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Paradigmas de projeto de algoritmos

• Indução

• Recursividade

• Tentativa e erro

• Divisão e conquista

• Balanceamento

• Programação dinâmica

• Algoritmos gulosos

• Algoritmos aproximados
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Princípio da indução matemática (fraca)

Seja P (n) um predicado definido para os inteiros n, e seja n0 um inteiro fixo.
Suponha que as duas afirmações abaixo sejam verdadeiras:

1. P (n0) é V.
2. Para todos inteiros k ≥ n0,

se P (k) é V então P (k + 1) é V.

Ü Logo, a afirmação
para todos inteiros n ≥ n0, P (n)

é V.

n

P(n)

Inteiros0
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Princípio da indução matemática

• Técnica aparece pela primeira vez no trabalho do italiano Francesco Mau-
rolico em 1575.

• No século XVII, Pierre de Fermat e Blaise Pascal usam essa técnica em seus
trabalhos. Fermat dá o nome de “método do descendente infinito.”

• Em 1883, Augustus De Morgan descreve o processo cuidadosamente e dá o
nome de indução matemática.

Ü Técnica extremamente importante para a Ciência da Computação.

Para visualizar a idéia da indução matemática, imagine uma coleção de do-
minós colocados numa seqüência (formação) de tal forma que a queda do
primeiro dominó força a queda do segundo, que força a queda do terceiro, e
assim sucessivamente, até todos os dominós caírem.
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Princípio da indução matemática (fraca)

• A prova de uma afirmação por indução matemática é feita em dois passos:
1. Passo base: é provado que P (n0) é V para um dado n0 específico.
2. Passo indutivo: é provado que para todos inteiros k ≥ n0,

se P (k) é V então P (k + 1) é V.

O passo indutivo pode ser escrito formalmente como:

∀ inteiros k ≥ n0, se P (k) então P (k + 1)

• Para provar o passo indutivo deve-se:
– supor que P (k) é V, onde k é um elemento específico mas escolhido arbi-

trariamente de tal forma que seja maior ou igual a n0.
– provar que P (k + 1) é V.
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Princípio da indução matemática (fraca)

• Este princípio pode ser expresso pela seguinte regra de inferência:

[P (n0) ∧ ∀k(P (k)→ P (k + 1))]→ ∀nP (n).

Inteiros

P(n)

0nP (    ) 1n 2n

...
P (   )kP (    ) P (    ) P k(  +1)

Ü Numa prova por indução matemática não é assumido que P (k) é verdadeiro
para todos os inteiros! É mostrado que se for assumido que P (k) é ver-
dadeiro, então P (k + 1) também é verdadeiro.

Os próximos 10 exemplos ilustram o uso do Princípio da Indução Matemática e estão apresentados aqui para
estudo e referência.
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Princípio da indução matemática
Exemplo 1

Prove que para todos inteiros n ≥ 1,

1 + 2 + . . .+ n =
n(n+ 1)

2

Prova (por indução matemática):

1. Passo base: P (n0) = P (1): Para n0 = 1, 1 = 1(1+1)
2 = 1 e a fórmula

é verdadeira para n0 = 1.

2. Passo indutivo: se a fórmula é verdadeira para n = k então deve ser ver-
dadeira para n = k + 1, i.e., P (k)→ P (k + 1).
– Suponha que a fórmula seja verdadeira para n = k, i.e.,

P (k) : 1 + 2 + . . .+ k =
k(k + 1)

2
para algum inteiro k ≥ 1. [hipótese indutiva]
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Princípio da indução matemática
Exemplo 1

Deve-se mostrar que

P (k + 1) : 1 + 2 + . . .+ (k + 1) =
(k + 1)(k + 2)

2

Sabe-se que

1 + 2 + . . .+ k + (k + 1) =
k(k + 1)

2
+ (k + 1)

=
k(k + 1)

2
+

2(k + 1)

2

=
k2 + 3k + 2

2

=
(k + 1)(k + 2)

2
[Isto era o que devia ser provado.]
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Princípio da indução matemática
Exemplo 2

Prove que para todos inteiros n ≥ 0,

0 + 1 + 2 + . . .+ n =
n(n+ 2)

2
ERRADO!

Prova (por indução matemática):

1. Passo base: P (n0) = P (0): Para n0 = 0, 0 = 0(0+2)
2 = 0 e a fórmula

é verdadeira para n0 = 0.

2. Passo indutivo: se a fórmula é verdadeira para n = k então deve ser ver-
dadeira para n = k + 1, i.e., P (k)→ P (k + 1).
– Suponha que a fórmula seja verdadeira para n = k, i.e.,

P (k) : 0 + 1 + 2 + . . .+ k =
k(k + 2)

2
=
k2 + 2k

2
para algum inteiro k ≥ 0. [hipótese indutiva]
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Princípio da indução matemática
Exemplo 2

Deve-se mostrar que

P (k + 1) : 0 + 1 + 2 + . . .+ (k + 1) =
(k + 1)(k + 3)

2
=
k2 + 4k + 3

2

Sabe-se que

0 + 1 + 2 + . . .+ k + (k + 1) =
k2 + 2k

2
+ (k + 1)

=
k2 + 2k + 2(k + 1)

2

=
k2 + 4k + 2

2
[Assim, não foi possível derivar a conclusão a partir da hipótese. Isto significa que o predicado

original é falso.]
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Princípio da indução matemática
Exemplo 3

Prove que

P (n) :
n∑
i=0

ri =
rn+1 − 1

r − 1

para todos inteiros n ≥ 0 e para todos números reais r, r 6= 1.

Prova (por indução matemática):

1. Passo base: P (n0) = P (0): Para n0 = 0, r0 = 1 = r0+1−1
r−1 = r−1

r−1 = 1

e a fórmula é verdadeira para n0 = 0.

2. Passo indutivo: se a fórmula é verdadeira para n = k então deve ser ver-
dadeira para n = k + 1, i.e., P (k)→ P (k + 1).
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Princípio da indução matemática
Exemplo 3

– P (k) :
∑k
i=0 r

i = rk+1−1
r−1 , para k ≥ 0. [hipótese indutiva]

– Deve-se mostrar que P (k + 1) :
∑k+1
i=0 r

i = rk+2−1
r−1

k+1∑
i=0

ri =
k∑
i=0

ri + rk+1

=
rk+1 − 1

r − 1
+ rk+1

=
rk+1 − 1

r − 1
+
rk+1(r − 1)

r − 1

=
rk+1 − 1 + rk+2 − rk+1

r − 1

=
rk+2 − 1

r − 1
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Princípio da indução matemática
Exemplo 4

Prove que

P (n) : 22n − 1 é divisível por 3,

para n ≥ 1.

Prova (por indução matemática):

1. Passo base: P (n0) = P (1): Para n0 = 1, 22·1 − 1 = 3 que é divisível
por 3.

2. Passo indutivo: se a fórmula é verdadeira para n = k então deve ser ver-
dadeira para n = k + 1, i.e., P (k)→ P (k + 1).
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Princípio da indução matemática
Exemplo 4

– P (k) : 22k − 1 é divisível por 3. [hipótese indutiva]

– Deve-se mostrar que P (k + 1) : 22(k+1) − 1 é divisível por 3.

22(k+1) − 1 = 22k+2 − 1

= 22k · 22 − 1

= 22k · 4− 1

= 22k · (3 + 1)− 1

= 22k · 3 + (22k − 1)

que é divisível por 3.
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Princípio da indução matemática
Exemplo 5

Prove que

P (n) : 20 + 21 + 22 + . . .+ 2n = 2n+1 − 1,

para n ≥ 0.

Prova (por indução matemática):

1. Passo base: P (n0) = P (0): Para n0 = 20 = 1, 21 − 1 = 1.

2. Passo indutivo: se a fórmula é verdadeira para n = k então deve ser ver-
dadeira para n = k + 1, i.e., P (k)→ P (k + 1).
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Princípio da indução matemática
Exemplo 5

– P (k) : 20 + 21 + 22 + . . .+ 2k = 2k+1 − 1, para k ≥ 0. [hipótese indutiva]

– Deve-se mostrar que P (k + 1) : 20 + 21 + 22 + . . .+ 2k+1 = 2k+2 − 1

20 + 21 + 22 + . . .+ 2k + 2k+1 = (2k+1 − 1) + 2k+1

= 2 · 2k+1 − 1

= 2k+2 − 1
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Princípio da indução matemática
Exemplo 6

Prove que

P (n) : H2n ≥ 1 + n
2,

para n ≥ 0, onde Hj representa o número harmônico, que é definido por:

Hj = 1 + 1
2 + 1

3 + . . .+ 1
j .

Prova (por indução matemática):

1. Passo base: P (n0) = P (0):
Para n0 = 0, temos H20 = H1 = 1 ≥ 1 + 0

2.

2. Passo indutivo: se a fórmula é verdadeira para n = k então deve ser ver-
dadeira para n = k + 1, i.e., P (k)→ P (k + 1).
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Princípio da indução matemática
Exemplo 6

– P (k) : H2k ≥ 1 + k
2, para k ≥ 0. [hipótese indutiva]

– Deve-se mostrar que P (k + 1) : H2k+1 ≥ 1 + k+1
2

H2k+1 = 1 +
1

2
+

1

3
+ . . .+

1

2k
+

1

2k + 1
+

1

2k + 2
+ . . .+

1

2k+1

[Definição de número harmônico.]

= H2k +
1

2k + 1
+

1

2k + 2
+ . . .+

1

2k+1

[Definição de número harmônico.]

≥
(

1 +
k

2

)
+ 2k ·

1

2k+1

[Hipótese indutiva e existem 2k termos, cada um pelo menos 1/2k+1.]

≥
(

1 +
k

2

)
+

1

2

≥ 1 +
k + 1

2
.
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Princípio da indução matemática
Exemplo 7

Seja a seqüência a1, a2, a3, . . . definida como

a1 = 2

ak = 5ak−1, k ≥ 2

Prove que

an = 2 · 5n−1

para n ≥ 1.

Prova (por indução matemática):

1. Passo base: P (n0) = P (1): Para n0 = 1, 2 · 51−1 = 2 e a1 = 2. Logo,
a fórmula é válida para n = 1.

2. Passo indutivo: se a fórmula é verdadeira para n = k então deve ser ver-
dadeira para n = k + 1, i.e., P (k)→ P (k + 1).
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Princípio da indução matemática
Exemplo 7

– P (k) : ak = 2 · 5k−1. [hipótese indutiva]

– Deve-se mostrar que P (k + 1) : ak+1 = 2 · 5(k+1)−1 = 2 · 5k.

ak+1 = 5 · a(k+1)−1

= 5 · ak
= 5 · (2 · 5k−1)

= 2 · (5 · 5k−1)

= 2 · 5k
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Princípio da indução matemática
Exemplo 8

Prove que para todos os inteiros n ≥ 3

P (n): 2n+ 1 < 2n

Prova (por indução matemática):

1. Passo base: P (n0) = P (3). Para n0 = 3,

2 · 3 + 1 < 23.

Logo, a fórmula é válida para n0 = 3.
2. Passo indutivo: se a fórmula é verdadeira para n = k então deve ser ver-

dadeira para n = k + 1, i.e., P (k)→ P (k + 1).
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Princípio da indução matemática
Exemplo 8

– P (k): 2k + 1 < 2k, para k ≥ 3. [hipótese indutiva]

– Deve-se mostrar que P (k + 1): 2(k + 1) + 1 < 2k+1.

2k + 2 + 1 =
(2k + 1) + 2 =
(2k + 1) + 2 < 2k + 2

2(k + 1) + 1 < 2k + 2
?
< 2k+1

Se puder ser mostrado que 2k + 2 < 2k+1 então o predicado P (k + 1) é verdadeiro.

2k + 2
?
< 2k+1

2
?
< 2k+1 − 2k

2
?
< 2k(2− 1)

2
?
< 2k

1 < 2k−1, que é verdade para k ≥ 2.

Em particular, a inequação (1 < 2k−1) é válida para k ≥ 3. Assim, P (k + 1) é V.
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Princípio da indução matemática
Exemplo 9

Prove que para todos os inteiros n ≥ 1

P (n): n3 − n é divisível por 3.

Prova (por indução matemática):

1. Passo base: P (n0) = P (1). Para n0 = 1,

13 − 1 = 0 é divisível por 3.

Logo, a fórmula é válida para n0 = 3.
2. Passo indutivo: se a fórmula é verdadeira para n = k então deve ser ver-

dadeira para n = k + 1, i.e., P (k)→ P (k + 1).
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Princípio da indução matemática
Exemplo 9

– P (k): k3 − k é divisível por 3, para k ≥ 1. [hipótese indutiva]

– Deve-se mostrar que P (k + 1): (k + 1)3 − (k + 1) é divisível por 3, para
k ≥ 1.

(k + 1)3 − (k + 1) =

(k3 + 3k2 + 3k + 1)− (k + 1) =

(k3 − k) + 3(k2 + k)

O primeiro termo é divisível por 3 (hipótese indutiva) e o segundo também.
Como a soma de dois números divisíveis por 3 é um número divisível por 3,
então o predicado P (k + 1) é V.
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Princípio da indução matemática
Exemplo 10

Seja o inteiro n ≥ 1. Mostre que qualquer região quadrada de tamanho 2n×2n,
com um quadrado removido, a região restante pode ser preenchida com peças
no formato L, como mostrado abaixo.

Nota: A peça no formato L é constituída por três quadrados de tamanho 1× 1.

Prove que para todos os inteiros n ≥ 1, P (n): Qualquer região quadrada
de tamanho 2n × 2n, com um quadrado removido, a região restante pode ser
preenchida com peças no formato L.
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Princípio da indução matemática
Exemplo 10

Prova (por indução matemática):

1. Passo base: P (n0) = P (1). P(1) é V já que uma região quadrada de
tamanho 2 × 2, com um quadrado removido, a região restante pode se
preenchida com peças no formato L, como mostrado abaixo.

2. Passo indutivo: se a fórmula é verdadeira para n = k então deve ser ver-
dadeira para n = k + 1, i.e., P (k)→ P (k + 1).
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Princípio da indução matemática
Exemplo 10

– P (k): Qualquer região quadrada de tamanho 2k × 2k, com um quadrado removido, a região
restante pode ser preenchida com peças no formato L. [hipótese indutiva]

– Deve-se mostrar P (k + 1): Qualquer região quadrada de tamanho 2k+1 × 2k+1, com um
quadrado removido, a região restante pode ser preenchida com peças no formato L.

Considere uma região quadrada de tamanho 2k+1 × 2k+1, com um quadrado removido. Divida
essa região em quatro regiões de tamanho 2k × 2k como mostrado abaixo.

Temos três regiões 2k × 2k com nenhum quadrado re-
movido e uma região 2k × 2k com um quadrado removido.
Ou seja, a região 2k+1×2k+1 possui apenas um quadrado
removido.

Pela hipótese indutiva, a região 2k × 2k, com um quadrado
removido, pode ser preenchida com peças no formato L.
O problema passa a ser como a mesma hipótese indutiva
pode ser aplicada às outras três regiões.
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Princípio da indução matemática
Exemplo 10

Temporariamente remova um quadrado de cada região 2k × 2k que está “completa” como
mostrado na figura abaixo à esquerda.

Pela hipótese indutiva cada uma dessas três regiões 2k×2k pode ser preenchida com peças no
formato L. No entanto, para resolvermos o problema da peça removida em cada uma dessas três
regiões basta colocarmos uma peça L exatamente sobre esses três “buracos” como mostrado
na figura abaixo à direita.
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Princípio da indução matemática
Exemplo 10

Assim, uma região quadrada de tamanho 2k+1 × 2k+1, com um quadrado removido, a região
restante pode ser preenchida com peças no formato L, como mostrado na figura abaixo.
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Princípio da indução matemática (forte)

Seja P (n) um predicado que é definido para inteiros n, e seja a e b inteiros fixos,
sendo a ≤ b. Suponha que as duas afirmações seguintes sejam verdadeiras:

1. P (a), P (a+ 1), . . . , P (b) são V. (Passo base)

2. Para qualquer inteiro k ≥ b,
se P (i) é V para a ≤ i < k então P (k) é V, i.e., P (i)→ P (k).
Ü Logo, a afirmação “para todos inteiros n ≥ a, P (n)” é V. (A suposição

que P (i) é V para a ≤ i < k é chamada de hipótese indutiva.)

Hipotese Indutiva

Inteiros

P i ( )

ka

Passo Base

b
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Princípio da indução matemática (forte):
Exemplo 11

Seja a sequência a1, a2, a3, . . . definida como

a1 = 0

a2 = 2

ak = 3 · abk/2c+ 2, k ≥ 3

Prove que an é par, para n ≥ 1.

Prova (por indução matemática):

1. Passo base: Para n = 1 e n = 2 a propriedade é válida já que a1 = 0 e
a2 = 2.

2. Passo indutivo: Vamos supor que ai é par para todos inteiros i, 1 ≤ i < k.
[hipótese indutiva]
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Princípio da indução matemática (forte):
Exemplo 11

Se a propriedade é válida para 1 ≤ i < k, então é válida para k, ou seja, ak é
par [o que deve ser mostrado].

Pela definição de a1, a2, a3, . . .

ak = 3 · abk/2c+ 2, k ≥ 3

O termo abk/2c é par pela hipótese indutiva já que k ≥ 3 e 1 ≤ bk/2c < k.
Desta forma, 3 · abk/2c é par e 3 · abk/2c+ 2 também é par, o que mostra que
ak é par.
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Indução matemática e algoritmos

• É útil para provar asserções sobre a correção e a eficiência de algoritmos.

• Consiste em inferir uma lei geral a partir de instâncias particulares.

• Seja T um teorema que tenha como parâmetro um número natural n. Para
provar que T é válido para todos os valores de n, provamos que:
1. T é válido para n = 1; [PASSO BASE]

2. Para todo n > 1, [PASSO INDUTIVO]

se T é válido para n,
então T é válido para n+ 1.

• Provar a condição 2 é geralmente mais fácil que provar o teorema diretamente
(podemos usar a asserção de que T é válido para n).

• As condições 1 e 2 implicam T válido para n = 2, o que junto com a condição
2 implica T também válido para n = 3, e assim por diante.
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Limite superior de equações de recorrência

• A solução de uma equação de recorrência pode ser difícil de ser obtida.

• Nesses casos, pode ser mais fácil tentar advinhar a solução ou obter um limite
superior para a ordem de complexidade.

• Advinhar a solução funciona bem quando estamos interessados apenas em
um limite superior, ao invés da solução exata.
Ü Mostrar que um certo limite existe é mais fácil do que obter o limite.

• Por exemplo:

T (2n) ≤ 2T (n) + 2n− 1,
T (2) = 1,

definida para valores de n que são potências de 2.

Ü O objetivo é encontrar um limite superior na notação O, onde o lado direito
da desigualdade representa o pior caso.

UFMG/ICEx/DCC PAA · Paradigmas de Projeto de Algoritmos 34



Indução matemática para resolver equação de
recorrência

T (2) = 1,

T (2n) ≤ 2T (n) + 2n− 1,

definida para valores de n que são potências de 2.

• Procuramos f(n) tal que T (n) = O(f(n)), mas fazendo com que f(n) seja
o mais próximo possível da solução real para T (n) (limite assintótico firme).

• Vamos considerar o palpite f(n) = n2.

• Queremos provar que

T (n) ≤ f(n) = O(f(n))

utilizando indução matemática em n.
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Indução matemática para resolver equação de
recorrência

Prove que T (n) ≤ f(n) = O(f(n)), para f(n) = n2, sendo

T (2) = 1,
T (2n) ≤ 2T (n) + 2n− 1,

definida para valores de n que são potências de 2.

Prova (por indução matemática):
1. Passo base:

T (n0) = T (2): Para n0 = 2, T (2) = 1 ≤ f(2) = 4, e o passo base é V.

2. Passo indutivo: se a recorrência é verdadeira para n então deve ser verdadeira para 2n,
i.e., T (n)→ T (2n) (lembre-se que n é uma potência de 2; conseqüentemente o “número
seguinte” a n é 2n).

Reescrevendo o passo indutivo temos:

Predicado(n) → Predicado(2n)
(T (n) ≤ f(n)) → (T (2n) ≤ f(2n))

T (2n) ≤ 2T (n) + 2n− 1 [Definição da recorrência]
≤ 2n2 + 2n− 1 [Pela hipótese indutiva podemos substituir T (n)]

≤ 2n2 + 2n− 1
?
< (2n)2 [A conclusão é verdadeira?]

≤ 2n2 + 2n− 1 < 4n2 [Sim!]

Essa última inequação é o que queremos provar. Logo, T (n) = O(n2).
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Indução matemática para resolver equação de
recorrência

• Vamos tentar um palpite menor, f(n) = cn, para alguma constante c.

• Queremos provar que

T (n) ≤ f(n) = cn = O(f(n))

utilizando indução matemática em n.
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Indução matemática para resolver equação de
recorrência

Prove que T (n) ≤ f(n) = O(f(n)), para f(n) = cn, sendo

T (2) = 1,
T (2n) ≤ 2T (n) + 2n− 1,

definida para valores de n que são potências de 2.

Prova (por indução matemática):
1. Passo base:

T (n0) = T (2): Para n0 = 2, T (2) = 1 ≤ f(2) = 2c, e o passo base é V.

2. Passo indutivo: se a recorrência é verdadeira para n então deve ser verdadeira para 2n,
i.e., T (n)→ T (2n).

Reescrevendo o passo indutivo temos:

Predicado(n) → Predicado(2n)
(T (n) ≤ f(n)) → (T (2n) ≤ f(2n))

(T (n) ≤ cn)) → (T (2n) ≤ 2cn)

T (2n) ≤ 2T (n) + 2n− 1 [Definição da recorrência]
≤ 2cn+ 2n− 1 [Pela hipótese indutiva podemos substituir T (n)]
≤ 2cn+ (2n− 1)
≤ 2cn+ 2n− 1 > 2cn [A conclusão (T (2n) ≤ 2cn) não é válida]
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Indução matemática para resolver equação de
recorrência

Logo:

• a função f(n) = cn cresce mais lentamente que T (n);

• T (n) está entre cn e n2, mais especifamente;

e T (n) 6≤ f(n) = cn.
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Indução matemática para resolver equação de
recorrência

• Vamos tentar uma função entre n e n2, como, por exemplo, f(n) = n logn.

• Queremos provar que

T (n) ≤ f(n) = n logn = O(f(n))

utilizando indução matemática em n.
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Indução matemática para resolver equação de
recorrência

Prove que T (n) ≤ f(n) = O(f(n)), para f(n) = n logn, sendo

T (2) = 1,
T (2n) ≤ 2T (n) + 2n− 1,

definida para valores de n que são potências de 2.

Prova (por indução matemática):
1. Passo base:

T (n0) = T (2): Para n0 = 2, T (2) = 1 ≤ f(2) = 2 log 2, e o passo base é V.

2. Passo indutivo: se a recorrência é verdadeira para n então deve ser verdadeira para 2n,
i.e., T (n)→ T (2n).

Reescrevendo o passo indutivo temos:

Predicado(n) → Predicado(2n)
(T (n) ≤ f(n)) → (T (2n) ≤ f(2n))

(T (n) ≤ n logn)) → (T (2n) ≤ 2n log 2n)

T (2n) ≤ 2T (n) + 2n− 1 [Definição da recorrência]
≤ 2n logn+ 2n− 1 [Podemos substituir T (n)]

≤ 2n logn+ 2n− 1
?
< 2n log 2n [A conclusão é verdadeira?]

≤ 2n logn+ 2n− 1 < 2n logn+ 2n [Sim!]

UFMG/ICEx/DCC PAA · Paradigmas de Projeto de Algoritmos 41



Indução matemática para resolver equação de
recorrência

• Para o valor de f(n) = n logn, a diferença entre as fórmulas é de apenas 1.

• De fato, T (n) = n logn− n+ 1 é a solução exata de

T (n) = 2T (n2) + n− 1

T (1) = 0

que descreve o comportamento do algoritmo de ordenação Mergesort.
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Indução matemática e algoritmos
Comentários finais

• Indução é uma das técnicas mais poderosas da Matemática que pode ser
aplicada para provar asserções sobre a correção e a eficiência de algoritmos.

• No caso de correção de algoritmos, é comum tentarmos identificar invariantes
para laços.

• Indução pode ser usada para derivar um limite superior para uma equação de
recorrência.
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Recursividade

• Um procedimento que chama a si mesmo, direta ou indiretamente, é dito ser
recursivo.
• Recursividade permite descrever algoritmos de forma mais clara e concisa,

especialmente problemas recursivos por natureza ou que utilizam estruturas
recursivas.
• Por exemplo, árvore binária de pesquisa:

– Todos os registros com chaves menores estão na sub-árvore esquerda;
– Todos os registros com chaves maiores estão na sub-árvore direita.
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Recursividade

• Algoritmo para percorrer todos os registros em ordem de caminhamento
central:
1. Caminha na sub-árvore esquerda na ordem central;
2. Visita a raiz;
3. Caminha na sub-árvore direita na ordem central.

• No caminhamento central, os nós são visitados em ordem lexicográfica das
chaves.

CENTRAL(p)

1 if p 6= nil
2 then CENTRAL(p↑.esq)
3 Visita nó � Faz algum processamento
4 CENTRAL(p↑.dir)
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Implementação de recursividade

• Usa-se uma pilha para armazenar os dados usados em cada chamada de
um procedimento que ainda não terminou.

• Todos os dados não globais vão para a pilha, registrando o estado corrente
da computação.

• Quando uma ativação anterior prossegue, os dados da pilha são recuperados.

• No caso do caminhamento central:
– Para cada chamada recursiva, o valor de p e o endereço de retorno da

chamada recursiva são armazenados na pilha.
– Quando encontra p=nil o procedimento retorna para quem chamou uti-

lizando o endereço de retorno que está no topo da pilha.
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Problema de terminação em procedimentos
recursivos

• Procedimentos recursivos introduzem a possibilidade de iterações que podem
não terminar:
Ü Existe a necessidade de considerar o problema de terminação.

• É fundamental que a chamada recursiva a um procedimento P esteja sujeita
a uma condição B, a qual se torna não-satisfeita em algum momento da com-
putação.

• Esquema para procedimentos recursivos: composição C de comandos Si e
P .

P ≡ if B then C[Si, P ]

• Para demonstrar que uma repetição termina, define-se uma função f(x),
sendo x o conjunto de variáveis do programa, tal que:
1. f(x) ≤ 0 implica na condição de terminação;
2. f(x) é decrementada a cada iteração.
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Problema de terminação em procedimentos
recursivos

• Uma forma simples de garantir terminação é associar um parâmetro n para
P (no caso por valor) e chamar P recursivamente com n− 1.

• A substituição da condição B por n > 0 garante terminação.

P ≡ if n > 0 then P[Si, P (n− 1)]

• É necessário mostrar que o nível mais profundo de recursão é finito, e também
possa ser mantido pequeno, pois cada ativação recursiva usa uma parcela de
memória para acomodar as variáveis.
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Quando não usar recursividade

• Nem todo problema de natureza recursiva deve ser resolvido com um algo-
ritmo recursivo.

• Estes podem ser caracterizados pelo esquema P ≡ if B then (S, P ).

• Tais programas são facilmente transformáveis em uma versão não recursiva
P ≡ (x := x0; while B do S).
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Exemplo de quando não usar recursividade

• Cálculo dos números de Fibonacci

f0 = 0,

f1 = 1,

fn = fn−1 + fn−2, ∀n ≥ 2.

• Solução:

fn =
1√
5

[Φn − (−Φ)−n],

onde Φ =
√

5+1
2 ≈ 1,618 é a razão de ouro.

• O procedimento recursivo (FIBONACCI REC) obtido diretamente da equação é o
seguinte:

FIBONACCI REC(n)

1 if n < 2
2 then FIBONACCI REC ← n

3 else FIBONACCI REC ← FIBONACCI REC(n− 1) + FIBONACCI REC(n− 2)
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Exemplo de quando não usar recursividade

• O programa é extremamente ineficiente porque recalcula o mesmo valor
várias vezes.

• A complexidade de espaço para calcular fn é O(Φn).

• A complexidade de tempo para calcular fn, considerando como medida de
complexidade o número de adições, é também O(Φn).
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Versão iterativa do cálculo de Fibonacci

FIBONACCI ITER(n)

� Variáveis auxiliares: Aux , k, Fant , F
1 Fant ← 0
2 F ← 1
3 for k ← 2 to n
4 do Aux ← F + Fant
5 Fant ← F
6 F ← Aux
7 FIBONACCI ITER← F

• O programa tem complexidades de tempo O(n) e de espaço O(1).

• Deve-se evitar recursividade quando existe uma solução iterativa.

• Comparação das versões recursiva e iterativa:

n 20 30 50 100
Recursiva 1 s 2 min 21 dias 109 anos
Iterativa 1/3 ms 1/2 ms 3/4 ms 1,5 ms
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Recursividade na modelagem de problemas
Strings com uma certa propriedade (1)

Seja Σ = {0,1}. Determine quantos strings existem em Σ0 . . .Σ3 que não
contém o padrão 11.

Nota: Σi é o conjunto de todos os strings de tamanho i sobre Σ.

Tamanho Strings
0 ε
1 0,1
2 00,01,10
3 000,001,010,100,101

Logo, temos que:

Tamanho # Strings
0 1
1 2
2 3
3 5
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Recursividade na modelagem de problemas
Strings com uma certa propriedade (2)

Quantos elementos existem em Σk?

Idéia:

– Suponha que o número de strings ≤ k que não contém o padrão 11 seja
conhecido.

– Use esse fato para determinar o número de strings de tamanho k que não
contém 11 em função de strings menores que não contém 11.
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Recursividade na modelagem de problemas
Strings com uma certa propriedade (3)

• Dois casos a considerar em função do símbolo mais à esquerda no string:
– 0: os k− 1 símbolos podem ser qualquer seqüência sobre Σ onde 11 não

aparece;
– 1: os dois símbolos mais à esquerda não podem ser 11 e sim 10.

Ü Logo, os k − 2 símbolos podem ser qualquer seqüência sobre Σ onde
11 não aparece.

• Os dois casos geram dois subconjuntos mutuamente disjuntos, representa-
dos pela primeira equação de recorrência abaixo:

(1) sk = sk−1 + sk−2 Equação de recorrência

(2)

{
s0
s1

=
=

1
2

Condições iniciais

Ü Termos da Série de Fibonacci!

UFMG/ICEx/DCC PAA · Paradigmas de Projeto de Algoritmos 55



Função definida recursivamente (1)

• Uma função é dita ser definida recursivamente se ela refere-se a si mesma.

• Funções recursivas têm um papel fundamental em teoria da computação.

• Exemplo: Função 91 de McCarthy.

M(n) =

{
n− 10 se n > 100
M(M(n+ 11)) se n ≤ 100

M(99) = M(M(110))

= M(100)

= M(M(111))

= M(101)

= 91

A função 91 de
McCarthy é uma
função recursiva
que retorna 91
para todos os in-

teiros n ≤ 100 e retorna n − 10
para n > 100. Essa função foi pro-
posta pelo cientista da computação
John McCarthy, ganhador do ACM
Turing Award de 1971, responsável
por cunhar o termo Inteligência Arti-
ficial.
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Função definida recursivamente (2)
Função de Ackermann

A(0, n) = n+ 1

A(m,0) = A(m− 1,1)

A(m,n) = A(m− 1, A(m,n− 1))

A(1,2) = A(0, A(1,1))

= A(0, A(0, A(1,0)))

= A(0, A(0, A(0,1)))

= A(0, A(0,2))

= A(0,3)

= 4

Matemático e lógico ale-
mão (1896–1962), princi-
pal formulador do desen-
volvimento do sistema
lógico conhecido como o
cálculo de epsilon, origi-
nalmente devido a David
Hilbert (1862–1943), que

se tornaria a base da lógica de Bourbaki e
da teoria dos jogos.
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Função definida recursivamente (3)
Função de Ackermann

Essa função possui uma taxa de crescimento impressionante:

A(4,3) = A(3,265536 − 3)

Função importante em Ciência da Computação que está relacionada com com-
putabilidade.
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Função definida recursivamente (4)
Função de Ackermann

A função de Ackermann pode ser representada por uma tabela infinita.

(m,n) 0 1 2 3 4 A(m,n)

0 1 2 3 4 5 n+ 1

1 2 3 4 5 6 n+ 2

2 3 5 7 9 11 2n+ 3

3 5 13 29 61 125 8 · 2n − 3

4 13 65533 265536 − 3 A(3,265536 − 3) A(3, A(4,3))

5 65533 A(4,65533) A(4, A(5,1)) A(4, A(5,2)) A(4, A(5,3))

6 A(5,1) A(5, A(5,1)) A(5, A(6,1)) A(5, A(6,2)) A(5, A(6,3))

Os valores da função de Ackermann crescem muito rapidamente:

– A(4,2) é maior que o número de partículas do universo elevado a potência
200.

– A(5,2) não pode ser escrito como uma expansão decimal no universo físico.
– Além da linha 4 e coluna 1, os valores só podem ser expressos usando a

própria notação da função.
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Função recursiva que não é bem definida

Seja a função G : Z+ → Z. Para todos inteiros n ≥ 1:

G(n) =


1 se n = 1,

1 +G(n2) se n é par,

G(3n− 1) se n é ímpar e n > 1.

A função G é bem definida? Não!

G(1) = 1

G(2) = 1 +G(1) = 1 + 1 = 2

G(3) = G(8) = 1 +G(4) = 1 + (1 +G(2))

= 1 + (1 + 2) = 4

G(4) = 1 +G(2) = 1 + 2 = 3

G(5) = G(14) = 1 +G(7) = 1 +G(20)

= 1 + (1 +G(10))

= 1 + (1 + (1 +G(5))) = 3 +G(5)
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Função recursiva que não sabe se é bem definida

Seja a função H : Z+ → Z. Para todos inteiros n ≥ 1:

H(n) =


1 se n = 1,

1 +H(n2) se n é par,

H(3n+ 1) se n é ímpar e n > 1.

A função H é bem definida? Não se sabe!

A função é computável para todos inteiros n, 1 ≤ n < 109.
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Recursividade
Comentários finais

• Técnica bastante adequada para expressar algoritmos que são definidos re-
cursivamente.

• No entanto, deve ser usada com muito cuidado.

• Na maior parte dos casos funciona como uma técnica conceitual ao invés de
uma técnica computacional.

• Algoritmos recursivos são normalmente modelados por uma equação de
recorrência.

• Ao se fazer a análise de um algoritmo recursivo, deve-se também analisar o
crescimento da pilha.
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Algoritmos tentativa e erro (Backtracking)

• Tentativa e erro: decompor o processo em um nú-
mero finito de sub-tarefas parciais que devem ser ex-
ploradas exaustivamente.

• O processo de tentativa gradualmente constrói e per-
corre uma árvore de sub-tarefas.

• Algoritmos tentativa e erro não seguem uma regra fixa
de computação:
– Passos em direção à solução final são tentados e

registrados.
– Caso esses passos tomados não levem à solução

final, eles podem ser retirados e apagados do re-
gistro.
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Algoritmos tentativa e erro (Backtracking)

• Quando a pesquisa na árvore de soluções cresce rapidamente é necessário
usar algoritmos aproximados ou heurísticas que não garantem a solução
ótima mas são rápidas.

• Algoritmos aproximados:
– Algoritmos usados normalmente para resolver problemas para os quais não

se conhece uma solução polinomial.
– Devem executar em tempo polinomial dentro de limites “prováveis” de qua-

lidade absoluta ou assintótica.

• Heurística:
– Algoritmo que tem como objetivo fornecer soluções sem um limite formal de

qualidade, em geral avaliado empiricamente em termos de complexidade
(média) e qualidade das soluções.

– É projetada para obter ganho computacional ou simplicidade conceitual,
possivelmente ao custo de precisão.
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Tentativa e erro: Passeio do cavalo
• Tabuleiro com n× n posições: cavalo se movimenta segundo regras do xadrez.

• Problema: partindo da posição (x0, y0), encontrar, se existir, um passeio do cavalo que visita
todos os pontos do tabuleiro uma única vez.

Tenta um próximo movimento:

TENTA

1 Inicializa seleção de movimentos
2 repeat
3 Seleciona próximo candidato ao movimento
4 if aceitável
5 then Registra movimento
6 if tabuleiro não está cheio
7 then Tenta novo movimento
8 if não é bem sucedido
9 then Apaga registro anterior

10 until (movimento bem sucedido) ∨ (acabaram-se candidatos ao movimento)
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Tentativa e erro: Passeio do cavalo

• O tabuleiro pode ser representado por uma matriz n× n.

• A situação de cada posição pode ser representada por um inteiro para recor-
dar o histórico das ocupações:
– t[x, y] = 0, campo 〈x, y〉 não visitado;

– t[x, y] = i, campo 〈x, y〉 visitado no i-ésimo movimento, 1 ≤ i ≤ n2.
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Tentativa e erro: Passeio do cavalo
Regras do xadrez para o movimento do cavalo

1

2 3

4

2Dir e 1Cima 1Dir e 2Cima 1Esq e 2Cima 2Esq e 1Cima

5

6 7

8

2Esq e 1Baixo 1Esq e 2Baixo 1Dir e 2Baixo 2Dir e 1Baixo
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Implementação do passeio do cavalo

PASSEIODOCAVALO(n)

� Parâmetro: n (tamanho do lado do tabuleiro)
� Variáveis auxiliares:
i, j � Contadores
t[1. .n,1. .n] � Tabuleiro de n× n
q � Indica se achou uma solução
s � Movimentos identificados por um n◦

h[1. .8], v[1. .8] � Existem oito movimentos possíveis
1 s← {1,2,3,4,5,6,7,8} � Conjunto de movimentos
2 h[1. .8]← [2,1,−1,−2,−2,−1,1,2] � Movimentos na horizontal
3 v[1. .8]← [1,2,2,1,−1,−2,−2,−1] � Movimentos na vertical
4 for i← 1 to n � Inicializa tabuleiro
5 do for j ← 1 to n
6 do t[i, j]← 0
7 t[1,1]← 1 � Escolhe uma casa inicial do tabuleiro
8 TENTA(2,1,1, q) � Tenta o passeio usando backtracking
9 if q � Achou uma solução?

10 then print Solução
11 else print Não há solução
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Implementação do passeio do cavalo

TENTA(i, x, y, q)

� Parâmetros: i (i-ésima casa); x, y (posição no tabuleiro); q (achou solução?)
� Variáveis auxiliares: xn, yn,m, q1

1 m← 0
2 repeat
3 m← m+ 1
4 q1← false
5 xn← x+ h[m]
6 yn← y + v[m]
7 if (xn ∈ s) ∧ (yn ∈ s)
8 then if t[xn, yn] = 0
9 then t[xn, yn]← i

10 if i < n2

11 then TENTA(i+ 1, xn, yn, q1)
12 if ¬q1
13 then t[xn, yn]← 0
14 else q1← true
15 until q1 ∨ (m = 8)
16 q ← q1
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Algoritmos tentativa e erro (Backtracking)
Comentários finais

• Técnica usada quando não se sabe exatamente que caminho seguir para
encontrar uma solução.

• Não garante a solução ótima.

• Essa técnica pode ser vista ainda como uma variante da recursividade

• Ao se fazer a análise de um algoritmo que usa backtracking, deve-se também
analisar o crescimento do espaço de soluções.
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Divisão e conquista (1)

• Consiste em dividir o problema em partes menores, encontrar soluções para
essas partes (supostamente mais fácil), e combiná-las em uma solução
global.
Ü Geralmente leva a soluções eficientes e elegantes, principalmente se

forem recursivas.

• Basicamente essa técnica consiste das seguintes fases (executadas nesta
ordem):
1. Divisão (particionamento) do problema original em sub-problemas simi-

lares ao original mas que são menores em tamanho;
2. Resolução de cada sub-problema sucessivamente e independentemente

(em geral de forma recursiva);
3. Combinação das soluções individuais em uma solução global para todo o

problema.
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Divisão e conquista (2)

• Um algoritmo de “divisão e conquista” é normalmente relacionado a uma
equação de recorrência que contém termos referentes ao próprio problema.

T (n) = aT (nb) + f(n),

onde a indica o número de sub-problemas gerados, b o tamanho de cada um
deles e f(n) o custo para fazer a divisão.

• Paradigma bastante usado em Ciência da Computação em problemas
como:
– Ordenação: Mergesort, Quicksort (Tecnicamente falando, o Quicksort poderia ser

chamado de um algoritmo conquista e divisão);
– Pesquisa: Pesquisa Binária;
– Algoritmos aritméticos: multiplicação de inteiros, multiplicação de matrizes,

FFT (Fast Fourier Transform);
– Algoritmos geométricos: Convex Hull, Par mais próximo;
– . . .
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Divisão e conquista: Exemplo 1

• Seja A um vetor de inteiros, A[1..n], n ≥ 1 que não está ordenado.

• Pede-se:
– Determine o maior e o menor elementos desse vetor usando divisão e con-

quista;
– Determine o custo (número de comparações) para achar esses dois ele-

mentos supondo que A possui n elementos.
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Divisão e conquista: Exemplo 1

Cada chamada de MaxMin4 atribui às variáveis Max e Min o maior e o menor
elementos em A[Linf ]. .A[Lsup].

MAXMIN4(Linf , Lsup, Max , Min)

� Variáveis auxiliares: Max1, Max2, Min1, Min2, Meio
1 if (Lsup − Linf) ≤ 1 � Condição da parada recursiva
2 then if A[Linf ] < A[Lsup]
3 then Max ← A[Lsup]
4 Min← A[Linf ]
5 else Max ← A[Linf ]
6 Min← A[Lsup]
7 else Meio ← bLinf+Lsup

2
c � Acha o menor e maior elementos de cada partição

8 MAXMIN4(Linf , Meio, Max1, Min1)
9 MAXMIN4(Meio+1, Lsup, Max2, Min2)

10 if Max1 > Max2
11 then Max ← Max1
12 else Max ← Max2
13 if Min1 < Min2
14 then Min← Min1
15 else Min← Min2
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Divisão e conquista: Exemplo 1 (Análise)

Seja f(n) o número de comparações entre os elementos de A, que possui n
elementos.

f(n) = 1, para n ≤ 2,
f(n) = f(bn/2c) + f(dn/2e) + 2, para n > 2.

Quando n = 2i para algum inteiro positivo i, temos que:

f(n) = 2f(n2) + 2
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Divisão e conquista: Exemplo 1 (Análise)

Resolvendo esta equação de recorrência (em função de n e i), temos:
f(n) = 2f(n

2
) + 2 f(2i) = 2f(2i−1) + 2

2f(n
2
) = 22f( n

22 ) + 22 2f(2i−1) = 22f(2i−2) + 22

22f( n
22 ) = 23f( n

23 ) + 23 22f(2i−2) = 23f(2i−3) + 23

... ...
2i−3f( n

2i−3 ) = 2i−2f( n
2i−2 ) + 2i−2 2i−3f(23) = 2i−2f(22) + 2i−2

2i−2f( n
2i−2 ) = 2i−1f( n

2i−1 ) + 2i−1 2i−2f(22) = 2i−1f(21) + 2i−1

= 2i−1f(2) + 2i−1 = 2i−1f(2) + 2i−1

= 2i−1 + 2i−1 = 2i−1 + 2i−1

Fazendo a expansão desta equação temos:
2i−2f(22) = 2i−1 + 2i−1

2i−3f(23) = 2i−1 + 2i−1 + 2i−2

...
22f(2i−2) + 22 = 2i−1 + 2i−1 + 2i−2 + . . .+ 23

2f(2i−1) + 2 = 2i−1 + 2i−1 + 2i−2 + . . .+ 23 + 22

f(2i) = 2i−1 + 2i−1 + 2i−2 + . . .+ 23 + 22 + 2
= 2i−1 +

∑i−1
k=1 2k = 2i−1 + 2i − 2

f(n) = n
2

+ n− 2 = 3n
2
− 2.

Logo, f(n) = 3n/2− 2 para o melhor caso, pior caso e caso médio.
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Divisão e conquista: Exemplo 1 (Análise)

• Conforme mostrado anteriormente, o algoritmo apresentado neste exemplo é
ótimo.

• Entretanto, ele pode ser pior do que os já apresentados, pois, a cada
chamada recursiva, salva Linf , Lsup, Max e Min, além do endereço de re-
torno da chamada para o procedimento.

• Além disso, uma comparação adicional é necessária a cada chamada recur-
siva para verificar se Lsup − Linf ≤ 1 (condição de parada).

• O valor de n+ 1 deve ser menor do que a metade do maior inteiro que pode
ser representado pelo compilador, para não provocar overflow na operação
Linf + Lsup.
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Divisão e conquista: Exemplo 2

• Motivação:
– Uma das partes mais importantes da unidade aritmética de um computador

é o circuito que soma dois números.

• Pede-se:
– “Projete” um circuito para somar dois números sem sinal usando divisão e

conquista
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Divisão e conquista: Exemplo 2
Possível solução

• Estratégia para construir um somador de n bits:

– Usar n somadores de 1-bit.
– Nesse caso, o atraso (medido pelo caminho mais longo entre a entrada e

saída em termos do número de portas lógicas) é 3n se for usado o Ripple-
carry Adder.

– Exemplo: n = 32⇒ Atraso = 96.

• Usando a estratégia de divisão e conquista o atraso pode ser menor.
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Divisão e conquista: Exemplo 2
Verificando a viabilidade da estratégia DeC

• Dividir os n bits em dois grupos:
metade da esquerda e metade da
direita.

• Somar cada metade usando cir-
cuitos somadores idênticos da
metade do tamanho do problema
original.

• Questão: A adição da metade da
esquerda pode começar antes de
terminar a adição da metade da
direita?
Ü Nessa estratégia não.
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Divisão e conquista: Exemplo 2
Verificando a viabilidade da estratégia DeC

• Como começar a computação da esquerda sem conhecer o bit de “vai um” da
metade da direita?

• Estratégia:
– Compute duas somas para a metade da esquerda:

(a) uma considerando que “vem um” da metade da direita;
(b) e a outra considerando que não.

– Uma vez finalizada as somas das duas metades, é possível dizer qual das
duas somas da metade da esquerda deve ser utilizada.
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Divisão e conquista: Exemplo 2
Estratégia

Sejam as seguintes variáveis para um somador de n bits:
– x1, x2, . . ., xn e y1, y2, . . ., yn as entradas representando os dois números

de n bits a serem somados.

– s1, s2, . . . , sn a soma de n bits (excluindo o bit de “vai um” mais à esquerda)
e considerando que não “veio um” para o bit mais à direita.

– t1, t2, . . . , tn a soma de n bits (excluindo o bit de “vai um” mais à esquerda)
e considerando que “veio um” para o bit mais à direita.

– p, bit propagação de “vai um”, que é um 1 se o resultado da soma gera um
“vai um” mais à esquerda, assumindo que “veio um” no bit mais à direita.

– g, bit gera “vai um”, que é 1 se “vai um” mais à esquerda considerando apenas
a soma dos n bits, ou seja, independente se “veio um” no bit mais à direita.

Observe que:
– g → p, ou seja, se g = 1 então p = 1.
– No entanto, se g = 0 então ainda podemos ter p = 1.
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Divisão e conquista: Exemplo 2
Calculando os valores desses bits

Duas somas são computadas para a metade da esquerda:
↙ não veio um

x1 x2 . . . xn

+ y1 y2 . . . yn

Bits p e g ← s1 s2 . . . sn

↙ veio um

x1 x2 . . . xn

+ y1 y2 . . . yn

Bits p e g ← t1 t2 . . . tn
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Divisão e conquista: Exemplo 2
Examinando os valores desses bits quando n = 1

x y s t p g

0 0 0 1 0 0
0 1 1 0 1 0
1 0 1 0 1 0
1 1 0 1 1 1

– x e y: entradas a serem somados.
– s: soma de um bit p/ o caso de não “veio um”.
– t: soma de um bit p/ o caso de “veio um”.
– p: bit de propagação de “vai um”, que é um 1 se o

resultado da soma gera um “vai um”, p/ o caso de
“veio um”.

– g: bit de “vai um”, que é 1 se “vai um” con-
siderando apenas a soma dos n bits.

Expressões correspondentes:
• s = xy + xy

– A soma s só é 1 quando apenas uma das entradas é 1.
• t = xy + x y

– Assumindo que vem 1, a soma t só será 1 quando as duas entradas forem
idênticas.

• p = x+ y
– Assumindo que veio 1, também irá 1 quando uma das entradas ou ambas

forem 1.
• g = xy

– O bit de vai 1 só será 1 quando as duas entradas forem 1.
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Divisão e conquista: Exemplo 2
Somador para o caso n = 1

x y

g p s t

1-adder

Modelagem:
• Atraso: D(1) = 3

• Portas: G(1) = 9
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Divisão e conquista: Exemplo 2
Idéia para aplicar DeC

• Idéia:
– Construir um somador de 2n

bits usando dois somadores de
n bits.

• Computar os bits:
– propagação de “vai um” (p), e
– gera “vai um” (g)
para o somador de 2n bits.

• Ajustar a metade da esquerda
dos bits s e t para levar em con-
sideração se há um “vai um” para
a metade da esquerda vindo da
metade da direita.

• Circuito que implementa a idéia:
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Divisão e conquista: Exemplo 2
Cálculo de p

Suponha que há um “veio um” para o cir-
cuito de 2n bits (extrema direita). Haverá
um “vai um” (extrema esquerda), represen-
tado pelo bit de propagação p = 1, se:

– A metade da esquerda gera um “vai um”,
ou seja, gL, já que gL→ pL.

– As duas metades do somador propagam
o “vai um”, ou seja, pLpR. Esta ex-
pressão inclui o caso tcbluepLgR. Como
gR → pR, temos que (pLpR + pLgR) ≡
pLpR.

Ü A expressão para p, bit de propagação
de “vai um”, é:

p = gL + pLpR
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Divisão e conquista: Exemplo 2
Cálculo de g

Suponha que não há um “veio um” para o
circuito de 2n bits (extrema direita). Haverá
um “vai um” (extrema esquerda), ou seja, o
bit de gera “vai um” g vale 1 se:

– A metade da esquerda gera um “vai um”,
ou seja, gL.

– A metade da direita gera um “vai um” e
a metade da esquerda propaga esse bit,
ou seja, pLgR.

Ü A expressão para g, bit gera “vai um”, é:

g = gL + pLgR
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Divisão e conquista: Exemplo 2
Cálculo dos bits s e t da direita

• Calculando os bits
sn+1, sn+2, . . ., s2n

e
tn+1, tn+2, . . ., t2n

• Bits da direita não são modificados. As-
sim,

sn+i = sRi

tn+i = tRi

para i = 1,2, . . . , n.

Observação: num somador de 2n bits,
as saídas são identificadas pelos índices
1,2, . . . ,2n numerados a partir da es-
querda. Logo, os índices n + 1, n +
2, . . . ,2n correspondem à metade da di-
reita.
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Divisão e conquista: Exemplo 2
Cálculo dos bits s da esquerda

• Suponha que não há um “veio um” (ex-
trema direita) para o circuito de 2n bits.

• Neste caso, o “vai um” para a metade
da esquerda, se existir, foi gerado pela
metade da direita. Assim, se:

– gR = 1⇒ si = tLi
– gR = 0⇒ si = sLi

• A expressão para si é:

si = sLi g
R + tLi g

R

para i = 1,2, . . . , n.
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Divisão e conquista: Exemplo 2
Cálculo dos bits t da esquerda

• Suponha que há um “veio um” (extrema
direita) para o circuito de 2n bits.

• Neste caso, devemos analisar o bit de
propagação p. Assim, se:

– pR = 1⇒ ti = tLi
– pR = 0⇒ ti = sLi

• A expressão para ti é:

ti = sLi p
R + tLi p

R

para i = 1,2, . . . , n.

UFMG/ICEx/DCC PAA · Paradigmas de Projeto de Algoritmos 91



Divisão e conquista: Exemplo 2
Expressões a serem calculadas pelo FIX

O módulo FIX deve calcular as seguintes
expressões:

p = gL + pLpR

g = gL + pLgR

si = sLi g
R + tLi g

R, i = 1,2, . . . , n

ti = sLi p
R + tLi p

R, i = 1,2, . . . , n

Essas expressões podem ser calculadas por cir-
cuitos de no máximo três níveis. O exemplo
abaixo é para ti:
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Divisão e conquista: Exemplo 2
Somador para n = 4 (Caso genérico)

t4

FIX

1-adder 1-adder

x y x y

g p s t g p s t

g p s1 t1 s2 t2

1-adder 1-adder

x y x y

g p s t g p s t

g p s1 t1 s2 t2

FIX

FIX

x1 y1 x2 x3 x4y2 y3 y4

g p s1 t1 s2 t2 s3 t3 s4
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Divisão e conquista: Exemplo 2
Somador para n = 4 (Caso específico)

1

FIX

1-adder 1-adder

x y x y

g p s t g p s t

g p s1 t1 s2 t2

1-adder 1-adder

x y x y

g p s t g p s t

g p s1 t1 s2 t2

FIX

FIX

x1 y1 x2 x3 x4y2 y3 y4

g p s1 s2 s3 s4

00 11

11110 0 1 1

1 00 11 1110 01 1

0

0

001 1

0

0

10

0 11 1

0

0 0

001 1 1 1

101
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Divisão e conquista: Exemplo 2
Cálculo do atraso usando DeC

Atraso:


D(1) = 3

D(2n) = D(n) + 3

D(n) = 3(1 + logn) = O(logn)

Para um somador de 32 bits:
– Divisão e conquista: 3(1 + logn) = 3(1 + log 32) = 18

– Ripple-carry : 3n = 96
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Divisão e conquista: Exemplo 2
Comentários sobre este exemplo

• Solução usando divisão e conquista (DeC):
– Atraso: O(logn)

– No de portas: O(n logn)

• Solução Ripple-Carry Adder :
– Atraso: O(n)

– No de portas: O(n)

• A solução DeC apresenta um exemplo onde o aumento do espaço (neste
caso portas) possibilita uma diminuição no atraso (tempo, neste caso), ou
seja, existe um compromisso TEMPO × ESPAÇO.

• A solução apresentada é um exemplo “não tradicional” da técnica DeC já
que o sub-problema da esquerda deve gerar duas soluções, uma vez que
seu valor depende da solução do sub-problema da direita, ou seja, os sub-
problemas não são independentes.
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Divisão-e-conquista:
Alguns comentários

• Este paradigma não é aplicado apenas a problemas recursivos.

• Existem pelo menos três cenários onde divisão e conquista é aplicado:
1. Processar independentemente partes do conjunto de dados.

– Exemplo: Mergesort.

2. Eliminar partes do conjunto de dados a serem examinados.
– Exemplo: Pesquisa binária.

3. Processar separadamente partes do conjunto de dados mas onde a solu-
ção de uma parte influencia no resultado da outra.
– Exemplo: Somador apresentado.
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Balanceamento

• No projeto de algoritmos, é importante procurar sempre manter o balancea-
mento na sub-divisão de um problema em partes menores.

• Divisão e conquista não é a única técnica em que balanceamento é útil.

• Considere o seguinte exemplo de ordenação:

EXEMPLO DE ORDENAÇÃO(n)

1 for i = 1. .n− 1 do
2 Selecione o menor elemento de A[i. .n] e troque-o com o elemento A[i].

– Inicialmente o menor elemento de A[1. .n] é trocado com o elemento A[1].

– O processo é repetido para as seqüências n − 1, n − 2, . . ., 2, com os
n−1, n−2, . . ., 2 elementos, respectivamente, sendo que em cada passo
o menor elemento é trocado com o elemento A[i].
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Balanceamento: Análise do exemplo

O algoritmo leva à equação de recorrência:

T (n) = T (n− 1) + n− 1

T (1) = 0

para o número de comparações entre elementos.

Substituindo:

T (n) = T (n− 1) + n− 1

T (n− 1) = T (n− 2) + n− 2
...

T (2) = T (1) + 1

e adicionando lado a lado, obtemos:

T (n) = T (1) + 1 + 2 + · · ·+ n− 1 =
n(n− 1)

2
.

Logo, o algoritmo é O(n2).
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Balanceamento: Análise do exemplo

• Embora o algoritmo possa ser visto como uma aplicação recursiva de divisão
e conquista, ele não é eficiente para valores grandes de n.

• Para obter eficiência assintótica é necessário fazer um balanceamento:
– Dividir o problema original em dois sub-problemas de tamanhos aproxi-

madamente iguais, ao invés de um de tamanho 1 e o outro de tamanho
n− 1.

• Comentário:
– A análise da equação de recorrência nos mostra a razão do comportamento

quadrático desse algoritmo.
– É essa equação também que “sugere” como o algoritmo pode ter um de-

sempenho bem melhor, se um balanceamento for usado.
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Exemplo de balanceamento: Mergesort

• Intercalação:
– Unir dois arquivos ordenados gerando um terceiro arquivo ordenado

(merge).

• Colocar no terceiro arquivo o menor elemento entre os menores dos dois
arquivos iniciais, desconsiderando este mesmo elemento nos passos posteri-
ores.

• Este processo deve ser repetido até que todos os elementos dos arquivos de
entrada sejam escolhidos.
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Algoritmo de ordenação: Mergesort

1. Divida recursivamente o vetor a ser ordenado em dois, até obter n vetores
de um único elemento.

2. Aplique a intercalação tendo como entrada dois vetores de um elemento,
formando um vetor ordenado de dois elementos.

3. Repita este processo formando vetores ordenados cada vez maiores até
que todo o vetor esteja ordenado.
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Exemplo de balanceamento:
Implementação do Mergesort

MERGESORT(A, i, j)

� Parâmetros: A (vetor); i, j (limites inferior e superior da partição)
� Variável auxiliar: m (meio da partição)

1 if i < j

2 then m← b(i+j)
2
c

3 MERGESORT(A, i,m)
4 MERGESORT(A,m+ 1, j)
5 MERGE(A, i,m, j)

Considere n como sendo uma potência de 2.

Merge(A, i,m, j) recebe duas seqüências ordenadas A[i..m] e A[(m + 1)..j] e produz uma
outra seqüência ordenada dos elementos de A[i..m] e A[m+ 1..j].

Como A[i..m] e A[m+ 1..j] estão ordenados, Merge requer no máximo n− 1 comparações.

Merge seleciona repetidamente o menor dentre os menores elementos restantes em A[i..m] e

A[m+ 1..j]. Caso empate, retira de qualquer uma delas.
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Análise do Mergesort

Na contagem de comparações, o comportamento do Mergesort pode ser repre-
sentado por:

T (n) = 2T (n2) + n− 1,

T (1) = 0.

No caso dessa equação de recorrência sabemos que o custo é (veja a resolução
desta equação na parte de indução ou usando o Teorema Mestre):

T (n) = n logn− n+ 1.

Logo, o algoritmo é O(n logn).
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Balanceamento:
Alguns comentários

• Para o problema de ordenação, o balanceamento levou a um resultado muito
superior:
– O custo passou de O(n2) para O(n logn).

• Balanceamento é uma técnica presente em diferentes aspectos algorítmicos
de Ciência da Computação como Sistemas Operacionais.

• Também é uma técnica importante quando o modelo computacional usado é
o PRAM (Parallel Random Access Machine).
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Programação dinâmica

• Programação não está relacionado com um programa de computador.
– A palavra está relacionada com um método de solução baseado em tabela.

• Programação dinâmica (PD) × Divisão-e-conquista (DeC):
– DeC quebra o problema em sub-problemas menores.
– PD resolve todos os sub-problemas menores mas somente reusa as

soluções ótimas.
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Programação dinâmica

• Quando ∑
Tamanhos dos sub-problemas = O(n)

é provável que o algoritmo recursivo tenha complexidade polinomial.

• Quando a divisão de um problema de tamanho n resulta em

n Sub-problemas × Tamanho n− 1 cada um

é provável que o algoritmo recursivo tenha complexidade exponencial.

• Nesse caso, a técnica de programação dinâmica pode levar a um algoritmo
mais eficiente.

• A programação dinâmica calcula a solução para todos os sub-problemas,
partindo dos sub-problemas menores para os maiores, armazenando os re-
sultados em uma tabela.

• A vantagem é que uma vez que um sub-problema é resolvido, a resposta é
armazenada em uma tabela e nunca mais é recalculado.
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Programação dinâmica:
Produto de n matrizes

• Seja

M = M1 ×M2 × · · · ×Mn,

onde Mi é uma matriz com di−1 linhas e di colunas, 2 ≤ i ≤ n.
Ü Isto server para dizer apenas que a matriz Mi possui uma quantidade de

linhas igual a quantidade de colunas de Mi−1 (di−1) e uma quantidade de
colunas dada por di.

• A ordem da multiplicação pode ter um efeito enorme no número total de ope-
rações de adição e multiplicação necessárias para obter M .

• Considere o produto de uma matriz p× q por outra matriz q× r cujo algoritmo
requer O(pqr) operações.

• Considere o produto

M = M1[10,20]×M2[20,50]×M3[50,1]×M4[1,100],

onde as dimensões de cada matriz aparecem entre colchetes.
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Programação dinâmica:
Produto de n matrizes

Sejam duas possíveis ordens de avaliação dessa multiplicação:

M = M1[10,20]×M2[20,50]×M3[50,1]×M4[1,100],

• Tentar todas as ordens possíveis para minimizar o número de operações f(n) é exponencial
em n, onde f(n) ≥ 2n−2.

• Usando programação dinâmica é possível obter um algoritmo O(n3).
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Programação dinâmica:
Produto de n matrizes

Seja mij o menor custo para computar

Mi ×Mi+1 × · · · ×Mj, para 1 ≤ i ≤ j ≤ n.

Neste caso,

mij =

{
0, se i = j,
Mini≤k<j (mik +mk+1,j + di−1dkdj), se j > i.

– mik representa o custo mínimo para calcular M ′ = Mi ×Mi+1 × · · · ×Mk.
– mk+1,j representa o custo mínimo para calcular M ′′ = Mk+1 ×Mk+2 ×
· · · ×Mj.

– di−1dkdj representa o custo de multiplicar M ′[di−1, dk] por M ′′[dk, dj].
– mij, j > i representa o custo mínimo de todos os valores possíveis de k

entre i e j − 1, da soma dos três termos.
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Programação dinâmica: Exemplo

• A solução usando programação dinâmica calcula os valores de mij na ordem
crescente das diferenças nos subscritos.

• O cálculo inicia com mii para todo i, depois mi,i+1 para todo i, depois
mi,i+2, e assim sucessivamente.

• Desta forma, os valores mik e mk+1,j estarão disponíveis no momento de
calcular mij.

• Isto acontece porque j − i tem que ser estritamente maior do que ambos os
valores de k − i e j − (k + 1) se k estiver no intervalo i ≤ k < j.
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Programação dinâmica: Implementação

AVALIAMULTMATRIZES(n, d[0. .n])

� Parâmetro: n (no de matrizes); d[0. .n] (dimensões das matrizes)
� Constante e variáveis auxiliares:

MaxInt = maior inteiro
i, j, k, h, n, temp
m[1. .n,1. .n]

1 for i← 1 to n
2 do m[i, i]← 0
3 for h← 1 to n− 1
4 do for i← 1 to n− h
5 do j ← i+ h

6 m[i, j]← MaxInt
7 for k ← i to j − 1 do
8 temp ← m[i, k] +m[k + 1, j] + d[i− 1]× d[k]× d[j]
9 if temp < m[i, j]

10 then m[i, j]← temp
11 print m

Ü A execução de AVALIAMULTMATRIZES obtém o custo mínimo para multiplicar as n matrizes,
assumindo que são necessárias pqr operações para multiplicar uma matriz p × q por outra
matriz q × r.
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Programação dinâmica: Implementação

A multiplicação de

M = M1[10,20]×M2[20,50]×M3[50,1]×M4[1,100],

sendo

d 10 20 50 1 100
0 1 2 3 4

produz como resultado

m11 = 0 m22 = 0 m33 = 0 m44 = 0

m12 = 10.000

M1 ×M2

m23 = 1.000

M2 ×M3

m34 = 5.000

M3 ×M4

m13 = 1.200

M1 × (M2 ×M3)

m24 = 3.000

(M2 ×M3)×M4

m14 = 2.200

(M1× (M2×M3))×M4
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Programação dinâmica: Princípio da otimalidade

• A ordem de multiplicação pode ser obtida registrando o valor de k para cada
entrada da tabela que resultou no mínimo.

• Essa solução eficiente está baseada no princípio da otimalidade:
– Em uma seqüência ótima de escolhas ou de decisões cada sub-seqüência

deve também ser ótima.

• Cada sub-seqüência representa o custo mínimo, assim como mij, j > i.

• Assim, todos os valores da tabela representam escolhas ótimas.
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Aplicação do princípio da otimalidade

• O princípio da otimalidade não pode ser aplicado indiscriminadamente.

• Se o princípio não se aplica é provável que não se possa resolver o problema
com sucesso por meio de programação dinâmica.
– Quando, por exemplo, o problema utiliza recursos limitados e o total de re-

cursos usados nas sub-instâncias é maior do que os recursos disponíveis.

• Exemplo do princípio da otimalidade: suponha que o caminho mais curto
entre Belo Horizonte e Curitiba passa por Campinas. Logo,
– o caminho entre BH e Campinas também é o mais curto possível;
– como também é o caminho entre Campinas e Curitiba;
Ü Logo, o princípio da otimalidade se aplica.
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Não aplicação do princípio da otimalidade

Seja o problema de encontrar o caminho mais longo entre duas cidades. Temos
que:

– Um caminho simples nunca visita uma mesma cidade duas vezes.

– Se o caminho mais longo entre Belo Horizonte e Curitiba passa por Campi-
nas, isso não significa que o caminho possa ser obtido tomando o caminho
simples mais longo entre Belo Horizonte e Campinas e depois o caminho
simples mais longo entre Campinas e Curitiba.
Ü Observe que o caminho simples mais longo entre BH e Campinas pode

passar por Curitiba!

– Quando os dois caminhos simples são agrupados não existe uma garantia
que o caminho resultante também seja simples.

– Logo, o princípio da otimalidade não se aplica.
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Quando aplicar PD?

• Problema computacional deve ter uma formulação recursiva.

• Não deve haver ciclos na formulação (usualmente o problema deve ser re-
duzido a problemas menores).

• Número total de instâncias do problema a ser resolvido deve ser pequeno (n).

• Tempo de execução é O(n) × tempo para resolver a recursão.

• PD apresenta sub-estrutura ótima:
– Solução ótima para o problema contém soluções ótimas para os sub-

problemas.

• Sobreposição de sub-problemas:
– Número total de sub-problemas distintos é pequeno comparado com o

tempo de execução recursivo.
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Algoritmos gulosos

• Aplicado a problemas de otimização.

• Seja o algoritmo para encontrar o caminho mais curto entre dois vértices de
um grafo:
– Escolhe a aresta que parece mais promissora em qualquer instante.

• Assim,
Ü independente do que possa acontecer mais tarde, nunca reconsidera a

decisão.
Ü não necessita avaliar alternativas, ou usar procedimentos sofisticados

para desfazer decisões tomadas previamente.
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Características dos algoritmos gulosos
Problema geral

• Dado um conjunto C, determine um sub-conjunto S ⊆ C tal que:
– S satisfaz uma dada propriedade P , e
– S é mínimo (ou máximo) em relação a algum critério α.

• O algoritmo guloso para resolver o problema geral consiste em um processo
iterativo em que S é construído adicionando-se ao mesmo elementos de C
um a um.
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Características dos algoritmos gulosos

• Para construir a solução ótima existe um conjunto ou lista de candidatos.

• São acumulados um conjunto de candidatos considerados e escolhidos, e o
outro de candidatos considerados e rejeitados.

• Existe uma função que verifica se um conjunto particular de candidatos pro-
duz uma solução (sem considerar otimalidade no momento).

• Outra função verifica se um conjunto de candidatos é viável (também sem
preocupar com a otimalidade).

• Uma função de seleção indica a qualquer momento quais dos candidatos
restantes é o mais promissor.

• Uma função objetivo fornece o valor da solução encontrada, como o compri-
mento do caminho construído (não aparece de forma explicita no algoritmo
guloso).
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Estratégia do algoritmo guloso

GULOSO(C) � C é o conjunto de candidatos

1 S ← ∅ � S contém conjunto solução, inicialmente vazio
2 while (C 6= ∅ ∧ ¬Solução(S)) � ∃ candidatos e não achou uma solução?
3 do x← Seleciona(C) � Seleciona o próximo candidato
4 C ← C − x � Remove esse candidato do conjunto C
5 if Viável(S + x) � A solução é viável?
6 then S ← S + x; � Sim, incorpora o candidato à solução
7 if Solução(S) � Obteve uma solução?
8 then return(S) � Sim, retorna a solução
9 else return(∅) � Não!

– Inicialmente, o conjunto S de candidatos escolhidos está vazio (linha 1).
– A cada passo, testa se o aumento de S constitui uma solução e ainda existem candidatos a

serem avaliados (condição linha 2).
– O melhor candidato restante ainda não tentado é considerado e removido de C (linhas 3 e

4). O critério de escolha é ditado pela função de seleção (linha 3).
– Se o conjunto aumentado de candidatos se torna viável, o candidato é adicionado ao conjunto
S de candidatos escolhidos. Caso contrário ;e rejeitado (linhas 5 e 6).

– Ao final do processo, testa se há uma solução (linha 7) que é retornada (linha 8) ou não (linha
9).
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Características da implementação de algoritmos
gulosos

• Quando funciona corretamente, a primeira solução encontrada é sempre
ótima.

• A função de seleção é geralmente relacionada com a função objetivo.

• Se o objetivo é:
– Maximizar ⇒ provavelmente escolherá o candidato restante que propor-

cione o maior ganho individual.
– Minimizar⇒ então será escolhido o candidato restante de menor custo.

• O algoritmo nunca muda de idéia:
– Um candidato escolhido e adicionado à solução passa a fazer parte dessa

solução permanentemente.
– Um candidato excluído do conjunto solução, não é mais reconsiderado.
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Árvore geradora mínima

• Definição: Uma árvore geradora de um grafo G = (V,E) é um subgrafo de
G que é uma árvore e contém todos os vértices de G. Num grafo com pesos,
o peso de um subgrafo é a soma dos pesos das arestas deste subgrafo. Uma
árvore geradora mínima para um grafo com pesos é uma árvore geradora
com peso mínimo.

• Problema: Determinar a árvore geradora mínima (em inglês, minimum span-
ning tree), de um grafo com pesos.

• Aplicações: Determinar a maneira mais barata de se conectar um conjunto de
terminais, sejam eles cidades, terminais elétricos, computadores, ou fábricas,
usando-se, por exemplo, estradas, fios, ou linhas de comunicação
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Árvore geradora mínima:
Soluções

O exemplo abaixo mostra que um grafo pode ter mais de uma árvore geradora
mínima.

2

2

1

2

1 12
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Grafo conexo

• Um grafo é conexo se, para cada par de vértices v e w, existir um caminho
de v para w.

• Observações:
– Se G não for conexo ele não possui nenhuma árvore geradora, muito

menos uma que seja mínima.

– Neste caso ele teria uma floresta geradora.

• Para simplificar a apresentação do algoritmo para árvore geradora mínima,
vamos assumir que G é conexo. É fácil estender o algoritmo (e sua justifica-
tiva) para determinar uma floresta de árvores geradoras mínimas.
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Árvore geradora mínima
Algoritmo de Dijkstra–Prim (1959/57)

O algoritmo de Dijkstra–Prim começa selecionando um vértice arbitrário, e de-
pois “aumenta” a árvore construída até então escolhendo um novo vértice (e
um nova aresta) a cada iteração. Durante a execução do algoritmo, podemos
imaginar os vértices divididos em três categorias:

1. Vértices da árvore: aqueles que fazem parte da árvore construída até en-
tão;

2. Vértices da borda: não estão na árvore, mas são adjacentes a algum vértice
da árvore;

3. Vértices não-vistos: todos os outros.
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Árvore geradora mínima
Algoritmo de Dijkstra–Prim

O principal passo do algoritmo é a seleção de um vértice da borda e de uma
aresta incidente a este vértice. O algoritmo de Dijkstra–Prim sempre escolhe
uma aresta entre um vértice da árvore e um vértice da borda que tenha peso
mínimo. A estrutura geral do algoritmo pode ser descrita do seguinte modo:

DIJKSTRA-PRIM(Grafo)

1 Seleciona um vértice arbitrário para inicializar a árvore;
2 while existem vértices da borda
3 do Seleciona uma aresta de peso mínimo entre um vértice da árvore e um vértice da

borda;
4 Adiciona a aresta selecionada e o vértice da borda à árvore;
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Algoritmo de
Dijkstra–Prim
• Idéia básica:

– Tomando como vértice ini-
cialA, crie uma fila de priori-
dades classificada pelos pe-
sos das arestas conectando
A.

– Repita o processo até que
todos os vértices tenham
sido visitados.
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Princípio da técnica de algoritmos gulosos

• A cada passo faça a melhor escolha:
– Escolha local é ótima.

• Objetivo:
Ü A solução final ser ótima também.

• Sempre funciona?
– Não. Por exemplo, 0 –1 Knapsack Problem.

• Propriedades de problemas que, em geral, levam ao uso da estratégia gu-
losa:
– Propriedade da escolha gulosa.
– Sub-estrutura ótima.
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Propriedade da escolha gulosa

• Solução global ótima pode ser obtida a partir de escolhas locais ótimas.

• Estratégia diferente de programação dinâmica (PD).

• Uma vez feita a escolha, resolve o problema a partir do “estado” em que se
encontra.

• Escolha na técnica gulosa depende só do que foi feito e não do que será feito
no futuro.

• Progride na forma top-down:
– Através de iterações vai “transformando” uma instância do problema em

uma outra menor.
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Propriedade da escolha gulosa

• Estratégia da prova que a escolha gulosa leva a uma solução global ótima:

– Examine a solução global ótima.

– Mostre que a solução pode ser modificada de tal forma que uma escolha
gulosa pode ser aplicada como primeiro passo.

– Mostre que essa escolha reduz o problema a um similar mas menor.

– Aplique indução para mostrar que uma escolha gulosa pode ser aplicada a
cada passo.
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Sub-estrutura ótima

• Um problema exibe sub-estrutura ótima se uma solução ótima para o pro-
blema é formada por soluções ótimas para os sub-problemas.

• Técnicas de escolha gulosa e programação dinâmica possuem essa carac-
terística.
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Técnica gulosa vs.
Programação dinâmica

• Possuem sub-estrutura ótima.

• Programação dinâmica:
– Faz uma escolha a cada passo.
– Escolha depende das soluções dos sub-problemas.
– Resolve os problemas bottom-up.

• Técnica gulosa:
– Trabalha na forma top-down.
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Diferenças das duas técnicas através de um
exemplo

• Problema da Mochila (enunciado):

– Um ladrão acha n itens numa loja.

– Item i vale vi unidades (dinheiro, e.g., R$, US$, etc).

– Item i pesa wi unidades (kg, etc).

– vi e wi são inteiros.

– Consegue carregar W unidades no máximo.

– Deseja carregar a “carga” mais valiosa.
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Versões do Problema da Mochila

• Problema da Mochila 0 –1 ou (0 –1 Knapsack Problem):
– O item i é levado integralmente ou é deixado.

• Problema da Mochila Fracionário:
– Fração do item i pode ser levada.
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Considerações sobre as duas versões

• Possuem a propriedade de sub-estrutura ótima.

• Problema inteiro:
– Considere uma carga que pesa no máximo W com n itens.
– Remova o item j da carga (específico mas genérico).
– Carga restante deve ser a mais valiosa pesando no máximo W − wj com
n− 1 itens.

• Problema fracionário:
– Considere uma carga que pesa no máximo W com n itens.
– Remova um peso w do item j da carga (específico mas genérico).
– Carga restante deve ser a mais valiosa pesando no máximo W − w com
n− 1 itens mais o peso wj − w do item j.
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Considerações sobre as duas versões

• Problema inteiro:
Ü Não é resolvido usando a técnica gulosa.

• Problema fracionário:
Ü É resolvido usando a técnica gulosa.

• Estratégia para resolver o problema fracionário:
– Calcule o valor por unidade de peso vi

wi
para cada item.

– Estratégia gulosa é levar tanto quanto possível do item de maior valor por
unidade de peso.

– Repita o processo para o próximo item com esta propriedade até alcançar
a carga máxima.

• Complexidade para resolver o problema fracionário:
– Ordene os itens i (i = 1 . . . n), pelas frações vi

wi
.

Ü O(n logn).

UFMG/ICEx/DCC PAA · Paradigmas de Projeto de Algoritmos 137



Exemplo: Situação inicial
Problema 0 –1

Mochila$60 $120$100

10

50

30
20

Item Peso Valor V/P

1 10 60 6
2 20 100 5
3 30 120 4

Carga máxima da mochila: 50
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Exemplo: Estratégia gulosa
Problema 0 –1

= $220

$100

+

$60

= $160

$120

+

$100

$120

+

$60

= $180

20

30

10

20

10

30

Soluções possíveis:

# Item (Valor)

1 2 + 3 = 100 + 120 = 220
2 1 + 2 = 60 + 100 = 160
3 1 + 3 = 60 + 120 = 180

Ü Solução 2 é a gulosa.
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Exemplo: Estratégia gulosa
Problema 0 –1

• Considerações:

– Levar o item 1 faz com que a mochila fique com espaço vazio

– Espaço vazio diminui o valor efetivo da relação v
w

– Neste caso deve-se comparar a solução do sub-problema quando:
Item é incluído na solução × Item é excluído da solução

– Passam a existir vários sub-problemas

– Programação dinâmica passa a ser a técnica adequada

UFMG/ICEx/DCC PAA · Paradigmas de Projeto de Algoritmos 140



Exemplo: Estratégia gulosa
Problema Fracionário

$100

+

= $240

$60

+

$80

20

30
20

10

Item Peso Valor Fração

1 10 60 1
2 20 100 1
3 30 80 2/3

Ü Total = 240.
Ü Solução ótima!
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Algoritmos aproximados

• Problemas que somente possuem algoritmos exponenciais para resolvê-los
são considerados “difíceis”.

• Problemas considerados intratáveis ou difíceis são muito comuns, tais
como:
– Problema do caixeiro viajante cuja complexidade de tempo é O(n!).

• Diante de um problema difícil é comum remover a exigência de que o algo-
ritmo tenha sempre que obter a solução ótima.

• Neste caso procuramos por algoritmos eficientes que não garantem obter a
solução ótima, mas uma que seja a mais próxima possível da solução ótima.
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Tipos de algoritmos aproximados

• Heurística: é um algoritmo que pode produzir um bom resultado, ou até
mesmo obter a solução ótima, mas pode também não produzir solução al-
guma ou uma solução que está distante da solução ótima.

• Algoritmo aproximado: é um algoritmo que gera soluções aproximadas den-
tro de um limite para a razão entre a solução ótima e a produzida pelo algo-
ritmo aproximado (comportamento monitorado sob o ponto de vista da quali-
dade dos resultados).
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