice-
versa.
-» E necessario considerar diferentes fatores para escolher esse par (algo-
ritmo e estrutura de dados).
=» Pontos a serem estudados ao longo do curso, comecando pela seqléncia
de disciplinas Algoritmos e Estruturas de Dados.

e Nesta disciplina, estudaremos varios topicos relacionados tanto a algoritmos
guanto estruturas de dados.
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Questoes sobre a modelagem (2)
O caso do jogo Sudoku

e Um possivel algoritmo para resolver o jogo Sudoku € o “Algoritmo de Forca
Bruta”:
— Tente todas as possibilidades até encontrar uma solucéao!

e Nessa estratégia, quantas possibilidades existem para a configuracao
abaixo?

3|1 6 553 23 31114 4 553 553 6

- T e [ =

7 3 2 3 73| 4 4|4 2 3

6 9 8 7 6 |Tapl o [f=a| 8 |Tap| 7 [Tl 75
2 8 23 3|6 3 8|3 4 3
5| 6 1 38 “al 5| 6|l 1(7s 8 |3

2 a| [a73 2|23 4|3 2 4

8 6 5 1 ‘@il s =l s T3l s [Tl 1

9 B 6 T30 3|3 4 a1 63

1 3| 2 1 'ml @l @l 3| 2 [3Ts

Legenda: X n°de opgdes para a posigéo
= Existem 11 x 25 x 332 x 413 x 61 =
23875983329839202653175808 ~ 23,8 x 1024 possibilidades!

@) UFMG/ICEx/DCC PAA o Anilise de Complexidade 43



Estruturas de dados

e Estruturas de dados e algoritmos estao intimamente ligados:
— Nao se pode estudar estruturas de dados sem considerar os algoritmos

associados a elas;
— Assim como a escolha dos algoritmos em geral depende da representacao

e da estrutura dos dados.

e Para resolver um problema € necessario escolher uma abstracao da reali-
dade, em geral mediante a definigao de um conjunto de dados que representa
a situacao real.

e A sequir, deve ser escolhida a forma de representar esses dados.
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Escolha da representacao dos dados

A escolha da representacao dos dados € determinada, entre outras, pelas
operacoes a serem realizadas sobre os dados.

Considere a operacao de adicao:

— Para pequenos numeros, uma boa representacao € por meio de barras
verticais (caso em que a operacao de adicao é bastante simples).

— Ja a representacao por digitos decimais requer regras relativamente com-
plicadas, as quais devem ser memorizadas.

=» Quando consideramos a adi¢cao de grandes numeros € mais facil a repre-
sentacao por digitos decimais (devido ao principio baseado no peso relativo
a posicao de cada digito).
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Programas

Programar € basicamente estruturar dados e construir algoritmos.

Programas sao formulacoes concretas de algoritmos abstratos, baseados em
representacoes e estruturas especificas de dados.

Programas representam uma classe especial de algoritmos capazes de
serem seguidos por computadores.

Um computador s6 é capaz de seguir programas em linguagem de maquina
(sequéncia de instrucoes obscuras e desconfortaveis).

E necessario construir linguagens mais adequadas, que facilitem a tarefa de
programar um computador.

Uma linguagem de programacao € uma técnica de notagao para programar,
com a intencao de servir de veiculo tanto para a expressao do raciocinio
algoritmico quanto para a execucao automatica de um algoritmo por um com-
putador.
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Tipos de dados

e Caracteriza o conjunto de valores a que uma constante pertence, ou que
podem ser assumidos por uma variavel ou expressao, ou que podem ser ge-
rados por uma fungao.

Tipos simples de dados sao grupos de valores indivisiveis (como 0s tipos

basicos integer, boolean, char e real do Pascal).

— Exemplo: uma variavel do tipo boolean pode assumir o valor verdadeiro
ou o valor falso, e nenhum outro valor.

e Os tipos estruturados em geral definem uma colecao de valores simples, ou
um agregado de valores de tipos diferentes.
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Tipos abstratos de dados (TADs)

e Modelo matematico, acompanhado das operacoes definidas sobre o mode-
lo.
— Exemplo: o conjunto dos inteiros acompanhado das operacoes de adicao,
subtracao e multiplicacao.

e TADs sao utilizados extensivamente como base para o projeto de algoritmos.

e A implementacao do algoritmo em uma linguagem de programacao especifica
exige a representacao do TAD em termos dos tipos de dados e dos operado-
res suportados.

e A representacao do modelo matematico por tras do tipo abstrato de dados é
realizada mediante uma estrutura de dados.

e Podemos considerar TADs como generalizacOes de tipos primitivos e proce-
dimentos como generalizacOes de operacoes primitivas.

e O TAD encapsula tipos de dados:
— A definicao do tipo e todas as operacoes ficam localizadas numa secao do
programa.
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Implementacao de TADs

e Considere uma aplicacao que utilize uma lista de inteiros. Poderiamos definir
o TAD Lista, com as seguintes operagoes:
1. Faca a lista vazia,;
2. Obtenha o primeiro elemento da lista; se a lista estiver vazia, entao retorne
nulo;
3. Insira um elemento na lista.

e Ha varias opcoes de estruturas de dados que permitem uma implementacao
eficiente para listas (por exemplo, o tipo estruturado arranjo).
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Implementacao de TADs

e Cada operacao do tipo abstrato de dados € implementada como um procedi-
mento na linguagem de programagao escolhida.

e Qualquer alteracao na implementacao do TAD fica restrita a parte encapsu-
lada, sem causar impactos em outras partes do codigo.

e Cada conjunto diferente de operacoes define um TAD diferente, mesmo atuem
sob um mesmo modelo matematico.

e A escolha adequada de uma implementagao depende fortemente das opera-
coes a serem realizadas sobre o modelo.
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Medida do tempo de execucao de um programa

e O projeto de algoritmos é fortemente influenciado pelo estudo de seus com-
portamentos.

e Depois que um problema é analisado e decisOes de projeto sao finalizadas,
€ necessario estudar as varias opcoes de algoritmos a serem utilizados, con-

siderando os aspectos de tempo de execucao e espaco ocupado.

Algoritmos sao encontrados em todas as areas de Ciéncia da Computacao.
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Tipos de problemas na analise de algoritmos
Analise de um algoritmo particular

e Qual é o custo de usar um dado algoritmo para resolver um problema especi-
fico?

e Caracteristicas que devem ser investigadas:
— analise do numero de vezes que cada parte do algoritmo deve ser execu-

tada,
— estudo da quantidade de memodria necessaria.
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Tipos de problemas na analise de algoritmos
Analise de uma classe de algoritmos

e Qual é o algoritmo de menor custo possivel para resolver um problema par-

ticular?

e Toda uma familia de algoritmos ¢é investigada.

e Procura-se identificar um que seja o melhor possivel.

e Colocam-se limites para a complexidade computacional dos algoritmos per-

tencentes a classe.

@) UFMG/ICEx/DCC

PAA o

Analise de Complexidade

53



Custo de um algoritmo

e Determinando o menor custo possivel para resolver problemas de uma dada
classe, temos a medida da dificuldade inerente para resolver o problema.

e Quando o custo de um algoritmo é igual ao menor custo possivel, o algoritmo
é otimo para a medida de custo considerada.

e Podem existir varios algoritmos para resolver o mesmo problema.

e Se a mesma medida de custo é aplicada a diferentes algoritmos, entao é
possivel compara-los e escolher o mais adequado.
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Medida do custo pela execucao do programa em
uma plataforma real

e Tais medidas sao bastante inadequadas e os resultados jamais devem ser
generalizados:
— 0s resultados sao dependentes do compilador que pode favorecer algumas
construgoes em detrimento de outras;
— 0s resultados dependem do hardware;
— quando grandes quantidades de memodria sao utilizadas, as medidas de
tempo podem depender deste aspecto.

e Apesar disso, ha argumentos a favor de se obterem medidas reais de
tempo.

— Por exemplo, quando ha varios algoritmos distintos para resolver um
mesmo tipo de problema, todos com um custo de execucao dentro de uma
mesma ordem de grandeza.

— Assim, sao considerados tanto os custos reais das operagdes como 0S
custos nao aparentes, tais como alocacao de memodria, indexacgao, carga,
dentre outros.
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Medida do custo por meio de um modelo

e Usa um modelo matematico baseado em um computador idealizado.

matematico

e Deve ser especificado 0 conjunto de operacgOes e seus custos de execucgoes.

e E mais usual ignorar o custo de algumas das operacdes e considerar apenas
as operacgoes mais significativas.

e Por exemplo, algoritmos de ordenacao:
— consideramos o0 numero de comparacoes entre os elementos do conjunto

a ser ordenado e ignoramos as operacoes aritméticas, de atribuicao e ma-
nipulacdes de indices, caso existam.
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Funcao de complexidade

e Para medir o custo de execug¢ao de um algoritmo € comum definir uma funcao
de custo ou funcao de complexidade f.

e f(n) é a medida do tempo necessario para executar um algoritmo para um
problema de tamanho n.

e Funcado de complexidade de tempo: f(n) mede o tempo necessario para
executar um algoritmo para um problema de tamanho n.

e Funcdo de complexidade de espaco: f(n) mede a memdria necessaria
para executar um algoritmo para um problema de tamanho n.

e Utilizaremos f para denotar uma funcao de complexidade de tempo daqui
para a frente.

e Na realidade, a complexidade de tempo nao representa tempo diretamente,
mas o0 numero de vezes que determinada operacao considerada relevante é
executada.
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Exemplo: Maior elemento

Considere o algoritmo para encontrar o maior elemento de um vetor de in-
teiros A[1..n],n > 1.

function Max (var A: Vetor) : integer;
var i, Temp: integer;

begin
Temp := A[l];
for i:=2 ton do if Temp < A[i] then Temp := A[i];
Max := Temp;

end;

Seja f uma funcdo de complexidade tal que f(n) € o nUmero de compara-
coes entre os elementos de A, se A contiver n elementos.

Logo f(n) =n— 1, paran > 1.

Vamos provar que o algoritmo apresentado no programa acima € otimo.

@ UFMG/ICEx/DCC PAA o Andlise de Complexidade 58




Exemplo: Maior elemento

Teorema: Qualquer algoritmo para encontrar 0 maior elemento de um conjunto
com n elementos, n > 1, faz pelo menos n — 1 comparagoes.

Prova: Cada um dos n — 1 elementos tem de ser mostrado, por meio de com-
paracoes, que é menor do que algum outro elemento.

Logo n — 1 comparagdes sao necessarias. O

=» O teorema acima nos diz que, se 0 numero de comparacoes for utilizado
como medida de custo, entao a fungao Max do programa anterior é 6tima.
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Tamanho da entrada de dados

A medida do custo de execucao de um algoritmo depende principalmente do
tamanho da entrada dos dados.

E comum considerar o tempo de execucdo de um programa como uma fungéo
do tamanho da entrada.

Para alguns algoritmos, o custo de execucao € uma fungao da entrada parti-
cular dos dados, nao apenas do tamanho da entrada.

No caso da fungao Max do programa do exemplo, o custo € uniforme sobre
todos os problemas de tamanho n.

Ja para um algoritmo de ordenacao isso nao ocorre: se 0os dados de en-
trada ja estiverem quase ordenados, entdo o algoritmo pode ter que trabalhar
menos.
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Melhor caso, pior caso e caso medio

e Melhor caso:
— Menor tempo de execucao sobre todas as entradas de tamanho n.

e Pior caso:
— Maior tempo de execucao sobre todas as entradas de tamanho n.
-» Se f é uma funcao de complexidade baseada na analise de pior caso, o

custo de aplicar o algoritmo nunca é maior do que f(n).
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e Caso médio (ou caso esperado):
— Média dos tempos de execucao de todas as entradas de tamanho n.
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Melhor caso, pior caso e caso medio

e Na andlise do caso esperado, supde-se uma distribuicao de probabilidades
sobre o0 conjunto de entradas de tamanho n e o0 custo médio é obtido com
base nessa distribuigao.

e A analise do caso médio € geralmente muito mais dificil de obter do que as
analises do melhor e do pior caso.

e E comum supor uma distribuicdo de probabilidades em que todas as entradas
possiveis sao igualmente provaveis.

e Na pratica isso nem sempre € verdade.
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Exemplo: Registros de um arquivo

e Considere o problema de acessar os registros de um arquivo.

e Cada regqistro contém uma chave Unica que € utilizada para recuperar reg-
Istros do arquivo.

e O problema: dada uma chave qualquer, localize o registro que contenha esta
chave.

e O algoritmo de pesquisa mais simples é o que faz a pesquisa sequencial.

e Seja f uma funcdo de complexidade tal que f(n) € o numero de registros
consultados no arquivo (numero de vezes que a chave de consulta é com-
parada com a chave de cada registro).
— Melhor caso: f(n) =1 (registro procurado é o primeiro consultado);
— Pior caso: f(n) =n (registro procurado é o ultimo consultado ou
nao esta presente no arquivo);

— Caso médio:  f(n) = 2F1.
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Exemplo: Registros de um arquivo

e No estudo do caso médio, vamos considerar que toda pesquisa recupera um
registro.

e Se p; for a probabilidade de que o i-€simo registro seja procurado, e con-
siderando que para recuperar o :-€simo registro sao necessarias i« compara-
coes, entao

f(n)=1xp1+2xp2+3xp3+---+nxpn

e Para calcular f(n) basta conhecer a distribuicdo de probabilidades p;.

e Se cada registro tiver a mesma probabilidade de ser acessado que todos os
outros, entao p;, = 1/n,1 < i < n.

o Nestecasof(n):%(1+2+3+...+n):%(%>:%.

e A analise do caso esperado revela que uma pesquisa com sucesso examina
aproximadamente metade dos registros.
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Exemplo: Maior e menor elementos (1)

Considere o problema de encontrar o maior e 0 menor elemento de um vetor
de inteiros A[1..n],n > 1.

Um algoritmo simples pode ser derivado do algoritmo apresentado no pro-
grama para achar o maior elemento.

procedure MaxMinl (var A: Vetor; var Max, Min: integer);
var 1: integer;
begin

Max := A[l]; Min := A[1l];

for 1 := 2tondo

begin
if A[i] > Max then Max := A[i]; {Testa se A[i] contém o maior elemento}
if A[i] < Min then Min := A[i]; {Testa se A[i] contém o menor elemento}
end;
end;

Seja f(n) o numero de comparacdes entre os elementos de A, se A tiver n
elementos.

Logo f(n) = 2(n — 1), paran > 0, para o melhor caso, pior caso e caso
médio.
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Exemplo: Maior e menor elementos (2)

MaxMin1 pode ser facilmente melhorado:
— acomparagao A[i] < Min s6 é necessaria quando o resultado da compara-

cao A[i] > Max for falso.

procedure MaxMin2 (var A: Vetor; var Max, Min: integer);
var 1: integer;
begin
Max := A[l]; Min := A[l];
for i := 2tondo
if A[1] > Max
then Max := A[i]
else i1f A[1i] < Min then Min := A[i];
end;
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Exemplo: Maior e menor elementos (2)

e Para a nova implementacao temos:
— Melhor caso: f(n) =n—1

— Pior caso: f(n) =2(n—-1)

— Caso médio:  f(n) =32 — 3.

e Caso médio:

(quando os elementos estao em ordem
crescente);
(quando os elementos estao em ordem

decrescente);

— A[i] é maior do que Max a metade das vezes.

— Logo, f(n) =n—1+4 27t =30

— 3, paran > 0.
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Exemplo: Maior e menor elementos (3)

e Considerando o numero de comparagoes realizadas, existe a possibilidade
de obter um algoritmo mais eficiente:

1. Compare os elementos de A aos pares, separando-os em dois subcon-
juntos (maiores em um e menores em outro), a um custo de [n/2] com-
paracoes.

2. O maximo é obtido do subconjunto que contém os maiores elementos, a
um custo de [n/2] — 1 comparacgoes.

3. O minimo é obtido do subconjunto que contém os menores elementos, a
um custo de [n/2] — 1 comparagoes.

[Q ® O Q] <—— Contém o maximo

[6 ® o 6] <«—— Contém o0 minimo
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Exemplo: Maior e menor elementos (3)

procedure MaxMin3(var A: Vetor;
var Max, Min: integer);
var i,
FimDoAnel: integer;
begin
{Garante uma gte par de elementos no vetor para evitar caso de excecao}
if nmod 2) > O

then begin
A[nt+1] := Aln];
FimDoAnel := n;
end

else FimDoAnel := n-1;

{Determina maior e menor elementos inicials}
if A[1] > A[2]
then begin
Max := A[l]; Min := A[2];
end
else begin
Max := A[2]; Min := A[1l];
end;
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Exemplo: Maior e menor elementos (3)

i:= 3;
while i <= FimDoAnel do
begin

{Compara os elementos aos pares}

if A[i] > A[i+]1]
then begin

if A[i] > Max then Max := A[i];
if A[i+]l] < Min then Min := A[i+l];

end
else begin

if A[i] < Min then Min := A[i];
if A[i+l] > Max then Max := A[it+1];

end;
i:=1 + 2;
end;
end;
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Exemplo: Maior e menor elementos (3)

e Os elementos de A sao comparados dois a dois e 0s elementos maiores sao
comparados com Max e 0S elementos menores sao comparados com Min.

e Quando n é impar, o elemento que esta na posicdo A[n] é duplicado na
posicdo A[n + 1] para evitar um tratamento de excecao.

Para esta implementagdo, f(n) = % + %52 4+ 52 = 3 — 2 paran > 0,
para o melhor caso, pior caso e caso médio.
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Comparacao entre os algoritmos
MaxMin1, MaxMin2 e MaxMin3

A tabela abaixo apresenta uma comparacao entre os algoritmos dos progra-
mas MaxMin1, MaxMin2 e MaxMin3, considerando o numero de compara-
cOes como medida de complexidade.

Os algoritmos MaxMin2 e MaxMin3 sao superiores ao algoritmo MaxMin1 de
forma geral.

e O algoritmo MaxMin3 €& superior ao algoritmo MaxMin2 com relagcao ao pior
caso e bastante préximo quanto ao caso médio.

Os trés f(n)
algoritmos | Melhor caso Pior caso Caso médio
MaxMin1 2(n—1) 2(n—1) 2(n—1)
MaxMin2 n—1 2(n—1) 3n/2 —3/2
MaxMin3 | 3n/2 —2 3n/2 — 2 3n/2 — 2
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Limite inferior: Uso de um oraculo

E possivel obter um algoritmo MaxMin mais eficiente?

Para responder temos de conhecer o limite inferior para essa classe de al-
goritmos.

Técnica muito utilizada:
=»> Uso de um oraculo.

Dado um modelo de computacao que expresse o comportamento do algo-
ritmo, o oraculo informa o resultado de cada passo possivel (no caso, o resul-
tado de cada comparacao).

Para derivar o limite inferior, o oraculo procura sempre fazer com que o algo-
ritmo trabalhe o maximo, escolhendo como resultado da préxima comparacao
aquele que cause o maior trabalho possivel necessario para determinar a res-
posta final.
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Exemplo de uso de um oraculo

Teorema: Qualquer algoritmo para encontrar o maior € o menor elementos de
um conjunto com n elementos nao ordenados, n > 1, faz pelo menos [3n /2| —
2 comparacoes.

Prova: A técnica utilizada define um oraculo que descreve o comportamento
do algoritmo por meio de um conjunto de n—tuplas, mais um conjunto de regras
associadas que mostram as tuplas possiveis (estados) que um algoritmo pode
assumir a partir de uma dada tupla e uma unica comparacao.

Uma 4—tupla, representada por (a, b, ¢, d), onde os elementos de:

e a nunca foram comparados;

e b foram vencedores e nunca perderam em comparacoes realizadas;
e c foram perdedores e nunca venceram em comparacgoes realizadas;
e d foram vencedores e perdedores em comparacoes realizadas.
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Exemplo de uso de um oraculo

e O algoritmo inicia no estado (n,0,0,0) e terminacom (0,1,1,n — 2).

((n,0,0,0))

0, 1, 1, n-2)
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Exemplo de uso de um oraculo

e Apds cada comparacado a tupla (a, b, ¢, d) consegue progredir apenas se ela
assume um dentre os seis estados possiveis abaixo:

1.

0

(a—2,b+1,c+1,d)sea>?2
=» Dois elementos de a sao comparados.

(a—1,b4+1,c¢,d) ou

(a—1,b,c+1,d) ou

(a—1,b,c,d+1)sea>1

=» Um elemento de a é comparado com um de b ou um de c.

. (a,b—1,c,d+1)seb>?2

=» Dois elementos de b sao comparados.

. (a,b,c—1,d+1)sec>2

=» Dois elementos de ¢ sao comparados.

e O primeiro passo requer necessariamente a manipulacao do componente a.
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Exemplo de uso de um oraculo

e O caminho mais rapido para levar a até zero requer [n/2]| mudangas de es-
tado e termina com a tupla (0,n/2,n/2,0) (por meio de comparagdo dos
elementos de a dois a dois).

e A sequir, para reduzir o componente b até um sao necessarias [n/2] — 1 mu-
dancas de estado (minimo de comparacoes necessarias para obter o maior
elemento de b).

e Idem para ¢, com [n/2] — 1 mudancas de estado.

e Logo, para obter o estado (0,1,1,n — 2) a partir do estado (n,0,0,0) séo
necessarias
n/2] 4+ [n/2] =14+ [n/2] —1=[3n/2] — 2
comparacoes. O
e O teorema nos diz que se o0 numero de comparacoes entre os elementos de

um vetor for utilizado como medida de custo, entao o algoritmo MaxMin3 é
otimo.
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Comportamento assintotico de funcoes

e O parametro n fornece uma medida da dificuldade para se resolver o proble-
ma.

e Para valores suficientemente pequenos de n, qualquer algoritmo custa pouco
para ser executado, mesmo os ineficientes.

e A escolha do algoritmo ndao € um problema critico para problemas de
tamanho pequeno.

e Logo, a analise de algoritmos é realizada para valores grandes de n.

e Estuda-se o comportamento assintético das funcoes de custo (comporta-
mento de suas fungcdes de custo para valores grandes de n).

e O comportamento assintdtico de f(n) representa o limite do comportamento
do custo quando n cresce.
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Dominacao assintotica

e A analise de um algoritmo geralmente conta com apenas algumas operacoes
elementares.

e A medida de custo ou medida de complexidade relata o crescimento assin-
totico da operacao considerada.

e Definicao: Uma funcado f(n) domina assintoticamente outra funcao g(n)
se existem duas constantes positivas c e ng tais que, para n > ng, temos

lg(n)| < e x |f(n)].

Exemplo:

A cf(n) — Sejamg(n) = (n+1)2e f(n) = n2
/ o(n) — As funcbes g(n) e f(n) dominam assintoticamente

uma a outra, ja que

[(n 4 1)?| < 4|n?|

: > N paran > 1e
n0 2 < 2
In| < [(n+ 1)~

paran > 0.
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Como medir o custo de execucao de um algoritmo?

e Funcao de Custo ou Funcao de Complexidade

— f(n) = medida de custo necessario para executar um algoritmo para um
problema de tamanho n.

— Se f(n) € uma medida da quantidade de tempo necessario para executar
um algoritmo para um problema de tamanho n, entao f é chamada funcéao
de complexidade de tempo de algoritmo.

— Se f(n) é uma medida da quantidade de memoria necessaria para exe-
cutar um algoritmo para um problema de tamanho n, entao f é chamada
funcao de complexidade de espaco de algoritmo.

e Observacao: tempo nao e tempo!
— E importante ressaltar que a complexidade de tempo na realidade nao re-
presenta tempo diretamente, mas o numero de vezes que determinada
operacao considerada relevante é executada
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Custo assintotico de funcoes

e E interessante comparar algoritmos para valores grandes de n.

e O custo assintotico de uma funcdo f(n) representa o limite do comporta-
mento de custo quando n cresce.

e Em geral, o custo aumenta com o tamanho n do problema.
e Observacao:

— Para valores pequenos de n, mesmo um algoritmo ineficiente nao custa
muito para ser executado.
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Notacao assintotica de funcoes

e Existem trés notacdes principais na analise assintdtica de funcoes:
— Notacao ©
— Notacao O (“O” grande)

— Notacao €2
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Notacao ©

f(n) =0(g(n))
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Notacao ©

e A notacao © limita a funcao por fatores constantes.

e Escreve-se f(n) = ©(g(n)), se existirem constantes positivas ¢y, c> € ng
tais que para n > ng, o valor de f(n) esta sempre entre c1g(n) € cog(n)
Inclusive.

-» Pode-se dizer que g(n) é um limite assintético firme (em inglés, asymptot-
ically tight bound) para f(n).

f(n) =©(g(n)),
= c1 > 0762 > O,TLO, | 0< Clg(n) < f(n) < CQQ(’TL},\V/TL > no

Observe que a notacdo © define um conjunto de funcoes:

O(g9(n)) =
{f 1 N>RV |3c1>0,¢2>0,n0, 0<c19(n) < f(n) < cag(n),¥n > ng}.
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Notacao ©: Exemplo
e Mostre que 5n? — 3n = ©(n?).

Para provar esta afirmacao, devemos achar constantes ¢; > 0,¢co > O,n > 0O,
tais que:

cln2 < n? — 3n < 02n2

1
2
para todo n > n,.

Se dividirmos a expressao acima por n? temos:

1 3
ClSE—gSCQ
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Notacao ©: Exemplo

A inequacao mais a direita sera sempre valida para qualquer valorde n > 1 ao
escolhermos cp > 3.

Da mesma forma, a inequagao mais a esquerda sera sempre valida para qual-
quer valor de n > 7 ao escolhermos c1 > 1.

Assim, ao escolhermos ¢1 = 1/14,¢co = 1/2 e ng = 7, podemos verificar que
%nQ — 3n = O(n?).

Note que existem outras escolhas para as constantes c¢1 e ¢», mas o fato impor-
tante € que a escolha existe.

Note também que a escolha destas constantes depende da funcéao %nQ — 3n.

Uma funcao diferente pertencente a ©(n?) ira provavelmente requerer outras
constantes.
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Notacao ©: Exemplo

e Usando a definicdo formal de © prove que 6n3 %= ©(n?2).
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Notacao O

cg(n)
f(n)

f(n) = 0(g(n))
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Notacao O

e A notacao O define um limite superior para a fungao, por um fator constante.

e Escreve-se f(n) = O(g(n)), se existirem constantes positivas c e ng tais
que paran > ng, o valor de f(n) € menor ou igual a cg(n).
=» Pode-se dizer que g(n) é um limite assintotico superior (em inglés, asymp-
totically upper bound) para f(n).

f(n) =0(g(n)),3c¢>0,ng, | 0 < f(n) < cg(n), Vn = ng.

Observe que a notacdo O define um conjunto de fungoes:

O(g(n)) ={f :N—RT |3¢c>0,n9, 0< f(n) < cg(n),vn > ng}.
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Notacao O: Exemplos

e Seja f(n) = (n+ 1)2.
— Logo f(n) é O(n?), quando ng = 1 e ¢ = 4, ja que

(n4 1)? < 4n’paran > 1.

e Seja f(n) = ne g(n) = n2. Mostre que g(n) ndo é O(n).
— Sabemos que f(n) é O(n?), pois paran > 0, n < n2.
— Suponha que existam constantes ¢ e ng tais que para todo n > ng, n? <
cn. Assim, ¢ > n para qualquer n > ng. No entanto, nao existe uma
constante c que possa ser maior ou igual a n para todo n.
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Notacao O: Exemplos

e Mostre que g(n) = 3n3 4+ 2n2 +n é O(n3).
— Basta mostrar que 3n3 + 2n2 +n < 6n3, paran > 0.
— A funcdo g(n) = 3n3 4+ 2n? + n é também O(n?*), entretanto esta afir-

macao é mais fraca do que dizer que g(n) é O(n3).

e Mostre que h(n) = loggsn é O(logn).
— O logy n difere do log. n por uma constante que no caso € logy c.
— Como n = /99" tomando o logaritmo base b em ambos os lados da

igualdade, temos que log, n = log;, /99" = log.n x log c.
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Notacao O

e Quando a notacdo O € usada para expressar o tempo de execucao de um
algoritmo no pior caso, esta se definindo também o limite (superior) do tempo
de execucao desse algoritmo para todas as entradas.

Por exemplo, o algoritmo de ordenagao por insergao (a ser estudado neste
curso) é O(n?) no pior caso.
=» Este limite se aplica para qualquer entrada.
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Notacao O

e Tecnicamente € um abuso dizer que o tempo de execucao do algoritmo de
ordenacdo por insercdo é O(n?) (i.e., sem especificar se é para o pior caso,
melhor caso, ou caso medio)
=> O tempo de execucao desse algoritmo depende de como os dados de
entrada estao arranjados.

-» Se os dados de entrada ja estiverem ordenados, este algoritmo tem um
tempo de execucdo de O(n), ou seja, o tempo de execucao do algoritmo
de ordenacgao por insercdo no melhor caso é O(n).

e O que se quer dizer quando se fala que “o tempo de execucdo” é O(n?)” é
que no pior caso o tempo de execucéo é O(n2).
=» QOu seja, nao importa como os dados de entrada estao arranjados, o tempo

de execucdo em qualquer entrada é O(n2).
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Operacoes com a notacao O

f(n)

¢ x O(f(n))
O(f(n)) + O(f(n))
O(O(f(n))
O(f(n)) +0O(g(n))
O(f(n))O(g(n))
f(n)O(g(n))

O(f(n))

= O(f(n)) c = constante

O(f(n))

O(f(n))
O(maz(f(n),g(n)))
O(f(n)g(n))
O(f(n)g(n))
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Operacoes com a nhotacao O: Exemplos

e Regradasoma O(f(n)) 4+ O(g(n)).
— Suponha trés trechos cujos tempos de execucao sao
O(n), O(n?) e O(nlogn).

— O tempo de execucao dos dois primeiros trechos é O(maz(n,n?)), que é
O(n?).

— O tempo de execugao de todos os trés trechos € entao

O(maxz(n?,nlogn)),

que é O(n?).

e Oprodutode [logn + k + O(1/n)] por [n + O(y/n)] é
nlogn + kn + O(y/nlogn).
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Notacao <2

f(n) = 2(g(n))
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Notacao <2
e A notacao <2 define um limite inferior para a fungao, por um fator constante.

e Escreve-se f(n) = Q(g(n)), se existirem constantes positivas ¢ e ng tais
que para n > ng, o valor de f(n) € maior ou igual a cg(n).
-» Pode-se dizer que g(n) é um limite assintotico inferior (em inglés, asymp-
totically lower bound) para f(n).

f(n) = Q(g(n)),3c¢>0,ng, [0 < cg(n) < f(n),Vn = no.

Observe que a notacao <2 define um conjunto de fungodes:

Q(g(n)) ={f:N—=>RT |Jc>0,ng, |0 <cg(n) < f(n),vn > ng}.
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Notacao <2

e Quando a notacao €2 € usada para expressar o tempo de execucao de um al-
goritmo no melhor caso, esta se definindo também o limite (inferior) do tempo
de execucao desse algoritmo para todas as entradas.

e Por exemplo, o algoritmo de ordenacdo por insercdo € 2(n) no melhor
caso.
-» O tempo de execucdo do algoritmo de ordenacéo por insercao € Q2(n).

e O que significa dizer que “o tempo de execucao” (i.e., sem especificar se é
para o pior caso, melhor caso, ou caso médio) € Q2(g(n))?
— O tempo de execucao desse algoritmo é pelo menos uma constante vezes
g(n) para valores suficientemente grandes de n.
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Notacao 2: Exemplos

e Para mostrar que f(n) = 3n3 4+ 2n2 é Q(n3) basta fazer ¢ = 1, e entdo
3n3 + 2n2 > n3 paran > 0.

e Seja f(n) = n paran impar (n > 1) e f(n) = n2/10 para n par (n >

0).
— Neste caso f(n) é Q(n?), bastando considerar ¢ = 1/10 e n =

0,2,4,6,...
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Limites do algoritmo de ordenacao por insercao

O tempo de execucao do algoritmo de ordenacao por insergcao esta entre
Q(n) e O(n?).

Estes limites sao assintoticamente os mais firmes possiveis.
— Por exemplo, o tempo de execucéo deste algoritmo ndo é 2(n?), pois o
algoritmo executa em tempo ©(n) quando a entrada ja esta ordenada.

e Nao € contraditorio dizer que o tempo de execucao deste algoritmo no pior
caso é ©2(n?), ja que existem entradas para este algoritmo que fazem com
que ele execute em tempo 2(n?).
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Funcoes de custo (n° de comparacoes) do
algoritmo de ordenacao por Insercao

(5 50

(n° de

comparacdes) “r

40 |
Ei
EU N
25
20 b
15 |

10 F

0 5 10 15 20 25 30 35 40 45 50
n

(n° de elementos
a serem ordenados)
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Funcoes de custo e notacoes assintoticas do
algoritmo de ordenacao por Insercao

( Pior Caso:
. O
. Cpior Caso(n) — % + % -1 — © ( ’I’L2 )
(nﬂ de 45 Q
comparag¢des)
Caso Médio:
: : O
Ccaso Médio(n) — % + %Tn —1 = © ( n2 )
Q
2 Cerern ordenacos Melhor caso:
@)
CMelhor Caso(n) =n—1 = © ( n )
{ Q

indica a notacao normalmente usada para esse caso.
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Teorema

Para quaisquer funcoes f(n) e g(n),

f(n) =©(g(n))

se e somente se,

f(n) =0(g(n)), e
f(n) =Q(g(n))
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Mais sobre notacao assintotica de funcoes

e Existem duas outras notacoes na analise assintotica de funcoes:
— Notacédo o (“O” pequeno)
— Notacao w

e Estas duas notacdes nao sao usadas normalmente, mas é importante saber
seus conceitos e diferencas em relacao as notacoes O e €2, respectivamente.
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Notacao o

e O limite assintotico superior definido pela notagao O pode ser assintotica-
mente firme ou nao.
— Por exemplo, o limite 2n2 = O(n?) é assintoticamente firme, mas o limite
2n = O(n?) ndo é.

e A notacao o é usada para definir um limite superior que nao € assintotica-
mente firme.

e Formalmente a notacao o € definida como:

f(n) =o(g(n)), paraqqc >0 e ng [0 < f(n) <cg(n), Vn = ng

e Exemplo, 2n = o(n?) mas 2n2? # o(n?).
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Notacao o
e As definicoes das notacdes O (o grande) e o (0 pequeno) sao similares.
— A diferenca principal € que em f(n) = O(g(n)), aexpressdo 0 < f(n) <

cg(n) é valida para todas constantes ¢ > 0.

e Intuitivamente, a funcdo f(n) tem um crescimento muito menor que g(n)
guando n tende para infinito. Isto pode ser expresso da seguinte forma:

=» Alguns autores usam este limite como a definicao de o.
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Notacao w

e Por analogia, a notacao w esta relacionada com a notacao €2 da mesma forma
gue a notacao o esta relacionada com a notacéao O.

e Formalmente a notacao w € definida como:

f(n) = w(g(n)), paraqqc >0 e ng |0 < cg(n) < f(n), Vn =ng

2 n?

e Por exemplo, - = w(n), mas % # w(n?).
e Arelacdo f(n) = w(g(n)) implica em
im " —

n—00 g(n)

se o limite existir.
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Comparacao de programas

e Podemos avaliar programas comparando as funcoes de complexidade, negli-
genciando as constantes de proporcionalidade.

e Um programa com tempo de execucido O(n) é melhor que outro com tempo
O(n?).

— Porém, as constantes de proporcionalidade podem alterar esta consider-
acao.

e Exemplo: um programa leva 100n unidades de tempo para ser executado e

outro leva 2n2. Qual dos dois programas é melhor?

— Depende do tamanho do problema.

— Para n < 50, o programa com tempo 2n2 é melhor do que 0 que possui
tempo 100n.

— Para problemas com entrada de dados pequena € preferivel usar o pro-
grama cujo tempo de execucdo é O(n?2).

— Entretanto, quando n cresce, o programa com tempo de execucdo O(n?)
leva muito mais tempo que o programa O(n).
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Classes de Comportamento Assintotico
Complexidade Constante

e f(n) =0(1)
— O uso do algoritmo independe do tamanho de n.
— As instrucoes do algoritmo sao executadas um numero fixo de vezes.

=» O que significa um algoritmo ser O(2) ou O(5)7?
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Classes de Comportamento Assintotico
Complexidade Logaritmica

e f(n) = 0O(logn)
— Ocorre tipicamente em algoritmos que resolvem um problema transfor-
mando-o0 em problemas menores.
— Nestes casos, 0 tempo de execucao pode ser considerado como sendo

menor do que uma constante grande.

e Supondo que a base do logaritmo seja 2:
— Paran = 1000, log, =~ 10.
— Paran = 1000000, log, = 20.

e Exemplo:
— Algoritmo de pesquisa binaria.

@©)UFMG/ICEx/DCC PAA e Andlise de Complexidade 110




Classes de Comportamento Assintotico
Complexidade Linear

e f(n) =0(n)
— Em geral, um pequeno trabalho é realizado sobre cada elemento de en-
trada.
— Esta € a melhor situagao possivel para um algoritmo que tem que proces-
sar/produzir n elementos de entrada/saida.
— Cada vez que n dobra de tamanho, o tempo de execucao também dobra.

e Exemplos:
— Algoritmo de pesquisa sequencial.
— Algoritmo para teste de planaridade de um grafo.
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Classes de Comportamento Assintotico
Complexidade Linear Logaritmica

e f(n) =0(nlogn)

— Este tempo de execugao ocorre tipicamente em algoritmos que resolvem
um problema quebrando-o em problemas menores, resolvendo cada um
deles independentemente e depois agrupando as solugoes.

— (Caso tipico dos algoritmos baseados no paradigma divisgo-e-conquista.

e Supondo que a base do logaritmo seja 2:
— Paran = 1000000, logy ~ 20000 000.
— Paran = 2000000, logy ~ 42 000 000.

e Exemplo:
— Algoritmo de ordenacao MergeSort.
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Classes de Comportamento Assintotico
Complexidade Quadratica

o f(n) =0(n?)
— Algoritmos desta ordem de complexidade ocorrem quando os itens de da-
dos sao processados aos pares, muitas vezes em um anel dentro do outro
— Paran = 1 000, o numero de operacdoes € da ordem de 1 000 000.
— Sempre que n dobra o tempo de execucao € multiplicado por 4.
— Algoritmos deste tipo sao uteis para resolver problemas de tamanhos rela-
tivamente pequenos.

e Exemplos:
— Algoritmos de ordenacao simples como selecao e insercao.
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Classes de Comportamento Assintotico
Complexidade Cubica

e f(n) =0(n3
— Algoritmos desta ordem de complexidade geralmente sao uteis apenas
para resolver problemas relativamente pequenos.
— Paran = 100, o numero de operacoes € da ordem de 1 000 000
— Sempre que n dobra o tempo de execucao € multiplicado por 8.
— Algoritmos deste tipo sao uteis para resolver problemas de tamanhos rela-
tivamente pequenos.

e Exemplo:
— Algoritmo para multiplicacao de matrizes.
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Classes de Comportamento Assintotico
Complexidade Exponencial

e f(n)=0(2")
— Algoritmos desta ordem de complexidade nao sao uteis sob o ponto de
vista pratico.
— Eles ocorrem na solucao de problemas quando se usa a forca bruta para
resolvé-los.
— Para n = 20, o tempo de execucédo é cerca de 1 000 000.
— Sempre que n dobra o tempo de execucao fica elevado ao quadrado.

e Exemplo:
— Algoritmo do Caixeiro Viajante
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Classes de Comportamento Assintotico
Complexidade Exponencial

e f(n) =0(n)).
— Um algoritmo de complexidade O(n!) é dito ter complexidade exponencial,
apesar de O(n!) ter comportamento muito pior do que O(2").
— Geralmente ocorrem quando se usa forga bruta na solucao do problema.

e Considerando:
— n = 20, temos que 20! = 2432902008176640000, um numero com 19
digitos.
— n = 40 temos um numero com 48 digitos.
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Comparacao de funcoes de complexidade

Funcéao Tamanho n
de custo 10 20 30 40 50 60
n 0,00001 | 0,00002 | 0,00003|0,00004 | 0,00005|0,00006
S S S S S S
n2 0,0001 | 0,0004 | 0,0009 | 0,0016 | 0,0.35 | 0,0036
S S S S S S
n3 0,001 0,008 | 0,027 0,64 0,125 | 0.316
S S S S S S
n5 0,1 3,2 24,3 1,7 52 13
S S S min min min
on 0,001 1 17,9 12,7 35,7 366
S S min dias anos seg
3n 0,059 58 6,5 3855 108 1013
S min anos sec sec sec
Funcao de |Computador| Computador 100 | Computador 1000
custo de tempo atual vezes mais rapido | vezes mais rapido
n 11 100 t1 1000 t1
n? to 10 to 31,6 1>
n3 t3 4,6 t3 10 t3
2™ ta ts + 6,6 ta + 10
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Hierarquias de funcoes

A seguinte hierarquia de funcdes pode ser definida do ponto de vista assintotico:

1 < loglogn < logn < nf < n¢ < n'°9" < < p” < €

onde € e c sdo constantes arbitrariascom 0 < e < 1 < c.
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Hierarquias de funcoes

e Usando MatLab, ou um outro pacote matematico, desenhe os graficos dessas
funcoes, quando n — oo
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Hierarquias de funcoes

Onde as seguintes funcoes se encaixam nessa hierarquia? (Mostre a sua solu-
¢ao)

(a) m(n) = .. Esta fungéo define o numero de primos menor ou igual a n.

(b) evicgn,
Dica: ef () < e9(1) — limy oo (F(n) — g(n)) = —o00
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Hierarquias de Funcoes
Preliminares

A hierarquia apresentada esta relacionada com funcdes que vao para o infinito.
No entanto, podemos ter o reciproco dessas fungdes ja que elas nunca sao
zero. Isto é,

1 1
f(n) < gn) <— < .
g(n)  f(n)
Assim, todas as fungoes (exceto 1) tendem para zero:
1 1 1 1 1 1 1 1
< << < —=<—=< < <1
c€ n" e nplodn pnc né logn loglogn
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Hierarquias de Funcoes

Solucao de (a)

_n_

e m(n) = %

Temos que (note que a base do logaritmo nao altera a hierarquia):

Multiplicando por n, temos:

n n
— < — <n,
nt Inn

ou seja,
nt=¢ < n(n) <n

Note que o valor 1 — ¢ ainda é menor que 1.
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Hierarquias de Funcoes
Solucao de (b)

° e\/Iog n

Dado a hierarquia:
1 <Inlnn <vinn <elnn
e elevando a e, temos que:

€1<€Inlnn<€\/lnn<€elnn

Simplificando temos:

e<Inn <eVINm o pe
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Algoritmo exponencial x Algoritmo polinomial

e FuncoOes de complexidade:
— Um algoritmo cuja funcdo de complexidade € O(c™),c > 1, € chamado de
algoritmo exponencial no tempo de execucao.
— Um algoritmo cuja fungcao de complexidade é O(p(n)), onde p(n) é um
polinbmio de grau n, € chamado de algoritmo polinomial no tempo de exe-
cucao.

e A distincao entre estes dois tipos de algoritmos torna-se significativa quando
o tamanho do problema a ser resolvido cresce.

Esta é a razao porque algoritmos polinomiais sao muito mais uteis na pratica

do que algoritmos exponenciais.

— Geralmente, algoritmos exponenciais sao simples variacbes de pesquisa
exaustiva.

@©)UFMG/ICEx/DCC PAA e Andlise de Complexidade 124




Algoritmo exponencial x Algoritmo polinomial

e Os algoritmos polinomiais sdo geralmente obtidos através de um entendi-
mento mais profundo da estrutura do problema.

e T[ratabilidade dos problemas:
— Um problema € considerado intratavel se ele € tao dificil que n&o se conhe-

ce um algoritmo polinomial para resolvé-lo.
— Um problema é considerado tratavel (bem resolvido) se existe um algoritmo
polinomial para resolvé-lo.

Aspecto importante no projeto de algoritmos.
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Algoritmos polinomiais x Algoritmos exponenciais

e A distincao entre algoritmos polinomiais eficientes e algoritmos exponenciais
ineficientes possui varias excegoes.

e Exemplo: um algoritmo com funcdo de complexidade f(n) = 2™ é mais
répido que um algoritmo g(n) = n> para valores de n menores ou iguais a
20.

e Também existem algoritmos exponenciais que sdo muito Uteis na pratica.
— Exemplo: o algoritmo Simplex para programacao linear possui complexi-
dade de tempo exponencial para o pior caso mas executa muito rapido na
pratica.

e Tais exemplos nao ocorrem com freqléncia na pratica, e muitos algoritmos
exponenciais conhecidos nao sao muito uteis.
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Algoritmo exponencial
O Problema do Caixeiro Viajante

e Um caixeiro viajante deseja visitar n cidades de tal forma que sua viagem
inicie e termine em uma mesma cidade, e cada cidade deve ser visitada uma
unica vez.

e Supondo que sempre ha uma estrada entre duas cidades quaisquer, 0 pro-
blema € encontrar a menor rota para a viagem.

e Seja a figura que ilustra o exemplo para quatro cidades c1, ¢o, c3, ca, €M que
0S nUmeros nas arestas indicam a distancia entre duas cidades.

O percurso (ci,c3,c4,cp,c1) € uma solucéao
para o problema, cujo percurso total tem distan-
cia 24.
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Exemplo de algoritmo exponencial

e Um algoritmo simples seria verificar todas as rotas e escolher a menor delas.

e Ha (n—1)! rotas possiveis e a distancia total percorrida em cada rota envolve
n adicdes, logo o numero total de adicoes € n!.

e No exemplo anterior teriamos 24 adicoes.
e Suponha agora 50 cidades: o nimero de adi¢des seria 50! ~ 10°%.

e Em um computador que executa 10° adi¢es por segundo, o tempo total para
resolver o problema com 50 cidades seria maior do que 10%° séculos s6 para
executar as adicoes.

e O problema do caixeiro viajante aparece com frequéncia em problemas rela-
cionados com transporte, mas também aplicacoes importantes relacionadas
com otimizacao de caminho percorrido.
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Técnicas de analise de algoritmos

e Determinar o tempo de execucao de um programa pode ser um problema
matematico complexo.

e Determinar a ordem do tempo de execucao, sem preocupagao com o valor da
constante envolvida, pode ser uma tarefa mais simples.

e A analise utiliza técnicas de matematica discreta, envolvendo contagem ou
enumeracao dos elementos de um conjunto:
— manipulacao de somas;
— produtos;
— permutacoes;
— fatoriais;
— coeficientes binomiais;
— solucao de equacoes de recorréncia.
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Analise do tempo de execucao

e Comando de atribuicdo, de leitura ou de escrita: O(1).

e Sequéncia de comandos: determinado pelo maior tempo de execucao de
qgualquer comando da sequéncia.

e Comando de decisao: tempo dos comandos dentro do comando condicional,
mais tempo para avaliar a condicéo, que € O(1).

e Anel: soma do tempo de execucgao do corpo do anel mais o tempo de avaliar
a condicao para terminacao (geralmente O(1)), multiplicado pelo niUmero de
iteracoes.
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Analise do tempo de execucao

e Procedimentos nao recursivos:
— Cada um deve ser computado separadamente um a um, iniciando com 0s

que nao chamam outros procedimentos.
— Avalia-se entao os que sao chamam os ja avaliados (utilizando os tempos

desses).
— O processo € repetido até chegar no programa principal.

e Procedimentos recursivos:

— E associada uma funcao de complexidade f(n) desconhecida, onde n
mede o tamanho dos argumentos.
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Procedimento nao recursivo

Algoritmo para ordenar os n elementos de um conjunto A em ordem ascen-
dente.

(1)

(@2 IENTE S GO\

(O))

oo

procedure Ordena (var A: Vetor);
var 1, J, min, x: integer;
begin
for 1 :=1ton1do
begin
{min contém o indice do
menor elemento de A[i..n]}
min := i;
for j := i+l ton do
if A[]j] < Almin]
then min := j;

{Troca Almin] e A[1i]}

X := A[min];
Almin] := A[1];
Al1] = X;

e Seleciona o0 menor elemento do conjunto.

e Troca este elemento com A[1].

e Repete as duas operacdes acimacomosn — 1
elementos restantes, depois com os n — 2, até
que reste apenas um.
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Analise do procedimento nao recursivo
Anel interno

e Contém um comando de decisdo, com um comando apenas de atribuicao.
Ambos levam tempo constante para serem executados.

e Quanto ao corpo do comando de decisao, devemos considerar o pior caso,
assumindo que sera sempre executado.

e O tempo para incrementar o indice do anel e avaliar sua condi¢cao de termi-
nacao é O(1).

e O tempo combinado para executar uma vez o anel é O(maz(1,1,1)) =
O(1), conforme regra da soma para a notacao O.

e Como o numero de iteragoes é n—1, o tempo gastonoanelé O((n—i)x1)
O(n — i), conforme regra do produto para a notacéo O.
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Analise do procedimento nao recursivo
Anel externo

e Contém, além do anel interno, quatro comandos de atribuicao:
— O(mazxz(l,(n—1),1,1,1)) = O(n —1).

e Alinha (1) é executada n — 1 vezes, e o tempo total para executar o programa
esta limitado ao produto de uma2 constante pelo somatério de (n — 7):
- S - =" = -5 =00?)

e Considerarmos o numero de comparacdes como a medida de custo relevante,
0 programa faz (n2)/2 — n /2 comparagdes para ordenar n elementos.

e Considerarmos o numero de trocas, o programa realiza exatamente n — 1
trocas.
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Algoritmos recursivos

e Um objeto é recursivo quando é definido parcialmente em termos de si mesmo

e Exemplo 1: NUmeros naturais
(a) 1 € um numero natural
(b) o sucessor de um numero natural € um namero natural

e Exemplo 2: Funcao fatorial
(@) O'=1
(b) sen>0entdon!'=n-(n—1)!
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Algoritmos recursivos

e Exemplo 3: Arvores
(a) A arvore vazia é uma arvore
(b) se T7 e T> sdo arvores entdo T” € um arvore
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Objetos recursivos: Exemplos

Derivacao binaria
Fractal de Fern

Fractal de triangulos
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Objetos recursivos: Exemplos

Foto recursiva Imagem recursiva Pensamento recursivo
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Poder da recursao

e Definir um conjunto infinito de objetos através de um comando finito

e Um problema recursivo P pode ser expresso como P = P[S;, P], onde P é
a composicao de comandos S; e do proprio P

e Importante: constantes e variaveis locais a P sao duplicadas a cada chamada
recursiva
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Problema de terminacao

e Definir um condicao de terminacao.
o |ldéia:
— Associar um parametro, por exemplo n, com P e chamar P recursivamente

com n — 1 como parametro.
— A condi¢cao n > 0 garante a terminacao.
— Exemplo:

P(n) =ifn > 0then P[S;; P(n — 1)].
e Importante: na pratica € necessario:

— mostrar que o nivel de recursao é finito, e
— tem que ser mantido pequeno! Por que?
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Razoes para limitar a recursao

e Memodria necessaria para acomodar variaveis a cada chamada

e O estado corrente da computacao tem que ser armazenado para permitir a
volta da chamada recursiva.

Exemplo:

::;ngztnlon F(i : integer) : integer; F(4) — 1 | 4+F(3)
L0 2 | 3xF(2)
ifi>0 | | 3 | 2xF(1)
then I := 1 x F(1i-1) 4 1*F(0)
else F := 1; 1

end;
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Quando nao usar recursividade

e Algoritmos recursivos sao apropriados quando o problema é definido em ter-
MOS recursivos

e Entretanto, uma definicao recursiva nao implica necessariamente que a im-
plementagao recursiva € a melhor solucao!

e Casos onde evitar recursividade:
— P = if condicao then (S;; P) R
Exemplo: P=ifi <nthen (. :=:¢+ 1, F :=ix* F; P)
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Eliminando a_recursid_ade de cauda
(Tail recursion)

function Fat : integer;
var ', 1 : integer;
begin
i:=0; F :=1;
while i < n do

begin
1 := 1+1;
F = F«i;
end;
Fat :=F;
end
Logo,

P =if B then (S; P)

deve ser transformado em
P = (x = xp; while B do S)
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Outro exemplo

function Fib(n : integer) : integer;
begin
ifn=20
then Fib := 0
else if n=1
then Fib := 1
else Fib := Fib(n-1) + Fib(n-2);
end; ({Fib}

Observacao: para cada chamada a
Fib(n), Fib é ativada 2 vezes
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Solucao obvia

function Fib : integer;
var i, Temp, F, Fant : integer;
begin
i:=1; F :=1; Fant := 0;
while 1 < n do
begin
Temp := EFj
F :=F + Fant;
Fant := Temp;

1= 1i+1;
end;
Fib := F;
end; {Fib}

e Complexidade de tempo: T'(n) =n — 1
e Complexidade de espaco: E(n) = O(1)
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Procedimento recursivo

Pesquisa(n) ;
(1) ifn <1
(2) then "inspecione elemento" e termine
else begin
(3) para cada um dos n elementos "inspecione elemento";
(4) Pesquisa(n/3);
end;

e Para cada procedimento recursivo € associada uma funcao de complexidade
f(n) desconhecida, onde n mede o tamanho dos argumentos para o proce-
dimento.

e Obtemos uma equacao de recorréncia para f(n).

e Equacao de recorréncia: maneira de definir uma funcdo por uma expressao
envolvendo a mesma funcao.
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Analise do procedimento recursivo

e Seja T'(n) uma funcdo de complexidade que represente o numero de inspe-
cOes nos n elementos do conjunto.

e O custo de execucdo das linhas (1) e (2) € O(1) e da linha (3) é O(n).

e Usa-se uma equacao de recorréncia para determinar o n® de chamadas
recursivas.

e Otermo T'(n) é especificado em funcido dos termos anteriores T'(1), T'(2),
onT(n—1).

e T'(n)=n+Tn/3), T(1) =1 (paran = 1 fazemos uma inspecao).

e Porexemplo, T(3) =T(3/3)4+3=4,7T(9) =T(9/3)+9 = 13, e assim
por diante.

e Para calcular o valor da funcao seguindo a definicdo sao necessarios k — 1
passos para computar o valor de T'(3%).
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Exemplo de resolucao de equacao de recorréncia

Substitui-se os termos T'(k), k < n, até que todos os termos T'(k), k& > 1,
tenham sido substituidos por formulas contendo apenas 7'(1).

T(n) = n+T(n/3)
T(n/3) = n/3+T(n/3/3)
T(n/3/3) = n/3/34+T(n/3/3/3)

T(n/3/3---/3) = n/3/3---/3+T(n/3---/3)

Adicionando lado a lado, temos

Tn)=n+n-(1/3)4+n-(1/39)+n-(1/33)+--- 4+ (n/3/3---/3)

que representa a soma de uma série geométrica de razao 1/3, multiplicada por
n, € adicionada de T'(n/3/3--- /3), que € menor ou igual a 1.
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Exemplo de resolucao de equacao de recorréencia
T(n)=n+n-(1/3)4+n-(1/39)+n-(1/33)+---+ + (n/3/3---/3)

Se desprezarmos o termo T'(n/3/3 - - - /3), quando n tende para infinito, entao

S Y B
T(n)—nigo(l/IS) —'n(l %) =

Se considerarmos o termo T'(n/3/3/3--- /3) e denominarmos x 0 numero de
subdivisdes por 3 do tamanho do problema, entao n/3* = 1, e n = 3%. Logo
xr = logzn.
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Exemplo de resolucao de equacao de recorréencia

Lembrando que T'(1) = 1 temos
r—1
n n
) = ¥ 5+ 75
1=

r—1
= n) (1/3)'+1
1=0

_ -G
-1

. 3n 1

Y

Logo, o programa do exemplo é O(n).
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Comentarios sobre recursividade

e Evitar o uso de recursividade quando existe uma solugao 6ébvia por iteracao!

e Exemplos:
— Fatorial
— Série de Fibonacci
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Analise de algoritmos recursivos

e Comportamento é descrito por uma equagao de recorréncia

e Enfoque possivel:
— Usar a prépria recorréncia para substituir para T'(m), m < n até que todos
os termos tenham sido substituidos por formulas envolvendo apenas 7'(0)

Ou 0 caso base
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Analise da funcao fat

Seja a seguinte funcao para calcular o fatorial de n:

function fat(n : integer) : integer;
begin

ifn<=1

then fat := 1

else fat := n » fat(n-1);
end; [{fat}

Seja a seguinte equacao de recorréncia para esta funcao:
d n=1
T(n) = { c+T(n—1) n>1

Esta equacao diz que quando n = 1 0 custo para executar fat € igual a d.

Para valores de n maiores que 1, 0 custo para executar fat € ¢ mais 0 custo
para executar T'(n — 1)
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Resolvendo a equacao de recorrencia

Esta equacao de recorréncia pode ser Em cada passo, o valor do termo T
expressa da seguinte forma: é substituido pela sua definicao (ou
seja, esta recorréncia esta sendo re-
solvida pelo método da expansao). A
c+T(n—1) s N .
ultima equagao mostra que depois da
ct+ (c+T(n—2)) expansdo existem n — 1 ¢'s, corres-
ct+c+ (c+T(n-3)) pondentes aos valores de 2 até n.
1 Desta forma, a recorréncia pode ser
ct+c+---+(+T(1)) expressacomo:
ctect+---+c+d

ntl

T(n)

T(n) =c(n—1)4+d=0(n)
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Alguns somatorios uteis

" nn4+1) koo gkl _ 4

1 — b — 1
7,; 2 ;:oa am1 PV
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i=0 i=1 6
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Algumas recorréencias basicas: Caso 1

T(n)
T(1)

T(5)+1 (n>2)
0 (n=1)

Vamos supor que:

n=2k:>k=|09n

Resolvendo por expansao temos:

T(2%)

T(n)
T(n)

T2 1) 41
(T(2"2)+1)+1
(T(2" 3 4+1)+1+1

(T(2)+ 1)+ 14 +1
(T + 1)+ 1441
O+1+ --+1

k

k

logn
O(logn)
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Algumas recorréencias basicas: Caso 2

Vamos supor que n = 2% = k = log n. Resolvendo por expansio temos:

T(2%)

T(n)
T(n)

T(n)
T(1)

2T(5) +n (n > 2)
0 (n=1)

2T (2F 1) 4 2F
2(27T(2F72) 4 2k=1) 4 oF
2(2(2T(2F73) 4 2F=2) 4 2k=1) 4 oF

:2(2(- T()+27)+23) 4 )2 ) 4 28
(k —1)2F 4 2F
k2F

nlogn
O(nlogn)
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Teorema Mestre

Recorréncias da forma

T(n) = aT(n/b) + f(n),

ondea > 1 eb > 1 sdo constantes e f(n) é uma funcdo assintoticamente pos-
itiva podem ser resolvidas usando o Teorema Mestre. Note que neste caso nao
estamos achando a forma fechada da recorréncia mas sim seu comportamento
assintotico.
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Sejam as constantes a > 1 e b > 1 e f(n) uma funcio definida nos inteiros
nao-negativos pela recorréncia:

onde a fragcao n/b pode significar |n/b] ou [n/b]. A equacgao de recorréncia

Teorema Mestre

T(n) = aT(n/b) + f(n),

T'(n) pode ser limitada assintoticamente da seguinte forma:

1. Se f(n) = O(n'°9 =€) para alguma constante € > O,

entao

2. Se f(n) = ©(n'°9% ) entdo
3. Se f(n) = Q(n!°9%2+¢) para alguma constante ¢ > 0 e se af(n/b) <
cf(n) para alguma constante ¢ < 1 e para n suficientemente grande,

entao

T(n) = ©(nl°%a) |

T(n) =0©(f(n))|

T(n) = ©(n'°%elogn)|.
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Comentarios sobre o teorema Mestre

e Nos trés casos estamos comparando a funcédo f(n) com a fungéo n'°9% 2.
Intuitivamente, a solugao da recorréncia € determinada pela maior das duas
funcoes.

e Por exemplo:

— No primeiro caso a funcdo n'°9% @ & a maior e a solucdo para a recorréncia
é T(n) = ©(nl°%a),

— No terceiro caso, a funcao f(n) € a maior e a solucao para a recorréncia é
T(n) = (f(n)).

— No segundo caso, as duas fungdes sao do mesmo “tamanho.” Neste caso,
a solucéo fica multiplicada por um fator logaritmico e fica da forma T'(n) =
O (n'°%alogn) = O(f(n) logn).
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Tecnicalidades sobre o teorema Mestre

e No primeiro caso, a funcdo f(n) deve ser ndo somente menor que n!°9 ¢
mas ser polinomialmente menor. Ou seja, f(n) deve ser assintoticamente
menor que n!°9 % por um fator de n¢, para alguma constante ¢ > 0.

e No terceiro caso, a funcdo f(n) deve ser ndo somente maior que n!°9 ¢
mas ser polinomialmente maior e satisfazer a condicao de “regularidade” que
af(n/b) < cf(n). Esta condicdo € satisfeita pela maior parte das fungdes
polinomiais encontradas neste curso.
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Tecnicalidades sobre o teorema Mestre

e Teorema nao cobre todas as possibilidades para f(n):

— Entre os casos 1 e 2 existem fungdes f(n) que sdo menores que n'°9 @
mas nao sao polinomialmente menores.

— Entre os casos 2 e 3 existem funcdes f(n) que sdo maiores que n'°9 @
mas nao sao polinomialmente maiores.

-» Se a funcdo f(n) cai numa dessas condi¢cdes ou a condicdo de regu-
laridade do caso 3 ¢é falsa, entao nao se pode aplicar este teorema para
resolver a recorréncia.
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Uso do teorema: Exemplo 1

T(n) =9T(n/3) +n

Temos que,
a=9,b=3,f(n)=n
Desta forma,
nlogba — nlog39 — @(nz)

Como f(n) = O(n'°939—¢) onde e = 1, podemos aplicar o caso 1 do teorema
e concluir que a solucao da recorréncia é

T(n) = ©(n?)

(@!UFMG/ICEX/DCC PAA e Anadlise de Complexidade 163



Uso do teorema: Exemplo 2

T(n) =T(2n/3) +1
Temos que,
a=1,6=3/2,f(n)=1
Desta forma,
nl09pa — n|093/2 1 _ .01
O caso 2 se aplica ja que f(n) = ©(n!°% ) = &(1). Temos, entdo, que a
solucdo da recorréncia é

T(n) = ©((ogn)
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Uso do teorema: Exemplo 3

T(n) =3T(n/4) +nlogn
Temos que,

a=3,b=4,f(n) =nlogn
Desta forma,

nlogba — nlog43 — O(no‘793)

Como f(n) = Q(n!°943+¢) onde e ~ 0.2, 0 caso 3 se aplica se mostrarmos
que a condicao de regularidade é verdadeira para f(n).
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Uso do teorema: Exemplo 3

Para um valor suficientemente grande de n

af(n/b) =3(n/4)log(n/4) < (3/4)nlogn = cf(n)
para ¢ = 3/4. Consequentemente, usando o caso 3, a solugao para a recor-
réncia

T(n) =(nlogn)
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Uso do teorema: Exemplo 4

T(n) =2T(n/2) +nlogn
Temos que,

a=2,b=2,f(n) =nlogn
Desta forma,

nlogb a —

Aparentemente o caso 3 deveria se aplicar ja que f(n) = nlogn é assintoti-
camente maior que n!°9 % = n. Mas no entanto, ndo é polinomialmente maior.
A fracdo f(n)/n'°9%% = (nlogn)/n = logn que é assintoticamente menor
que n¢ para toda constante positiva e. Conseqlentemente, a recorréncia cai na
situacao entre os casos 2 e 3 onde o0 teorema nao pode ser aplicado.
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Uso do teorema: Exercicio 5

T(n) = 4T(n/2) + n
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Uso do teorema: Exercicio 6

T(n) = 4T(n/2) + n?
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Uso do teorema: Exercicio 7

T(n) = 4T(n/2) + n>
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Uso do teorema: Exercicio 8

O tempo de execucao de um algoritmo A é descrito pela recorréncia
T(n) = 7T(n/2) 4+ n?

Um outro algoritmo A’ tem um tempo de execugdo descrito pela recorréncia
T'(n) = aT'(n/4) + n?

Qual é o maior valor inteiro de a tal que A’ é assintoticamente mais rapido que
A?
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Notacao assintotica em funcoes

Normalmente, a notacao assintotica € usada em foérmulas matematicas. Por
exemplo, usando a notacdo O pode-se escrever que n = O(n2?). Também
pode-se escrever que

2n° 4+ 3n4+ 1 =2n2+ O(n)

Como se interpreta uma férmula como esta?

@©)UFMG/ICEx/DCC PAA e Andlise de Complexidade 172




Notacao assintotica em funcoes

Notacao assintodtica sozinha no lado direito de uma equacao, como em n =

O(n?)

— Sinal de igualdade significa que o lado esquerdo € um membro do conjunto
O(n?)

—ne0(n?)oun Cn?

e Nunca deve-se escrever uma igualdade onde a notagao O aparece sozinha
com os lados trocados
— Caso contrario, poderia se deduzir um absurdo como n? = n de igual-
dades como em O(n?) = n

e Quando se trabalha com a notacdo O e em qualquer outra férmula que en-
volve quantidades nao precisas, o sinal de igualdade é unidirecional
— Dai vem o fato que o sinal de igualdade ("=") realmente significa € ou C,
usados para inclusao de conjuntos
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Notacao assintotica em funcoes

Se uma notacao assintotica aparece numa formula, isso significa que essa no-
tacao esta substituindo uma funcao que nao é importante definir precisamente
(por algum motivo). Por exemplo, a equacao

2n° 4+ 3n4+ 1 =2n2+ O(n)
significa que
2n° 4+ 3n+1=2n°+ f(n)

onde f(n) é alguma funcdo no conjunto ©(n). Neste caso, f(n) = 3n+ 1
que de fato esta em ©(n).
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Notacao assintotica em funcoes

O uso da notacdo assintética desta forma ajuda a eliminar detalhes que nao
sao importantes. Por exemplo, pode-se expressar uma equacao de recorréncia

Ccomo.
T(n)=2T(n—1) 4+ O(n).

Se se deseja determinar o comportamento assintético de 7'(n) entdo nao é
necessario determinar exatamente os termos de mais baixa ordem. Entende-se
que eles estdo incluidos numa funcédo f(n) expressa no termo @(n).
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Notacao assintotica em funcoes

Em alguns casos, a anotacao assintotica aparece do lado esquerdo de uma
equagcao como em:

2n° + ©(n) = O(n?).

A interpretacao de tais equacgoes deve ser feita usando a seguinte regra:

e E possivel escolher uma funcéo f(n) para o lado esquerdo da igualdade de
tal forma que existe uma funcado g(n) para o lado direito que faz com que a
equacao seja valida

e O lado direito da igualdade define um valor n&o tao preciso quanto o lado
esquerdo. Por exempilo,

2n° 4+ O(n) (1)
O (n?). (2)

22 +3n+1
2n° + O(n)
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Notacao assintotica em funcoes

As equacoes (1) e (2) podem ser interpretadas usando a regra acima:
e A equacdo (1) diz que existe alguma funcdo f(n) € ©(n) tal que 2n? +
3n + 1 = 2n2 + f(n) para todo n.

e A equacao (2) diz que para qualquer funcao g(n) € ©(n), existe uma funcéo
h(n) € ©(n2) tal que

2n? + g(n) = h(n)

para todo n. Note que esta interpretacéo implica que 2n24+3n4+1 = ©(n?),
gue é o que estas duas equagdes querem dizer.
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Modelagem usando equacao de recorréncia
Torre de Hanoi

Edouard Lucas (1842-1891), matematico francés. Propbs o jogo “Torre de
Hanoi” em 1883. Escreveu o trabalho de matematica recreativa Récréations

‘ Matheématiques em quatro volumes (1882—94) que se tornou um classico.

Configuracao inicial:
— O jogo comeca com um conjunto de oito discos empilhados em tamanho
decrescente em uma das trés varetas.
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Modelagem usando equacao de recorréncia
Torre de Hanoi

e Obijetivo:
— Transferir toda a torre para uma das outras varetas, movendo um disco de
cada vez, mas nunca movendo um disco maior sobre um menor

e Solucdes particulares:
— Seja T'(n) o numero minimo de movimentos para transferir n discos de

uma vareta para outra de acordo com as regras definidas no enunciado do
problema.
— Nao é dificil observar que:

T(0) = 0 'nenhum movimento é necessario]
(1) =1 [apenas um movimento]
T(2) = 3 trés movimentos usando as duas varetas]
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Modelagem usando equacao de recorréncia
Torre de Hanoi

e Generalizacdo da solucao:
— Para trés discos, a solugao correta é transferir os dois discos do topo para a
vareta do meio, transferir o terceiro disco para a outra vareta e, finalmente,
mover 0s outros dois discos sobre o topo do terceiro.

— Para n discos:
1. Transfere-se os n — 1 discos menores para outra vareta (por exemplo, a
do meio), requerendo T'(n — 1) movimentos.
2. Transfere-se o disco maior para a outra vareta (1 movimento).
3. Transfere-se os n — 1 discos menores para o topo do disco maior,
requerendo-se T'(n — 1) movimentos novamente.
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Modelagem usando equacao de recorréncia
Torre de Hanoi

Equacao de recorréncia para este problema pode ser expressa por:

7(0)
T(n)

0
2T(n—1)+1, paran>0
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Modelagem usando equacao de recorréncia
Torre de Hanoi

Para pequenos valores de n temos:

n

0

112 | 3| 4

T'(n)

0

1 13| 7 |15

31

63

Esta recorréncia pode ser expressa por

T(n)=2"-1
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Modelagem usando equacao de recorréncia
Torre de Hanoi

Provando por inducdo matematica temos:

Caso base. Paran = 0temos que 7(0) = 29—1 = 0, que é o valor presente
na equacao de recorréncia.

Inducao. A inducao sera feita em n. Vamos supor que a forma fechada seja
valida para todos os valores até n — 1, ou seja, T'(n — 1) = 2n~1 — 1.
Vamos provar que esta forma fechada é de fato valida para T'(n).

Tn)=2T(h—1)+1=22" 1 -1)4+1=2"-241=2"—1.

. A forma fechada proposta também ¢é valida para n.
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Modelagem usando equacao de recorréencia
Estrategia para resolucao da equacao

A recorréncia da Torre de Hanoi aparece em varias aplicagdes de todos os tipos.
Normalmente, existem trés etapas para achar uma forma fechada para o valor
de T'(n):

1. Analisar pequenos casos. Com isto podemos ter um entendimento melhor
do problema e, ao mesmo tempo, ajudar nos dois passos seguintes.

2. Achar e provar uma recorréncia para o valor de T'(n).

3. Achar e provar uma forma fechada para a recorréncia.
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Modelagem usando equacao de recorréncia
Linhas no plano

e Problema:
— Qual é o numero maximo de regides L, determinado por n retas no plano?

=» Lembre-se que um plano sem nenhuma reta tem uma regiao, com uma reta
tem duas regides e com duas retas tém quatro regioes.

@ uFMG/ICEX/DCC PAA e Analise de Complexidade 185



Analise Amortizada

@©uFMG/ICEx/DCC PAA e Andlise de Complexidade 186



Introducao

e Cenario:
— Manter uma estrutura de dados sobre uma sequéncia de n operagoes.

e Custo por operacao:
— Pode ser alto, por exemplo, ©(n).

e Custo total:
— Pode nao ser n x “custo no pior caso de uma operagao”.

e Questao:
— Como fazer uma analise mais precisa num cenario como esse?

e Solucéo:
— Analise amortizada.
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Custo amortizado

e Definicao:
— Custo médio de uma operacao sobre uma sequéncia de n operagoes, max-
imizado sobre todos n e todas sequéncias.

e Observacoes importantes:
— O custo amortizado nao € a mesma coisa que a analise do caso médio.

— Na&o é feita nenhuma suposicao sobre a sequiéncia de entrada.
— Amortizacao € ainda um principio de pior caso.
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Teéecnicas de analise amortizada

Trés técnicas que podem ser usadas para analisar tais cenarios sao:
e Método Agregado (Aggregate Method).

e Método Contabil (Accounting Method).

e Método Potencial (Potential Method).

Referéncia:

=» Introduction to Algorithms, 2nd edition. Thomas H. Cormen, Charles E. Leis-

erson, Ronald L. Rivest, Clifford Stein. MIT Press, Hardcover, Published July
2001, ISBN 0070131511.
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Exemplo: Incrementar um contador binario
e Exemplo didatico (toy example).

e Estrutura de dados:
— Arranjo de k bits, usado para armazenar/contar nimeros de 0 a 2 — 1 e

depois novamente a 0.

e Operacao:
— Incrementar.

e Custo:
— Numero de bits trocados.
— Exemplo: arranjo de 5 bits.
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Exemplo: Incrementar um contador binario

Bits Custo
00000

00001 1
00010 2
00011 1
00100 3

=» Custo varial

=» Custo maximo: O(logn).
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Contador binario: Codigo
e Contador binario de £ bits.

e Vetor A[O...k — 1]
— Bit menos significativo na posicdo A[Q].
— Bit mais significativo na posicdo A[k — 1].
— Um ndmero bindrio « é dado por Y51 A[i] - 2°.

e length[A] = k.

e Para somar 1 (médulo 2%) ao valor do contador, pode-se usar o procedimento
Increment(A).
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Contador binario: Codigo

Increment (A)
i« 0
while (1 < length[A]) A (A[1] = 1) do
begin
A[1] «— O
i«+—1i1i+1
end
if 1 < length[A]
then A[i] «— 1
EndIncrement

=» Essencialmente o mesmo algoritmo implementado pelo contador Ripple-
Carry em hardware.
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Meétodo agregado

e |déia:
— Conte o custo total para as n operacoes.

e Técnica de contagem:
— Ad hoc, ou seja, cada caso € um caso.
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Contador binario

e Custo por linha varia.
— Dificil de somar.

e Solucéo:
— Conte por coluna, ou seja, quantas vezes o i-ésimo bit é trocado.
— Some o0s custos.
— Exemplo: arranjo de 5 bits (kK = 5).
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Contador binario

Bits Custo

O 0 O O O

o 0O 0O O 1 1

O 0 0 1 O 2

o 0 o0 1 1 1

O 0 1 0 0 3

1T 1 1 1 A1 1

O 0 O O O 5
17 1T 71 1

2 4 8 16 32
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e Custo:

— Para uma seqiiéncia de n incrementos (2F), temos:

Contador binario

Bit de ordem
24 | 23 | 22| 21 1 50
2| 4| 8|16 |32

ou seja, o bit de ordem 2! é trocado 2*~* vezes. Logo, o custo total de

trocas é

=» Custo amortizado por troca = O(n)/n = O(1).

k
Y 2l=02Frl _2=02.2F 2=2n-2=0(n)

1=1
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Meétodo contabil

e Estrutura de dados vem com uma “conta bancaria”.

e A cada operacao é alocado um custo fixo (custo amortizado).
— Custos devem ser escolhidos cuidadosamente.

e Se o custo real é menor que o custo alocado, deposite a diferengca na conta
bancaria.

e Se 0 custo real € maior que o custo alocado, retire a diferenca da conta
bancaria para pagar pela operacao.

e Prove que o saldo nunca fica negativo.
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Meétodo contabil

e Qual o significado do saldo ficar negativo?
-» Para a sequéncia de operacdes até aquele momento, o custo amortizado
total nao representa um limite superior para o custo real total.

e Conclusao:
— SequUéncia de n operagdes custa no maximo n x “custo amortizado”.
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Contador binario

e Custo amortizado para trocar 0 — 1 = 2 créditos.
— Pague 1 crédito pela operacao e deposite 1 crédito na conta.

e Custo amortizado para trocar 1 — 0 = 0 creditos
— Retire da conta 1 crédito para pagar pela operacao.

e Invariante:
— Cada bit 1 no contador gerou um credito.
— Logo, sempre existe crédito para pagar pela operacao de trocar 1 — 0.
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Analise amortizada

e Custo para resetar os bits no while é pago pelos créditos dos bits que foram
setados.

e No maximo um bit € setado.
— Custo da operacao de incremento € no maximo 2.

e O numero de bits 1 no contador nunca é negativo.
— Saldo nunca é negativo.

e Para n operacdes de incremento, o custo amortizado total € O(n), que é um
limite para o custo real total.
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Método potencial

e Associa-se uma energia potencial a cada estrutura de dados.
e Energia potencial é o “potencial para fazer um estrago”.

e Custo amortizado = Custo atual +
Novo potencial —
Potencial anterior
— Deve-se pagar para incrementar o potencial da estrutura de dados.

e Se a operacao tem um custo cumulativo alto mas reduz bastante o potencial,
entdo o custo amortizado é baixo.

e Como encontrar o potencial?
=» Determine o que torna uma estrutura de dados ruim.
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Regras basicas para funcoes potenciais

e Devem ser sempre ndo negativas.

Devem comecar de zero.

e Implica uma sequéncia de n operacdes que custam no maximo nx “custo
amortizado”.
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Contador binario

e Estrutura de dados € “ruim” se tem varios 1’s.
e Seja d(Contador)= # 1’s no contador.
e Potencial aumenta quando ha um incremento:

—#0—=1)—#(1 —0)
-1 —#(1 —0)

e Custo amortizado do incremento:

= Custo real (atual) + Aumento do potencial
=(1+#(1 -0+ —-#(1 —0))
=2

e Custo amortizado é 2 e o custo de n incrementos € no maximo 2n.
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