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Principio da inducao matematica (fraca)

Seja P(n) um predicado definido para os inteiros n, e seja ng um inteiro fixo.

Suponha que as duas afirmacoes abaixo sejam verdadeiras:

1. P(ng) é V.
2. Para todos inteiros k& > ng,
se P(k) éVentago P(k+ 1) éV.

=» Logo, a afirmacao
para todos inteiros n > ng, P(n)

ée V.
P(n)
,/\
—
Ny

Inteiros
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Principio da inducao matematica

e Técnica aparece pela primeira vez no trabalho do italiano Francesco Mau-
rolico em 1575.

e No século XVII, Pierre de Fermat e Blaise Pascal usam essa técnica em seus
trabalhos. Fermat da o nome de “método do descendente infinito.”

e Em 1883, Augustus De Morgan descreve o processo cuidadosamente e da o
nome de inducao matematica.

=» Técnica extremamente importante para a Ciéncia da Computacao.

Para visualizar a idéia da inducdo matematica, imagine uma colecdo de do-
minds colocados numa sequéncia (formacdo) de tal forma que a queda do
primeiro domind for¢ca a queda do segundo, que forca a queda do terceiro, e
assim sucessivamente, até todos os dominds cairem.
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Principio da inducao matematica (fraca)

e A prova de uma afirmacao por inducao matematica ¢é feita em dois passos:
1. Passo base: é provado que P(ng) é V para um dado ng especifico.
2. Passo indutivo: é provado que para todos inteiros k > ng,
se P(k)éVentago P(k+ 1) éV.

O passo indutivo pode ser escrito formalmente como:

v inteiros k > ng, se P(k) entdo P(k + 1)

e Para provar o passo indutivo deve-se:
— supor que P(k) é V, onde k£ é um elemento especifico mas escolhido arbi-

trariamente de tal forma que seja maior ou igual a ng.
— provar que P(k+ 1) é V.

(@UFMG/ICEX/DCC PAA e Paradigmas de Projeto de Algoritmos




Principio da inducao matematica (fraca)

e Este principio pode ser expresso pela seguinte regra de inferéncia:

[P(ng) ANVE(P(k) — P(k+1))] — VnP(n).

P(n)
A
jp—
P(ng)  Pny)  Plny) P (k)  P(k+1) Inteiros
N N N~ N N N

=»> Numa prova por indu¢ao matematica nao é assumido que P(k) é verdadeiro

para todos os inteiros! E mostrado que se for assumido que P(k) é ver-
dadeiro, entdo P(k + 1) também é verdadeiro.

Os proximos 10 exemplos ilustram o uso do Principio da Inducdo Mateméatica e estdo apresentados aqui para
estudo e referéncia.
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Principio da inducao matematica
Exemplo 1

Prove que para todos inteiros n > 1,

_n(n+1)
14+24+...4+n= >

Prova (por inducao matematica):

1. Passo base: P(ng) = P(1): Parang =1,1 = w = 1 e a formula
é verdadeira para ng = 1.

2. Passo indutivo: se a férmula é verdadeira para n = k entao deve ser ver-
dadeiraparan =k+ 1,i.e., P(k) —» P(k+1).
— Suponha que a férmula seja verdadeira paran = k, i.e.,
kE(k+1)
2

Pk):1+24+...+k=

para algum inteiro k > 1. [hip6tese indutiva]
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Principio da inducao matematica
Exemplo 1

Deve-se mostrar que

(k+1)(k+2)

Plk+1):14+24+...+(k+1)= :

Sabe-se que

k(k—+1
1+24+...+k+(k+1) = (;_)-I-(k-l-l)

k(k+1) | 2(k+1)

2 2
k2 4+ 3k + 2

2
(k+1)(k+2)
2

[Isto era o que devia ser provado.]
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Principio da inducao matematica
Exemplo 2

Prove que para todos inteiros n > 0,

o+1+2+...+n:”("2+2)

Prova (por inducao matematica):

1. Passo base: P(ng) = P(0): Parang = 0,0 = w = 0 e a férmula
é verdadeira para ng = 0.

2. Passo indutivo: se a férmula é verdadeira para n = k entao deve ser ver-
dadeiraparan =k+ 1,i.e., P(k) —» P(k+1).
— Suponha que a férmula seja verdadeira paran = k, i.e.,
k(k+2) k%4 2k
2 2

Pk):0+142+...+k=

para algum inteiro k > O. [hipétese indutiva]
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Principio da inducao matematica
Exemplo 2

Deve-se mostrar que

E+ 1)(k+3 k2 4+ 4k + 3
P(k+1)30+1-|-2—|—...—|—(k—|—1):( +Dk+3) _k+ 4kt

2 2
Sabe-se que
k2 + 2k

041424kt (k+1) = L4kt 1)

K2+ 2k+2(k+1)

o 2

K+ 4k+2

o 2

[Assim, ndo foi possivel derivar a concluséo a partir da hipdtese. Isto significa que o predicado
original é falso.]
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Principio da inducao matematica
Exemplo 3

Prove que
n . ,,m,—l—l 1
P(n) : r' =
() 3=

para todos inteiros n > O e para todos numeros reais r, r # 1.

Prova (por inducao matematica):

o+1 .
1. Passo base: P(ng) = P(0): Parang =0, =1="_"+t=""1=1

e a formula é verdadeira para ng = O.

2. Passo indutivo: se a formula € verdadeira para n = k entao deve ser ver-
dadeiraparan =k + 1,i.e., P(k) —- P(k+1).
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Principio da inducao matematica

Exemplo 3
: k
— P(k) : ZZ_OT " :1_1 para k > 0. [hip6tese indutiva]
ok
— Deve-se mostrar que P(k+ 1) : Zk+1 L = :_21_1
k+1 ko
Z Pt = Z 7“7’—|—7“k+1
1=0 1=0
_ it 4kl
r—1
. rktl 1 kTl — 1)
o r—1 r—1
B 7Jf—l—l 14 rk—|—2 . Tk—l—l
o r—1
. rk+2 _1q
o r—1
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Principio da inducao matematica
Exemplo 4

Prove que
P(n):2°" —1 édivisivel por 3,

paran > 1.

Prova (por inducao matematica):

1. Passo base: P(ng) = P(1): Parang = 1, 221 — 1 = 3 que é divisivel
por 3.

2. Passo indutivo: se a formula € verdadeira para n = k entao deve ser ver-
dadeiraparan =k 4+ 1,i.e.,, P(k) — P(k+ 1).
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Principio da inducao matematica
Exemplo 4

— P(k) : 22k — 1 é divisivel por 3. [hipétese indutiva]

— Deve-se mostrar que P(k + 1) : 22(k+1) _ 1 ¢é divisivel por 3.

52(k+1) _ 1 — o2k+2 _ 4
22k .22 _1q
22k .4 1
= 22F. 341)-1
22k .3 4 (22F — 1)

que € divisivel por 3.
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Principio da inducao matematica
Exemplo 5

Prove que
Pn): 20421 4224 4on=0ontl_1

paran > 0.

Prova (por inducao matematica):

1. Passo base: P(ng) = P(0): Parang=2°=1,21 -1 =1.

2. Passo indutivo: se a formula € verdadeira para n = k entao deve ser ver-
dadeiraparan =k + 1,i.e., P(k) —- P(k+1).
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Principio da inducao matematica
Exemplo 5

— P(k): 20421 422 42k =2kFt1 _ 1 parak > 0. [hiptese indutiva]

— Deve-se mostrar que P(k+ 1) : 20 421 422 4 4 2ktl =2k+2_

204 o1 4 024 4ok obtl — (k1 _ 1) 4 ok+l

2.2k+1 4
ok+2 _q
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Principio da inducao matematica
Exemplo 6

Prove que
P(n) : Hon > 1+ 7,

paran > 0, onde H; representa o numero harmonico, que € definido por:

Hi=1+5+35+...+7

Prova (por inducao matematica):

1. Passo base: P(ng) = P(0):
Parang = 0, temos Hyo = H; = 1> 1+ 3.

2. Passo indutivo: se a formula € verdadeira para n = k entao deve ser ver-
dadeiraparan =k 4+ 1,i.e.,, P(k) — P(k+ 1).
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Principio da inducao matematica

Exemplo 6

— P(k) : Hyr > 1+ %, para k > 0. [hipétese indutiva]

— Deve-se mostrar que P(k+ 1) : Hopp1 > 1+ _k42-1

1 1 1 1 1 1
H k+1 = ]_ — — oo ...
2v+ tststotatagta st tan
[Definicdo de numero harménico.]
1 1 1
2+t st ot o
[Definicdo de numero harménico.]
k 1 1
> (1+5> +2% o
[Hipbtese indutiva e existem 2* termos, cada um pelo menos 1/2%+1 ]
N 1+ k 4 1
_ 2 2
k+1
> 14+ ——-.
> 1+ 5
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Principio da inducao matematica
Exemplo 7

Seja a seqliéncia aq, as, a3, . .. definida como

ap = 2

ap = Sag_1,k>2
Prove que
5n—1

an:2'

paran > 1.

Prova (por inducao matematica):

1. Passo base: P(ng) = P(1): Parang =1,2-5"1 =2ea; = 2. Logo,

a formula é valida paran = 1.

2. Passo indutivo: se a formula € verdadeira para n = k entao deve ser ver-

dadeiraparan =k + 1,i.e., P(k) —- P(k+1).
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Principio da inducao matematica
Exemplo 7

— P(k) : ap, = 2 - 51 [hipotese indutiva]

— Deve-se mostrar que P(k+ 1) : ap 1 = 2-5(,+D)-1 =2.5k

S a(kp41)-1
- ay,
. (2 ) 5/{:—1)
.5k—1)

ak41

N N 01 O
~
ol
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Principio da inducao matematica
Exemplo 8

Prove que para todos os inteiros n > 3

P(n): 2n+1 < 2"

Prova (por inducdo matematica):

1. Passo base: P(ng) = P(3). Parang = 3,

2.34+1 < 23

Logo, a férmula é valida para ng = 3.
2. Passo indutivo: se a férmula é verdadeira para n = k entao deve ser ver-
dadeiraparan =k+ 1,i.e., P(k) —» P(k+1).
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Principio da inducao matematica

Exemplo 8

— P(k): 2k + 1 < 2F para k > 3. [hipétese indutiva]

— Deve-se mostrar que P(k + 1): 2(k+ 1) + 1 < 2k+1,

2k+2+1

(2k +1) 42

Rk+1)+2 < 2842
2k+1)4+1 <

?
p LIS, I L

Se puder ser mostrado que 2% + 2 < 2%+ entdo o predicado P(k + 1) é verdadeiro.

ok 4+ o
2

2
2
1

A~ AN AN A

N

2k+l
ok+1 _ ok
2F(2 - 1)
2k:

2F=1 que é verdade para k > 2.

Em particular, a inequacgéo (1 < 2%1) é vélida para k > 3. Assim, P(k+ 1) é V.

@) UFMG/ICEx/DCC PAA o

Paradigmas de Projeto de Algoritmos 22



Principio da inducao matematica
Exemplo 9

Prove que para todos os inteiros n > 1

P(n): n3 —n é divisivel por 3.

Prova (por inducdo matematica):

1. Passo base: P(ng) = P(1). Parang = 1,

13— 1 =0 édivisivel por 3.

Logo, a férmula é valida para ng = 3.
2. Passo indutivo: se a férmula é verdadeira para n = k entao deve ser ver-
dadeiraparan =k+ 1,i.e., P(k) —» P(k+1).
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Principio da inducao matematica
Exemplo 9

— P(k): k3 — k é divisivel por 3, para k > 1. [hipétese indutiva]
— Deve-se mostrar que P(k + 1): (k4 1)3 — (k 4+ 1) é divisivel por 3, para
k> 1.
(k+1)° - (k+1) =
(k3 +3k24+3k+1)—(k+1) =
(k3 — k) + 3(k? 4+ k)
O primeiro termo é divisivel por 3 (hipbtese indutiva) e o segundo também.

Como a soma de dois numeros divisiveis por 3 € um numero divisivel por 3,
entdo o predicado P(k + 1) é V.
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Principio da inducao matematica
Exemplo 10

Seja o inteiro n > 1. Mostre que qualquer regiao quadrada de tamanho 2" x 2™,
com um quadrado removido, a regiao restante pode ser preenchida com pecas
no formato L, como mostrado abaixo.

Nota: A peca no formato L é constituida por trés quadrados de tamanho 1 x 1.

Prove que para todos os inteiros n > 1, P(n): Qualquer regidao quadrada
de tamanho 2™ x 2™, com um quadrado removido, a regiao restante pode ser
preenchida com pecas no formato L.
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Principio da inducao matematica
Exemplo 10

Prova (por inducao matematica):

1. Passo base: P(ng) = P(1). P(1) € V ja que uma regido quadrada de
tamanho 2 x 2, com um quadrado removido, a regido restante pode se
preenchida com pecas no formato L, como mostrado abaixo.

2. Passo indutivo: se a formula € verdadeira para n = k entao deve ser ver-
dadeiraparan =k 4+ 1,i.e., P(k) —- P(k+1).
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Principio da inducao matematica
Exemplo 10
— P(k): Qualquer regido quadrada de tamanho 2* x 2%, com um quadrado removido, a regido
restante pode ser preenchida com pecas no formato L. [hipdtese indutiva]

— Deve-se mostrar P(k + 1): Qualquer regido quadrada de tamanho 2*T1 x 2*¥+1 com um
quadrado removido, a regiao restante pode ser preenchida com pecas no formato L.

Considere uma regido quadrada de tamanho 2**1 x 25+1 com um quadrado removido. Divida
essa regido em quatro regibes de tamanho 2% x 2*¥ como mostrado abaixo.

Temos trés regides 2F x 2 com nenhum quadrado re-
movido e uma regiéo 2% x 2*¥ com um quadrado removido.
Ou seja, a regido 2F+1 x 2¥+1 possui apenas um quadrado
removido.

Pela hipotese indutiva, a regido 2¥ x 2%, com um quadrado
removido, pode ser preenchida com pecas no formato L.
O problema passa a ser como a mesma hipdétese indutiva
pode ser aplicada as outras trés regides.
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Principio da inducao matematica
Exemplo 10

Temporariamente remova um quadrado de cada regido 2F x 2% que esta “completa” como
mostrado na figura abaixo a esquerda.

Pela hipétese indutiva cada uma dessas trés regides 2 x 2% pode ser preenchida com pecas no
formato L. No entanto, para resolvermos o problema da peca removida em cada uma dessas trés
regides basta colocarmos uma peca L exatamente sobre esses trés “buracos” como mostrado
na figura abaixo a direita.
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Principio da inducao matematica
Exemplo 10

Assim, uma regido quadrada de tamanho 2*t1 x 2¥+1 com um quadrado removido, a regido
restante pode ser preenchida com pecas no formato L, como mostrado na figura abaixo.
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Principio da inducao matematica (forte)

Seja P(n) um predicado que é definido para inteiros n, e seja a e b inteiros fixos,
sendo a < b. Suponha que as duas afirmacoes seguintes sejam verdadeiras:

1. P(a),P(a+1),...,P(b) sdo V. (Passo base)

2. Para qualquer inteiro k& > b,
se P(i)éVparaa <i< kentdo P(k) éV,ie., P(i) — P(k).
-» Logo, a afirmacao “para todos inteiros n > a, P(n)” é V. (A suposicao
que P(7) é V paraa < i < k é chamada de hip6tese indutiva.)

Passo Base
a b k Inteiros
N S

——
P()

Hipotese Indutiva
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Principio da inducao matematica (forte):
Exemplo 11

Seja a sequéncia aq, ao, a3, . .. definida como

0
an 2
ap =— 3-aLk/2J—|—2,kZ3

ai

Prove que ay, é par, paran > 1.

Prova (por inducao matematica):

1. Passo base: Paran = 1 e n = 2 a propriedade é validajaque a1 = 0 e
ar = 2.

2. Passo indutivo: Vamos supor que a; é par para todos inteiros 7, 1 < i < k.
[hipbtese indutiva]
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Principio da inducao matematica (forte):
Exemplo 11

Se a propriedade € valida para 1 < ¢ < k, entao € valida para k, ou seja, aj é
par [o que deve ser mostrado].

Pela definicao de a1, a», a3, ...
ak:3-aLk/2J —|—2, k23

O termo a|k/2) é par pela hipdtese indutivajaque k£ > 3 e 1 < |k/2] < k.
Desta forma, 3 - a|k/2| épare 3 - a2 +2 também € par, o que mostra que
af e par.
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Inducao matematica e algoritmos

e E Util para provar assercdes sobre a correcdo e a eficiéncia de algoritmos.
e Consiste em inferir uma lei geral a partir de instancias particulares.

e Seja T um teorema que tenha como parametro um numero natural n. Para
provar que 7' € valido para todos os valores de n, provamos que:
1. T é valido para n = 1; [PASSO BASE]
2. Paratodon > 1, [PASSO INDUTIVO]
se T é valido para n,
entao 1" é valido paran + 1.

e Provar a condicao 2 é geralmente mais facil que provar o teorema diretamente
(podemos usar a assercao de que T’ € valido para n).

e Ascondicoes 1 e 2 implicam T valido para n = 2, 0 que junto com a condi¢ao
2 implica T' também valido para n = 3, e assim por diante.
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Limite superior de equacoes de recorrencia

e A solucao de uma equacao de recorréncia pode ser dificil de ser obtida.

e Nesses casos, pode ser mais facil tentar advinhar a solucao ou obter um limite
superior para a ordem de complexidade.

e Advinhar a solucao funciona bem quando estamos interessados apenas em
um limite superior, ao invés da solugao exata.

=» Mostrar que um certo limite existe € mais facil do que obter o limite.
e Por exemplo:

T(2n) < 2T(n)+2n—1,
T(2) = 1,

definida para valores de n que sao poténcias de 2.

=» O objetivo € encontrar um limite superior na notacao O, onde o lado direito
da desigualdade representa o pior caso.
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Inducao matematica para resolver equacao de
recorréncia

T(2) = 1,
T(2n) < 2T(n)+2n -1,

definida para valores de n que sao poténcias de 2.

e Procuramos f(n) talque T'(n) = O(f(n)), mas fazendo com que f(n) seja
0 mais proximo possivel da solugao real para T'(n) (limite assintético firme).

e Vamos considerar o palpite f(n) = n=2.

e Queremos provar que

T(n) < f(n) =0(f(n))

utilizando indugcao matematica em n.
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Inducao matematica para resolver equacao de

recorréncia
Prove que T'(n) < f(n) = O(f(n)), para f(n) = n?, sendo
T(2) = 1,

T(2n) < 2T(n)+2n-—1,
definida para valores de n que sao poténcias de 2.

Prova (por inducdo matematica):
1. Passo base:

T(no) =T(2): Parang=2,7T(2) =1 < f(2) = 4, e 0o passo base é V.

2. Passo indutivo: se a recorréncia € verdadeira para n entdo deve ser verdadeira para 2n,

i.e., T(n) — T'(2n) (lembre-se que n &€ uma poténcia de 2; conseqientemente o “nimero
seguinte” an é 2n).

Reescrevendo o passo indutivo temos:
Predicado(n) — Predicado(2n)
(T'(n) < f(n)) — (T'(2n) < f(2n))

2T (n) +2n —1 [Definicao da recorréncia]
2n? +2n —1 [Pela hipdtese indutiva podemos substituir T'(n)]

T(2n)

?
2n° +2n — 1 < (2n)? [A conclusdo é verdadeira?]
2n° +2n — 1 < 4n? [Sim!]

Essa Ultima inequacgéo é o que queremos provar. Logo, T'(n) = O(n?).

VANVANR VAN VAN
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Inducao matematica para resolver equacao de
recorréncia

e Vamos tentar um palpite menor, f(n) = cn, para alguma constante c.
e Queremos provar que

T(n) < f(n) =cn=0(f(n))

utilizando indugcao matematica em n.

UFMG/ICEx/DCC PAA e Paradigmas de Projeto de Algoritmos
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Inducao matematica para resolver equacao de

recorrencia

Prove que T'(n) < f(n) = O(f(n)), para f(n) = cn, sendo

T(2) = 1,
T(2n) < 2T(n)+2n-—1,

definida para valores de n que séao poténcias de 2.

Prova (por inducao matematica):
1. Passo base:

T(nog) =T(2): Parang=2,T(2) =1 < f(2) = 2¢, € 0 passo base é V.

2. Passo indutivo: se a recorréncia € verdadeira para n entdo deve ser verdadeira para 2n,

i.e., T'(n) — T'(2n).

Reescrevendo o passo indutivo temos:

T(2n)

VANVANIVANVAN

Predicado(n) — Predicado(2n)

(T'(n) < f(n)) — (T(2n) < f(2n))
(T'(n) <cn)) — (T(2n) < 2cn)

2T (n) +2n—1 [Definicdo da recorréncia]

2cn +2n —1 [Pela hipdtese indutiva podemos substituir 7'(n)]
2cn+ (2n—1)

2cn+2n — 1 > 2en [A conclusao (T'(2n) < 2c¢n) nao é valida]
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Inducao matematica para resolver equacao de
recorréncia

Logo:
e afuncédo f(n) = cn cresce mais lentamente que T'(n);

e T'(n) esta entre cn e n2, mais especifamente;

eT(n) £ f(n) = cn.
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Inducao matematica para resolver equacao de
recorréncia

2

e Vamos tentar uma funcéo entre n e n=, como, por exemplo, f(n) = nlogn.

e Queremos provar que

T'(n) < f(n) =nlogn = 0(f(n))

utilizando indugcao matematica em n.
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Inducao matematica para resolver equacao de

recorréncia
Prove que T'(n) < f(n) = O(f(n)), para f(n) = nlogn, sendo
T(2) = 1,

T(2n) < 2T(n)+2n-—1,
definida para valores de n que sao poténcias de 2.

Prova (por inducao matematica):
1. Passo base:

T(nog) =T(2): Parang=2,7T(2) =1< f(2) = 2log?2, e 0 passo base é V.

2. Passo indutivo: se a recorréncia é verdadeira para n entdo deve ser verdadeira para 2n,
i.e., T'(n) — T'(2n).

Reescrevendo o passo indutivo temos:

Predicado(n) — Predicado(2n)

(T'(n) < f(n)) — (T(2n) < f(2n))
(T(n) <nlogn)) — (T'(2n) <2nlog2n)

T(2n) < 2T(n)+2n-1 [Definicao da recorréncia]
< 2nlogn+2n-—1 [Podemos substituir 7'(n)]
?
< 2nlogn+2n—1<2nlog2n [A conclusao é verdadeira?]
< 2nlogn+2n—1<2nlogn+ 2n [Siml]
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Inducao matematica para resolver equacao de
recorréncia

e Paraovalorde f(n) = nlogn, a diferenca entre as férmulas é de apenas 1.

e Defato, T(n) = nlogn —n + 1 é a solugcao exata de

T(n) 2T(5) +n—1
T(1) = O

gue descreve o comportamento do algoritmo de ordenacao Mergesort.
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Inducao matematica e algoritmos
Comentarios finais

e Inducado € uma das técnicas mais poderosas da Matematica que pode ser
aplicada para provar assercoes sobre a correcao € a eficiéncia de algoritmos.

e No caso de corregao de algoritmos, € comum tentarmos identificar invariantes
para lacos.

e Inducao pode ser usada para derivar um limite superior para uma equacao de
recorréncia.
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Recursividade

e Um procedimento que chama a si mesmo, direta ou indiretamente, € dito ser
recursivo.

e Recursividade permite descrever algoritmos de forma mais clara e concisa,
especialmente problemas recursivos por natureza ou que utilizam estruturas
recursivas.

e Por exemplo, arvore binaria de pesquisa:
— Todos os registros com chaves menores estao na sub-arvore esquerda;

— Todos os registros com chaves maiores estao na sub-arvore direita.
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Recursividade

e Algoritmo para percorrer todos os registros em ordem de caminhamento

central:
1. Caminha na sub-arvore esquerda na ordem central;

2. Visita a raiz;
3. Caminha na sub-arvore direita na ordem central.

e No caminhamento central, os n0s sao visitados em ordem lexicografica das
chaves.

CENTRAL(p)

1 if p #Z nil

2  then CENTRAL(pT.€sQ)

3 Visita n6 > Faz algum processamento
4

CENTRAL(p?.dir)
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Implementacao de recursividade

e Usa-se uma pilha para armazenar os dados usados em cada chamada de
um procedimento que ainda nao terminou.

e Todos os dados nao globais vao para a pilha, registrando o estado corrente
da computacao.

e Quando uma ativagao anterior prossegue, os dados da pilha sdo recuperados.

e No caso do caminhamento central:

— Para cada chamada recursiva, o valor de p e o endereco de retorno da
chamada recursiva sao armazenados na pilha.

— Quando encontra p=nil o procedimento retorna para quem chamou uti-
lizando o endereco de retorno que esta no topo da pilha.
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Problema de terminacao em procedimentos
recursivos

e Procedimentos recursivos introduzem a possibilidade de iteracdes que podem
nao terminar:
->» Existe a necessidade de considerar o problema de terminacao.

e E fundamental que a chamada recursiva a um procedimento P esteja sujeita
a uma condig¢ao B, a qual se torna nao-satisfeita em algum momento da com-
putacao.

e Esquema para procedimentos recursivos: composicao C de comandos S; e
P.

P = if B then C[S;, P]

e Para demonstrar que uma repeticao termina, define-se uma funcédo f(x),
sendo x o conjunto de variaveis do programa, tal que:
1. f(x) < 0 implica na condi¢ao de terminacao;
2. f(x) é decrementada a cada iteracao.
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Problema de terminacao em procedimentos
recursivos

e Uma forma simples de garantir terminacao é associar um parametro n para
P (no caso por valor) e chamar P recursivamente com n — 1.

A substituicao da condicao B por n > O garante terminacao.

P =ifn > 0then P[S;,,P(n — 1)]

E necessario mostrar que o nivel mais profundo de recursao é finito, e também
possa ser mantido pequeno, pois cada ativagao recursiva usa uma parcela de
memoria para acomodar as variaveis.
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Quando nao usar recursividade

e Nem todo problema de natureza recursiva deve ser resolvido com um algo-
ritmo recursivo.

e Estes podem ser caracterizados pelo esquema P = if B then (S, P).

e Tais programas sao facilmente transformaveis em uma versao nao recursiva
P = (x := xp; while Bdo S).
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Exemplo de quando nao usar recursividade

Jo
1
fn

Solucao:

In

Calculo dos numeros de Fibonacci

0,
1,
Jn—1+ fn—2, Vn2>2.

1

\@[CD” — (=P)7"],

onde ® = \@24'1 ~ 1,618 é a razdo de ouro.

seguinte:

O procedimento recursivo (FiBoNAcci_REc) obtido diretamente da equacgao é o

FIBONACCI_REC(n)

1 ifn<?2
2 then FIBONACCI_REC «+— n

3 else FIBONACCI_REC « FIBONACCI_REC(n — 1) + FIBONACCI_REC(n — 2)

@©)UFMG/ICEx/DCC PAA o
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Exemplo de quando nao usar recursividade

e O programa € extremamente ineficiente porque recalcula o mesmo valor
varias vezes.

e A complexidade de espaco para calcular f;, € O(P™).

e A complexidade de tempo para calcular f;,, considerando como medida de
complexidade o numero de adi¢cdes, é também O(P™).
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Versao iterativa do calculo de Fibonacci

FIBONACCI_ITER(n)

> Variaveis auxiliares: Aux, k, Fant, F
Fant — O
F—1
fork — 2ton
do Aux — F + Fant
Fant — F
F — Aux
FIBONACCI_ITER <+ F

NO O b WD =

e O programa tem complexidades de tempo O(n) e de espago O(1).
e Deve-se evitar recursividade quando existe uma solucao iterativa.

e Comparacao das versoes recursiva e iterativa:

n 20 30 50 100
Recursiva 1s 2min | 21 dias | 10° anos
Iterativa 1/3ms | 1/2ms | 3/4 ms 1,5ms
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Recursividade na modelagem de problemas
Strings com uma certa propriedade (1)

Seja =~ = {0, 1}. Determine quantos strings existem em X9 ... >3 que néo
contém o padrao 11.

Nota: > é o conjunto de todos os strings de tamanho ¢ sobre >.

Logo, temos que:

Tamanho | Strings Tamanho | # Strings
0 € 0] 1
1 0,1 1 2
2 00,01, 10 2 3
3 000, 001,010,100, 101 3 5
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Recursividade na modelagem de problemas
Strings com uma certa propriedade (2)

Quantos elementos existem em >+?

|déia:
— Suponha que o numero de strings < k que nao contém o padrao 11 seja

conhecido.

— Use esse fato para determinar o numero de strings de tamanho k que nao
contém 11 em funcdo de strings menores que nao contém 11.

UFMG/ICEx/DCC PAA e Paradigmas de Projeto de Algoritmos 54



Recursividade na modelagem de problemas
Strings com uma certa propriedade (3)

e Dois casos a considerar em fungao do simbolo mais a esquerda no string:
— 0: 0s k — 1 simbolos podem ser qualquer sequtiéncia sobre 2~ onde 11 nao
aparece;
— 1: os dois simbolos mais a esquerda nao podem ser 11 e sim 10.
=» Logo, os k£ — 2 simbolos podem ser qualquer seqtiéncia sobre 3> onde
11 nao aparece.

e Os dois casos geram dois subconjuntos mutuamente disjuntos, representa-
dos pela primeira equacao de recorréncia abaixo:

(1) S = Sp_1+ sp_o Equagdo de recorréncia
= 1
(2) { >0 Condigdes iniciais
S1 = 2

=» Termos da Série de Fibonacci!
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Funcao definida recursivamente (1)

e Uma funcao é dita ser definida recursivamente se ela refere-se a si mesma.

e Exemplo: Funcao 91 de McCarthy.

My = { 7= 10 sen > 100
—\ M(M(n+11)) sen < 100

M(99) M(M(110))
M(100)
M(M(111))
M(101)

91

Funcoes recursivas tém um papel fundamental em teoria da computacgao.

A funcao 91 de
- McCarthy € uma
= fungao recursiva
| que retorna 91
~ para todos os in-
teiros n < 100 e retorna n — 10
para n > 100. Essa fungao foi pro-
posta pelo cientista da computacao
John McCarthy, ganhador do ACM
Turing Award de 1971, responsavel
por cunhar o termo Inteligéncia Arti-
ficial.
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Funcao definida recursivamente (2)
Funcao de Ackermann

.  Matematico e légico ale-
- mao (1896—-1962), princi-

A(O,n) = n+1 )
=T pal formulador do desen-
A(m,0) = A(m—-1,1) & volvimento do sistema
L | l6gico conhecido como o
A(m,n) = A(m—1,A(m,n — 1)) célculo de epsilon, origi-
nalmente devido a David
Hilbert (1862—1943), que
A(1,2) = A(0,A(1,1)) se tornaria a base da légica de Bourbaki e
A(0, A0, A(1,0))) da teoria dos jogos.
A(0, A(0, A(0,1)))
A(0, A(0,2))
A(0,3)
= 4
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Funcao definida recursivamente (3)
Funcao de Ackermann

Essa funcao possui uma taxa de crescimento impressionante:

A(4,3) = A(3,20°°36 _ 3)

Funcao importante em Ciéncia da Computacao que esta relacionada com com-
putabilidade.

UFMG/ICEx/DCC PAA e Paradigmas de Projeto de Algoritmos 58



Funcao definida recursivamente (4)
Funcao de Ackermann

A funcao de Ackermann pode ser representada por uma tabela infinita.

(m,n) 0 1 2 3 4 A(m,n)
0 1 2 3 4 5 n—+1
1 2 3 4 5 6 n-—+ 2
2 3 5 7 9 11 2n + 3
3 5 13 29 61 125 8-2" -3
4 13 65533 265536 _ 3 | A(3,265536 _3) | A(3, A(4,3))
5 65533 | A(4,65533) | A(4,A(5,1)) | A(4,A(5,2)) | A4, A(5,3))
6 A(5,1) | A(5,A(5,1)) | A(5,A(6,1)) | A(5,A(6,2)) | A(5,A(6,3))

Os valores da funcao de Ackermann crescem muito rapidamente:

— A(4,2) é maior que o numero de particulas do universo elevado a poténcia
200.

— A(5,2) nado pode ser escrito como uma expansao decimal no universo fisico.

— Além da linha 4 e coluna 1, os valores s6 podem ser expressos usando a
propria notacao da funcao.
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Funcao recursiva que nao € bem definida

Seja a fungdo G : Z1 — Z. Para todos inteiros n > 1:

(

1 sen =1,
G(n) =1 1+ G(%) senépar,

| G(3n—1) senéimparen > 1.

A funcao G € bem definida? Nao!

G(1)

G(2) =
= GB)=1+4+GM4)=1+14+G(2))
= 1+(1+2)=4

G(4) =
— G(14) =14+ G(7) = 1 + G(20)
= 14 (14 G(10))

G(3)

G(5)

1
1+4G()=141=2

1+GR2)=1+42=3

1+ (1 +((1+G(5))) =3+G(5)
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Funcao recursiva que nao sabe se e bem definida

Seja a fungdo H : Z1T — Z. Para todos inteiros n > 1:

p

1 sen =1,
H(n)=4{ 1+ H(%) senépar,
H(3n+1) senéimparen > 1.

A funcao H é bem definida? Nao se sabe!

A funcdo é computavel para todos inteiros n, 1 < n < 109.
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Recur§iyidaple _
Comentarios finais

e Técnica bastante adequada para expressar algoritmos que sao definidos re-
cursivamente.

e No entanto, deve ser usada com muito cuidado.

e Na maior parte dos casos funciona como uma tecnica conceitual ao inves de
uma tecnica computacional.

e Algoritmos recursivos sao normalmente modelados por uma equagao de
recorréncia.

e Ao se fazer a analise de um algoritmo recursivo, deve-se também analisar o
crescimento da pilha.
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Algoritmos tentativa e erro (Backtracking)

e Tentativa e erro: decompor 0 processo em um nu-
mero finito de sub-tarefas parciais que devem ser ex-
ploradas exaustivamente.

e O processo de tentativa gradualmente constroi e per-
corre uma arvore de sub-tarefas.

e Algoritmos tentativa e erro nao seguem uma regra fixa
de computacao:
— Passos em direcao a solucao final sdo tentados e
registrados.
— Caso esses passos tomados nao levem a solucéao
final, eles podem ser retirados e apagados do re-
gistro.
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Algoritmos tentativa e erro (Backtracking)

e Quando a pesquisa na arvore de solucdes cresce rapidamente € necessario
usar algoritmos aproximados ou heuristicas que ndo garantem a solucao
Otima mas sao rapidas.

Algoritmos aproximados:

— Algoritmos usados normalmente para resolver problemas para os quais nao
se conhece uma solugao polinomial.

— Devem executar em tempo polinomial dentro de limites “provaveis” de qua-
lidade absoluta ou assintaotica.

Heuristica:

— Algoritmo que tem como objetivo fornecer solucdoes sem um limite formal de
qualidade, em geral avaliado empiricamente em termos de complexidade
(média) e qualidade das solucoes.

— E projetada para obter ganho computacional ou simplicidade conceitual,
possivelmente ao custo de precisao.
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Tentativa e erro: Passeio do cavalo

e Tabuleiro com n x n posicoes: cavalo se movimenta segundo regras do xadrez.

e Problema: partindo da posicao (xo, yo), encontrar, se existir, um passeio do cavalo que visita
todos os pontos do tabuleiro uma Unica vez.

Tenta um proximo movimento:

TENTA

1 Inicializa selecao de movimentos

2 repeat

3 Seleciona préximo candidato ao movimento

4 if aceitavel

5 then Registra movimento

6 if tabuleiro ndo esta cheio

7 then Tenta novo movimento

8 if ndo € bem sucedido

9 then Apaga registro anterior
10 until (movimento bem sucedido) Vv (acabaram-se candidatos ao movimento)
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Tentativa e erro: Passeio do cavalo

e O tabuleiro pode ser representado por uma matriz n x n.

e A situacao de cada posicao pode ser representada por um inteiro para recor-
dar o historico das ocupacoes:
— t[z,y] = 0, campo (x, y) ndo visitado;

— t[x, y] = i, campo (z, y) visitado no i-ésimo movimento, 1 < i < n?.
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Tentativa e erro: Passeio do cavalo
Regras do xadrez para o movimento do cavalo

2Esq e 1Baixo 1Esq e 2Baixo 1Dir e 2Baixo 2Dir e 1Baixo
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Implementacao do passeio do cavalo

PASSEIODOCAVALO(n)

> Pardmetro: n (tamanho do lado do tabuleiro)
> Variaveis auxiliares:

i,J > Contadores
t[1..n,1..n] > Tabuleirode n x n
q > Indica se achou uma solugao
S > Movimentos identificados por um n°
h[1..8],v[1..8] > Existem oito movimentos possiveis
1 s+—{1,2,3,4,5,6,7,8} > Conjunto de movimentos
2 h[1.8]«—[2,1,-1,-2,—2,—-1,1,2] > Movimentos na horizontal
3 v[1..8] «—[1,2,2,1,—-1,—-2,—2,—1] > Movimentos na vertical
4 fori— 1lton > Inicializa tabuleiro
5 doforj «— 1ton
6 do t[i, 5] — O
7 t[1,1] 1 > Escolhe uma casa inicial do tabuleiro
8 TENTA(2,1,1,q) > Tenta o passeio usando backtracking
9 ifg > Achou uma solucao?
10  then print Solucao
11 else print Nao ha solucao

UFMG/ICEX/DCC PAA e Paradigmas de Projeto de Algoritmos 68




Implementacao do passeio do cavalo

TENTA(%, 2, v, q)

1
2

3
4
)
6
7
8

9
10
11
12
13
14
15
16

> Parametros: i (i-€sima casa); x, y (posicao no tabuleiro); g (achou solucao?)
> Variaveis auxiliares: xn,yn, m, gl
m «— 0
repeat
m—m-+1
ql < false
xn «— x + h[m]
yn — y + v[m]
if (zn € s) A (yn € s)
then if t[zn,yn] = 0
then t[zn,yn] «— ¢
if i < n?
then TENTA(7 4+ 1, zn,yn, ql)
if —q1
then t[zn,yn] <— O
else q1 «— true
until g1 vV (m = 8)
q<—ql
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Algoritmos tentativa e erro (Backtracking)
Comentarios finais

e Técnica usada quando nao se sabe exatamente que caminho seguir para
encontrar uma solucao.

e Nao garante a solugao 6tima.
e Essa técnica pode ser vista ainda como uma variante da recursividade

e Ao se fazer a analise de um algoritmo que usa backtracking, deve-se também
analisar o crescimento do espaco de solugoes.
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Divisao e conquista (1)

e Consiste em dividir o problema em partes menores, encontrar solugdes para
essas partes (supostamente mais facil), e combina-las em uma solucao
global.

-» Geralmente leva a solucbes eficientes e elegantes, principalmente se
forem recursivas.

e Basicamente essa técnica consiste das seguintes fases (executadas nesta

ordem):

1. Divisao (particionamento) do problema original em sub-problemas simi-
lares ao original mas que sao menores em tamanho;

2. Resolucao de cada sub-problema sucessivamente e independentemente
(em geral de forma recursiva);

3. Combinacéao das solucoes individuais em uma solucao global para todo o
problema.

©)UFMG/ICEx/DCC PAA e Paradigmas de Projeto de Algoritmos 71




Divisao e conquista (2)

e Um algoritmo de “divisdo e conquista” é normalmente relacionado a uma
equacao de recorréncia que contém termos referentes ao préoprio problema.

T(n) = aT(3) + f(n),

onde a indica o numero de sub-problemas gerados, b 0 tamanho de cada um
deles e f(n) o custo para fazer a divisao.

e Paradigma bastante usado em Ciéncia da Computacdo em problemas

como:

— Ordenacao: Mergesort, Quicksort (Tecnicamente falando, o Quicksort poderia ser
chamado de um algoritmo conquista e divisao);

— Pesquisa: Pesquisa Binaria;

— Algoritmos aritméticos: multiplicacao de inteiros, multiplicacao de matrizes,
FFT (Fast Fourier Transform);

— Algoritmos geométricos: Convex Hull, Par mais préximo;
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Divisao e conquista: Exemplo 1
e Seja A um vetor de inteiros, A[1..n], n > 1 que nado esta ordenado.

e Pede-se:
— Determine o0 maior e o menor elementos desse vetor usando divisao e con-

quista;
— Determine o custo (nUmero de comparacoes) para achar esses dois ele-
mentos supondo que A possui n elementos.
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Divisao e conquista: Exemplo 1

Cada chamada de MaxMin4 atribui as variaveis Max e Min o maior € 0 menor
elementos em A[Linf]. . A[Lsup].

MAXMIN4(Linf, Lsup, Max, Min)
> Variaveis auxiliares: Max1, Max2, Min1, Min2, Meio

1 if (Lsup — Linf) <1 > Condi¢ao da parada recursiva
2 thenif A[Linf] < A[Lsup]
3 then Max «— A[Lsup]
4 Min «— A[Linf]
5 else Max «— A[Linf]
6 Min < A[Lsup]
7  else Meio LM’J > Acha o menor e maior elementos de cada particao
8 MAXMIN4(Linf, Meio, Max1, Min1)
9 MAXMIN4(Meio+1, Lsup, Max2, Min2)
10 if Max1 > Max2
11 then Max — Max1
12 else Max — Max2
13 if Min1 < Min2
14 then Min <— Mint
15 else Min — Min2
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Divisao e conquista: Exemplo 1 (Analise)

Seja f(n) o numero de comparacoes entre os elementos de A, que possui n
elementos.

f(n) =1, paran < 2,
f(n) = f(In/2]) + f(In/2]) + 2, paran > 2.

Quando n = 2! para algum inteiro positivo i, temos que:

fn) =2f(3) +2
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Divisao e conquista: Exemplo 1 (Analise)

Resolvendo esta equacio de recorréncia (em funcdo de n e i), temos:

f(n) = 2f(2)+2 f(2) = 2721 +2
2f(3) = 22f(2)+22 2f(271) = 22f(2%) 4 22
22f(2) = 2f(3)+2° 22f(272) = 23f(27%) 423
22’—3]0(% 21’—2]0(#) _|_ 2i—2 22’—3]0(23) 2i—2f(22) + 22’—2
22 f (5% 27 f (o) + 2 272 f(22) 27 f(2h) + 21

271 f(2) £ 271
2i—1 _|_2i—1

271 f(2) 2071
21’—1 _I_ 22’—1

Fazendo a expansao desta equacao temos:

2i—2f(22) 22’—1 _I_ 2@'—1
2i—3f(23) 2@'—1 _|_ 2i—1 + 2i—2

22f(2i—2) + 22 22’—1 + 2i—1 + 2i—2 + . _I_ 23

2f(2 Y +2 = 2t 42l o2 423422
f(2) = 27142t 0m2 4 42342240
— 2i—1_|_27]5€—=112k:2i—1_|_2i_2
f(n) = g—|-n—2=32—”—2.

Logo, f(n) = 3n/2 — 2 para o melhor caso, pior caso e caso médio.
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Divisao e conquista: Exemplo 1 (Analise)

e Conforme mostrado anteriormente, o algoritmo apresentado neste exemplo é
otimo.

e Entretanto, ele pode ser pior do que os ja apresentados, pois, a cada
chamada recursiva, salva Linf, Lsup, Max e Min, além do endereco de re-
torno da chamada para o procedimento.

e Além disso, uma comparacao adicional é necessaria a cada chamada recur-
siva para verificar se Lsup — Linf < 1 (condicao de parada).

e O valorde n 4+ 1 deve ser menor do que a metade do maior inteiro que pode
ser representado pelo compilador, para nao provocar overflow na operacao
Linf 4+ Lsup.
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Divisao e conquista: Exemplo 2

e Motivacao:
— Uma das partes mais importantes da unidade aritmética de um computador
€ 0 circuito que soma dois numeros.

e Pede-se:
— “Projete” um circuito para somar dois numeros sem sinal usando divisao e
conquista
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Divisao e conquista: Exemplo 2
Possivel solucao

e Estratégia para construir um somador de n bits:

— Usar n somadores de 1-Dbit.

— Nesse caso, o0 atraso (medido pelo caminho mais longo entre a entrada e
saida em termos do numero de portas logicas) € 3n se for usado o Ripple-
carry Adder.

— Exemplo: n = 32 = Atraso = 96.

e Usando a estratégia de divisao e conquista o atraso pode ser menor.
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Divisao e conquista: Exemplo 2
Verificando a viabilidade da estrategia DeC

e Dividir os n bits em dois grupos:
1 W vt Tnf2 Ynjz
metade da esquerda e metade da | |

Lnj241 Ynf241 "

carry

—

direita. left-half

adder

e Somar cada metade usando cir- ‘
cuitos somadores idénticos da & &
metade do tamanho do problema
original.

e Questdo: A adicao da metade da
esquerda pode comecar antes de
terminar a adicao da metade da
direita?

-» Nessa estratégia nao.

Tn Yn

right-half
adder

Znf2

—

Znja+l Fnf242 7

Zn
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Divisao e conquista: Exemplo 2
Verificando a viabilidade da estrategia DeC

e Como comecar a computacao da esquerda sem conhecer o bit de “vai um” da
metade da direita?

e Estratégia:
— Compute duas somas para a metade da esquerda:
(a) uma considerando que “vem um” da metade da direita;
(b) e a outra considerando que nao.

— Uma vez finalizada as somas das duas metades, € possivel dizer qual das
duas somas da metade da esquerda deve ser utilizada.
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Divisao e conquista: Exemplo 2
Estrategia

Sejam as seguintes variaveis para um somador de n bits:

x1, o, ..., Tn € Y1, Y2, ..., Yn aS entradas representando os dois numeros
de n bits a serem somados.

s1, o, ..., Sp @ soma de n bits (excluindo o bit de “vai um” mais a esquerda)
e considerando que nao “veio um” para o bit mais a direita.

t1, to, ..., tn, @ soma de n bits (excluindo o bit de “vai um” mais a esquerda)
e considerando que “veio um” para o bit mais a direita.

p, bit propagacao de “vai um”, que é um 1 se o resultado da soma gera um
“vai um” mais a esquerda, assumindo que “veio um” no bit mais a direita.

g, bit gera “vai um”, que é 1 se “vai um” mais a esquerda considerando apenas
a soma dos n bits, ou seja, independente se “veio um” no bit mais a direita.

Observe que:

g — p,ouseja,seg=1entaop = 1.
No entanto, se g = 0 entao ainda podemos ter p = 1.

@.‘UFMG/ICEX/DCC PAA e Paradigmas de Projeto de Algoritmos 82



Divisao e conquista: Exemplo 2
Calculando os valores desses bits

Duas somas sao computadas para a metade da esquerda:

r1 I Tn
T Y1 Yo Yn
Bits|ple|g|«— S1 $o Sn
r1 X9 Tn

+ Y1 Y2 Yn
Bits|ple|g|«— t1 to tn

 ndo veio um

/ veio um
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~ Divisao e conquista: Exemplo 2
Examinando os valores desses bits quando n = 1

— x € y: entradas a serem somados.

— s: soma de um bit p/ 0 caso de nao “veio um”.

— t: soma de um bit p/ o caso de “veio um”.

— p: bit de propagacgao de “vai um”, que é um 1 se o
resultado da soma gera um “vai um”, p/ o caso de
“veio um”.

— g: bit de “vai um”, que é 1 se “vai um” con-
siderando apenas a soma dos n bits.

t
1
0
0
1

- =1 OO 8
O = 0|
O| == 10O| W

p
0
1
1
1

- OO Ok

Expressdes correspondentes:
e s=xy+ Ty
— A soma s s6 € 1 quando apenas uma das entradas é 1.
e t=zxy+7zTy
— Assumindo que vem 1, a soma t s sera 1 quando as duas entradas forem
idénticas.
e p=2x+y
— Assumindo que veio 1, também irda 1 quando uma das entradas ou ambas
forem 1.
® g—=uxy
— O bit de vai 1 s0 sera 1 quando as duas entradas forem 1.
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Divisao e conquista: Exemplo 2
Somador paraocason = 1

€L Y

1 i

v V 1-adder

gp st

oW ROy

Modelagem:

S | I
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Divisao e conquista: Exemplo 2
Ideia para aplicar DeC

|déia:

— Construir um somador de 2n
bits usando dois somadores de
n bits.

Computar os bits:

— propagacao de “vaium” (p), e
— gera “vaium’ (g)

para o somador de 2n bits.

Ajustar a metade da esquerda
dos bits s e t para levar em con-
sideracao se ha um “vai um” para
a metade da esquerda vindo da
metade da direita.

e Circuito que implementa a idéia:

o1 L Wn Tl Madgd g Tan
n-adder ( n-adder

' L 'y R i I
CIT P i p a1

Ve ..n_._,'-ﬂl'!' 'tﬂ

FIX

N |

i Ia 59 |[1 Ea Fa fn Sned r‘ﬂ+1 San  tan

@) UFMG/ICEX/DCC
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Divisao e conquista: Exemplo 2
Calculo de p

Suponha que ha um “veio um” para o cir-
cuito de 2n bits (extrema direita). Havera
um “vai um” (extrema esquerda), represen-
tado pelo bit de propagacao p = 1, se:

— A metade da esquerda gera um “vai um”,
ou seja, g%, ja que g — p”.

— As duas metades do somador propagam
o “vai um”, ou seja, p“p’. Esta ex-
presséao inclui o caso tcbluep”g’. Como
g'" — p", temos que (p"p" + ptg’) =
p"p".

=» A expressao para p, bit de propagacao
de “vai um”, é:

p=g"+p"p"

51

yl e

L R A | Ly

yfﬂ

fi-adder

fr-adder

p=1

extrema

direita

&1

FIX

|5 h

tu_

a1 b1

Rog R

Son

L3
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Divisao e conquista: Exemplo 2

Calculo de g

Suponha que nédo ha um “veio um” para o
circuito de 2n bits (extrema direita). Havera
um “vai um” (extrema esquerda), ou seja, o @ om Tn Y
bit de gera “vai um” g vale 1 se: ||

— A metade da esquerda gera um “vai um”,

|7 f-adder )

p=0
extrema
Tl Wntl Lan Yan direita

ou seja, g”.
— A metade da direita gera um “vai um” e g PP st #tes B gt
a metade da esquerda propaga esse bit, \ |

ou seja, plg™. | "

=» A expressao para g, bit gera “vai um”, é:

g=g"+p"g"

B

Sn tn Suprfegr Sen fog
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Divisao e conquista: Exemplo 2
Calculo dos bits s e ¢t da direita

e (Calculando os bits

Sn4+1s Sn42s5 - - -3 S2n Lo En Yn Tt L Yt Tzn Wan
e . |
tnt+1, tpt2s - - o5 ton
n-adder n-adder
e Bits da direita ndo sdo modificados. As- i
sim, ; |
__ R A I e L i e D - Ll
I
__ 4R ki
. FIX
para: =1,2,...,n.
Observacao: num somador de 2n bits, | E ; :: ,
7 ~ . ‘e , . i i 5 {2 8 o i e i"-n_
as saidas sao identificadas pelos indices : bt ingl  Szn o ta

1,2,...,2n numerados a partir da es-
querda. Logo, os indices n + 1,n +
2,...,2n correspondem a metade da di-
reita.
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Divisao e conquista: Exemplo 2
Calculo dos bits s da esquerda

e Suponha que ndo ha um “veio um” (ex-

trema direita) para o circuito de 2n bits. £l
EXIMEMma
#1w Ty Un T L oL Lar, Win direita
e Neste caso, o “vai um” para a metade ‘
da esquerda, se existir, foi gerado pela .
metade da direita. Assim, se: Ac e
- gi=1=s =1 ] |
_ gR — O — s; = S,L-L g.", pE. .-31L tlL---aﬂL tﬂL FR pﬁ' -‘hR t R._‘Sﬂ_r.: .ﬁﬂ_rc
Ll b
e A expressdo para s; é: | =
_ L-R L R
si=s;'g +1l'g | ]
para ,I: = 1, 2, .« e ,n. i iy 5] £y YirE S b, 5|;.|.j_t-ﬂ+]_ Hop o Tug
N vy
T
Bits 5 da esquerda
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Divisao e conquista: Exemplo 2
Calculo dos bits ¢ da esquerda

e Suponha que hid um “veio um” (extrema

direita) para o circuito de 2n bits. p=1

extrema
| Tn  Wr T L Mol Lzn Wi direita

e Neste caso, devemos analisar o bit de

propagacao p. Assim, se: ‘
R I n-adder n-adder -+
g~ # g pfF a® e gt

|
l
L L SlL tlL"" L f-ﬂ_L R I

e A expressio parat; é:
= kPt e
parai =1,2,...,n.

i iy 51 £y HrE S|t 1Sagpitndl Son Tun

—-.Y.-—
Bits ¢ da esquerda
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Divisao e conquista: Exemplo 2
Expressoes a serem calculadas pelo FIX

O médulo F1x deve calcular as seguintes Essas expressoes podem ser calculadas por cir-

expressoes: cuitos de no maximo trés niveis. O exemplo
abaixo é para t;:
- L L,R i
p = g +pp
g = g+ plgt b ot e
_  JL=R L R C l
si = s’ +t’g, 1=1,2,...,n | .
_  JL=R L_R . |
ti = s;’p +t;/pT, 1=1,2,...,n v
I
w1 Ty Wn Tpl Ml Lzn Wan
n-adder ne-adder k‘/
| |
A . S AL TR R A
| |
| 2
FIX
i M 51 fy Sn tn Supifepr 8mn fan
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Divisao e conquista: Exemplo 2
Somador para n = 4 (Caso genérico)

r1 T2 Y2 T3 Y3 T4 Ya

L Y L Y L Y L Y

1-adder 1-adder 1-adder 1-adder

gp st gp st gp st gp st

FIX FIX

g p s1t1 s2to g p s1t1 so to

FIX

gp s1t1 sa2t2 S$3 t3 S4 tg
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Divisao e conquista: Exemplo 2
Somador para n = 4 (Caso especifico)

r1 Y1 T2 Yo T3 Y3 Ta  Ya
0 |1 1|1 1 10 1|1
| | | | | | | |

x Yy 44 Yy 4y Yy 44 Yy

1-adder 1-adder 1-adder 1-adder

gp st gp st gpst gp st
0[1(1/0 |1[1]0]1 0[1(1/0 |1[1]0]1

FIX FIX
1] 1 0|0 11 00|01
g p s1t1 822 g p s1t1 8o to
11 00|01 111 0 0
FIX
111 0 1 0 0
gp S1 52 S3 S4
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Divisao e conquista: Exemplo 2
Calculo do atraso usando DeC

( D(1) = 3
Atraso: ¢ D(2n) = D(n)+ 3
| D(n) = 3(1+logn)= 0O(logn)

Para um somador de 32 bits:
— Divisao e conquista: 3(1 +logn) = 3(1 4+ log32) = 18
— Ripple-carry: 3n = 96

UFMG/ICEx/DCC PAA e Paradigmas de Projeto de Algoritmos

95



Divisao e conquista: Exemplo 2
Comentarios sobre este exemplo

e Solucao usando divisao e conquista (DeC):
— Atraso: O(logn)
— N@ de portas: O(nlogn)

e Solucao Ripple-Carry Adder:
— Atraso: O(n)
— N@ de portas: O(n)

e A solucao DeC apresenta um exemplo onde o aumento do espaco (neste
caso portas) possibilita uma diminuicao no atraso (tempo, neste caso), ou
seja, existe um compromisso TEMPO x ESPACO.

e A solucao apresentada € um exemplo “nao tradicional” da técnica DeC ja
gque o sub-problema da esquerda deve gerar duas solucdes, uma vez que
seu valor depende da solucao do sub-problema da direita, ou seja, 0os sub-
problemas nao sao independentes.
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Divisao-e-conquista:
Alguns comentarios

e Este paradigma nao € aplicado apenas a problemas recursivos.

e Existem pelo menos trés cenarios onde divisao e conquista é aplicado:
1. Processar independentemente partes do conjunto de dados.
— Exemplo: Mergesort.

2. Eliminar partes do conjunto de dados a serem examinados.
— Exemplo: Pesquisa binaria.

3. Processar separadamente partes do conjunto de dados mas onde a solu-
cao de uma parte influencia no resultado da outra.
— Exemplo: Somador apresentado.
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Balanceamento

e No projeto de algoritmos, € importante procurar sempre manter o balancea-
mento na sub-divisdo de um problema em partes menores.

e Divisao e conquista nao € a unica técnica em que balanceamento € util.

e Considere o seguinte exemplo de ordenacao:

EXEMPLO_DE_ORDENAGAO(n)

1 fori=1..n—1do
2 Selecione o menor elemento de A[i..n] e troque-o com o elemento A[i].

— Inicialmente o menor elemento de A[1..n] é trocado com o elemento A[1].

— O processo € repetido para as sequéncias n — 1, n — 2, ..., 2, cOM 0S
n—1,n—2,..., 2 elementos, respectivamente, sendo que em cada passo
0 menor elemento é trocado com o elemento Ali].
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Balanceamento: Analise do exemplo

O algoritmo leva a equacgao de recorréncia:

T(n) Tn—1)4+n-1
T(1) = 0

para o numero de comparagdoes entre elementos.

Substituindo:

T(n)
T(n—1)

Tn—1)4+n-1
T(n—2)4+n—2

T(2) = T(1)+1
e adicionando lado a lado, obtemos:

n(n — 1)‘

T(n)=T1Q)+14+2+ - +n—-1= 2

Logo, o algoritmo é O(n?2).
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Balanceamento: Analise do exemplo

e Embora o algoritmo possa ser visto como uma aplicagao recursiva de divisao
e conquista, ele nao ¢é eficiente para valores grandes de n.

e Para obter eficiéncia assintdtica € necessario fazer um balanceamento:
— Dividir o problema original em dois sub-problemas de tamanhos aproxi-
madamente iguais, ao invés de um de tamanho 1 e o outro de tamanho

n—1.

e Comentario:

— A andlise da equagao de recorréncia nos mostra a razao do comportamento
quadratico desse algoritmo.

— E essa equagao também que “sugere” como o algoritmo pode ter um de-
sempenho bem melhor, se um balanceamento for usado.
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Exemplo de balanceamento: Mergesort

Intercalacao:
— Unir dois arquivos ordenados gerando um terceiro arquivo ordenado
(merge).

Colocar no terceiro arquivo o menor elemento entre os menores dos dois
arquivos iniciais, desconsiderando este mesmo elemento nos passos posteri-
ores.

e Este processo deve ser repetido até que todos os elementos dos arquivos de
entrada sejam escolhidos.
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Algoritmo de ordenacao: Mergesort

1. Divida recursivamente o vetor a ser ordenado em dois, até obter n vetores
de um unico elemento.

2. Aplique a intercalacao tendo como entrada dois vetores de um elemento,
formando um vetor ordenado de dois elementos.

3. Repita este processo formando vetores ordenados cada vez maiores ate
que todo o vetor esteja ordenado.
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Exemplo de balanceamento:
Implementacao do Mergesort

MERGESORT(A, 7, 5)

> Parametros: A (vetor); i, 5 (limites inferior e superior da parti¢cao)
> Variavel auxiliar: m (meio da particao)

1 ifi<y

2 thenm «— L@J

3 MERGESORT(A, i, m)

4 MERGESORT(A,m + 1,5)
5 MERGE(A, 7, m, j)

Considere n como sendo uma poténcia de 2.

Merge(A, i, m, 7) recebe duas seqliéncias ordenadas A[i.m] e A[(m + 1)..j] e produz uma
outra seqliiéncia ordenada dos elementos de A[i..m] e A[m 4+ 1..5].

Como A[i..m] e A[m + 1..j] estdo ordenados, Merge requer no maximo n — 1 comparagoes.

Merge seleciona repetidamente o menor dentre 0os menores elementos restantes em A[i..m] e

A[m 4+ 1..j]. Caso empate, retira de qualquer uma delas.
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Analise do Mergesort

Na contagem de comparacoes, o comportamento do Mergesort pode ser repre-
sentado por:

T(n)
T(1)

0.

No caso dessa equacao de recorréncia sabemos que o custo € (veja a resolucao
desta equacao na parte de inducao ou usando o Teorema Mestre):

T(n) =nlogn —n-+ 1.

Logo, o algoritmo € O(nlogn).
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Balanceamento:
Alguns comentarios

e Para o problema de ordenagao, o balanceamento levou a um resultado muito
superior:
— O custo passou de O(n?) para O(nlogn).

e Balanceamento € uma técnica presente em diferentes aspectos algoritmicos
de Ciéncia da Computagcao como Sistemas Operacionais.

e Também € uma técnica importante quando o modelo computacional usado é
o PRAM (Parallel Random Access Machine).
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Programacao dinamica

e Programacao nao esta relacionado com um programa de computador.
— A palavra esta relacionada com um método de solucado baseado em tabela.

e Programacao dinamica (PD) x Divisao-e-conquista (DeC):
— DeC quebra o problema em sub-problemas menores.
— PD resolve todos os sub-problemas menores mas somente reusa as

solucbes Gtimas.
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Programacao dinamica

e Quando
)~ Tamanhos dos sub-problemas = O(n)
é provavel que o algoritmo recursivo tenha complexidade polinomial.

e Quando a divisdo de um problema de tamanho n resulta em

n Sub-problemas X Tamanhon — 1 cada um

é provavel que o algoritmo recursivo tenha complexidade exponencial.

e Nesse caso, a técnica de programacao dinamica pode levar a um algoritmo
mais eficiente.

e A programacao dinamica calcula a solugao para todos os sub-problemas,
partindo dos sub-problemas menores para os maiores, armazenando 0S re-
sultados em uma tabela.

e A vantagem é que uma vez que um sub-problema é resolvido, a resposta &
armazenada em uma tabela e nunca mais € recalculado.
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Programacao dinamica:
Produto de n matrizes

.Seja
M = My X Mo X --- X Mp,

onde M; é uma matriz com d;_q linhas e d; colunas, 2 < i < n.

=» |sto server para dizer apenas que a matriz M,; possui uma quantidade de
linhas igual a quantidade de colunas de M;_1 (d;—1) € uma quantidade de
colunas dada por d;.

e A ordem da multiplicagao pode ter um efeito enorme no nimero total de ope-
racoes de adicdo e multiplicacao necessarias para obter M.

e Considere o produto de uma matriz p x q por outra matriz ¢ x r cujo algoritmo
requer O(pgqr) operacoes.
e Considere o produto

M = M{[10,20] x M»>[20,50] x M3[50, 1] x My[1,100],
onde as dimensOes de cada matriz aparecem entre colchetes.
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Programacao dinamica:
Produto de n matrizes
Sejam duas possiveis ordens de avaliacao dessa multiplicagao:
M = M;[10,20] x M»[20,50] x M3[50,1] x Mas[1,100],

M = My x (Mp x (M3 x My)) M = (M1 x (M x M3)) x My
\_V_J \ﬂ_.}

50 x 1 x 100 = 5000 operacdes 20 x 50 x 1 = 1000 operacdes

M = M1 x (Mo x Mg), sendo M4[50, 100] M = (M1 x Mg) x My, sendo M,[20,1]
_Y_I

\ﬂ_/

20 x 50 x 100 = 100000 operacdes 10 x 20 x 1 = 200 operacdes

M = My x My, sendo M[20, 100] M = My x My, sendo M[10, 1]
— e
10 x 20 x 100 = 20000 operacdes 10 x 1 x 100 = 1000 operacdes
Total = 125000 operacdes Total = 2200 operacdes

e Tentar todas as ordens possiveis para minimizar o niumero de operacgoes f(n) é exponencial
em n, onde f(n) > 272,

e Usando programacéo dindmica é possivel obter um algoritmo O(n3).
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Programacao dinamica:
Produto de n matrizes

Seja m;; 0 menor custo para computar

M; x Mjq X ---x M;, paral <i<j<n.

Neste caso,

_[o se i = j,
K Min;<j«; (myp + my1 5 + di—1did;), sej >

— m,y, representa o custo minimo para calcular M’ = M; x M;4q X -+ X M.

— my41_; representa o custo minimo para calcular M"” = Mj, 1 x My 4o X

— d;_1dyd; representa o custo de multiplicar M'[d;_1, dj] por M"[dy, d;].

— m;j, j > 1 representa o custo minimo de todos os valores possiveis de k
entre 1 € 7 — 1, da soma dos trés termos.
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Programacao dinamica: Exemplo

e A solugao usando programagao dinamica calcula os valores de m;; na ordem
crescente das diferencas nos subscritos.

e O calculo inicia com m;; para todo i, depois m; ;41 para todo , depois
m; ;4-2, € assim sucessivamente.

e Desta forma, os valores m;; € m; 1 ; estarao disponiveis no momento de
calcular m;;.

e [sto acontece porque 5 — i tem que ser estritamente maior do que ambos 0s
valoresde k —ie j — (k+ 1) se k estiver no intervalo i < k < j.
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Programacao dinamica: Implementacao

AVALIAMULTMATRIZES(n, d[0. .n])

> Parametro: n (N2 de matrizes); d[0. .n] (dimensdes das matrizes)
> Constante e variaveis auxiliares:
MaxInt = maior inteiro
t, 7, k, h,mn, temp
m([l..n,1..n]
1 fori«— 1ton
2 do m[i,i] < O
3 forh—1ton—1
4 dofor: — 1ton—~h
3 doj«—i+4+h
6 mli, j] < Maxint
7 fork — itoj —1do
8 temp «— mli, k] +m[k + 1, 5] 4+ d[i — 1] x d[k] x d[j]
9 if temp < m[i, j]
0 then m[i, j] < temp
)

1
11 printm

=> A execucdo de AVALIAMULTMATRIZES obtém o custo minimo para multiplicar as n matrizes,
assumindo que sao necessarias pqr operagoes para multiplicar uma matriz p x g por outra
matriz g x r.
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Programacao dinamica: Implementacao

A multiplicacao de

M = M[10,20] x M>[20,50] x M3[50, 1] x My[1, 100],

sendo

d| 10 | 20 | 50 1 1100

0 1 2 3 4
produz como resultado
m11 =0 mo2 = 0 m33 =0 maq =
m1o = 10.000 mo3 = 1.000 m34 = 5.000
My x M> Mo x M3 M3 X My
mi13 = 1.200 mogq — 3.000
M; X (MQ X M3) (M2 X Mg) X My
mi4 = 2.200
(M1 X (MQ X M3)) X My
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Programacao dinamica: Principio da otimalidade

e A ordem de multiplicacao pode ser obtida registrando o valor de k£ para cada
entrada da tabela que resultou no minimo.

e Essa solucéo eficiente estd baseada no principio da otimalidade:
— Em uma seqiéncia 6tima de escolhas ou de decisdes cada sub-sequéncia
deve também ser otima.

o Cada sub-sequéncia representa o custo minimo, assim como my;, j > i.

e Assim, todos os valores da tabela representam escolhas otimas.
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Aplicacao do principio da otimalidade
e O principio da otimalidade nao pode ser aplicado indiscriminadamente.

e Se 0 principio nao se aplica € provavel que nao se possa resolver o problema

com sucesso por meio de programacao dinamica.
— Quando, por exemplo, o problema utiliza recursos limitados e o total de re-

cursos usados nas sub-instancias € maior do que 0s recursos disponiveis.

e Exemplo do principio da otimalidade: suponha que o caminho mais curto

entre Belo Horizonte e Curitiba passa por Campinas. Logo,
— 0 caminho entre BH e Campinas também é o mais curto possivel;

— como também é o caminho entre Campinas e Curitiba;
=» Logo, o principio da otimalidade se aplica.
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Nao aplicacao do principio da otimalidade

Seja o problema de encontrar o caminho mais longo entre duas cidades. Temos
que:

— Um caminho simples nunca visita uma mesma cidade duas vezes.

— Se o0 caminho mais longo entre Belo Horizonte e Curitiba passa por Campi-
nas, isso nao significa que o caminho possa ser obtido tomando o caminho
simples mais longo entre Belo Horizonte e Campinas e depois 0 caminho
simples mais longo entre Campinas e Curitiba.
=> Observe que o caminho simples mais longo entre BH e Campinas pode

passar por Curitiba!

— Quando os dois caminhos simples sao agrupados nao existe uma garantia
gue o caminho resultante também seja simples.

— Logo, o principio da otimalidade nao se aplica.
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Quando aplicar PD?

e Problema computacional deve ter uma formulacao recursiva.

e Nao deve haver ciclos na formulagao (usualmente o problema deve ser re-
duzido a problemas menores).

e NuUmero total de instancias do problema a ser resolvido deve ser pequeno (n).
e Tempo de execucdo € O(n) x tempo para resolver a recursao.

e PD apresenta sub-estrutura 6tima:
— Solucao 6tima para o problema contém solugdes oOtimas para os sub-
problemas.

e Sobreposicao de sub-problemas:
— Numero total de sub-problemas distintos é pequeno comparado com o
tempo de execucao recursivo.
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Algoritmos gulosos

e Aplicado a problemas de otimizacao.

e Seja 0 algoritmo para encontrar o caminho mais curto entre dois vértices de
um grafo:
— Escolhe a aresta que parece mais promissora em qualquer instante.

e Assim,
=?» independente do que possa acontecer mais tarde, nunca reconsidera a
decisao.
=» nao necessita avaliar alternativas, ou usar procedimentos sofisticados
para desfazer decisOes tomadas previamente.

UFMG/ICEX/DCC PAA e Paradigmas de Projeto de Algoritmos 118



Caracteristicas dos algoritmos gulosos
Problema geral

e Dado um conjunto C', determine um sub-conjunto S C C tal que:
— S satisfaz uma dada propriedade P, e
— S € minimo (ou maximo) em relacao a algum critério «.

e O algoritmo guloso para resolver o problema geral consiste em um processo
iterativo em que S € construido adicionando-se ao mesmo elementos de C

um a um.
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Caracteristicas dos algoritmos gulosos
e Para construir a solucao 6tima existe um conjunto ou lista de candidatos.

e S3ao0 acumulados um conjunto de candidatos considerados e escolhidos, e 0
outro de candidatos considerados e rejeitados.

e Existe uma funcao que verifica se um conjunto particular de candidatos pro-
duz uma solucao (sem considerar otimalidade no momento).

e Outra funcao verifica se um conjunto de candidatos € viavel (também sem
preocupar com a otimalidade).

e Uma funcao de selecao indica a qualquer momento quais dos candidatos
restantes € o mais promissor.

e Uma funcao objetivo fornece o valor da solugcao encontrada, como o compri-
mento do caminho construido (n&o aparece de forma explicita no algoritmo
guloso).
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Estratégia do algoritmo guloso

GuLoso(C) > C' é o conjunto de candidatos
1 S0 > S contém conjunto solugao, inicialmente vazio
2 while (C #= 0 A —=Solugcdo(S)) > 3 candidatos e ndo achou uma solugcao?
3 do x «— Seleciona(C) > Seleciona o préximo candidato
4 C—C—x > Remove esse candidato do conjunto C
5 if Viavel(S + x) > A solugao é viavel?
6 then S — S + z; > Sim, incorpora o candidato a solucéo
7 if Solucdo(S) > Obteve uma solucéo?
8 thenreturn(S) > Sim, retorna a solucao
9 elsereturn(0) > Nao!

— Inicialmente, o conjunto S de candidatos escolhidos esta vazio (linha 1).

— A cada passo, testa se 0 aumento de S constitui uma solucao e ainda existem candidatos a
serem avaliados (condicao linha 2).

— O melhor candidato restante ainda nao tentado é considerado e removido de C (linhas 3 e
4). O critério de escolha é ditado pela funcao de selecao (linha 3).

— Se o conjunto aumentado de candidatos se torna viavel, o candidato € adicionado ao conjunto
S de candidatos escolhidos. Caso contrario ;e rejeitado (linhas 5 e 6).

— Ao final do processo, testa se ha uma solucgao (linha 7) que é retornada (linha 8) ou nao (linha
9).
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Caracteristicas da implementacao de algoritmos
gulosos

e Quando funciona corretamente, a primeira solugao encontrada € sempre
6tima.

e A funcao de selecao € geralmente relacionada com a fungao objetivo.

e Se 0 objetivo é:

— Maximizar = provavelmente escolhera o candidato restante que propor-
cione o0 maior ganho individual.

— Minimizar = entao sera escolhido o candidato restante de menor custo.

e O algoritmo nunca muda de idéia:

— Um candidato escolhido e adicionado a solucao passa a fazer parte dessa
solucao permanentemente.

— Um candidato excluido do conjunto solucdo, nao é mais reconsiderado.
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Arvore geradora minima

e Definicdo: Uma arvore geradora de um grafo G = (V, E') é um subgrafo de
(G que é uma arvore e contém todos os vértices de GG. Num grafo com pesos,
0 peso de um subgrafo € a soma dos pesos das arestas deste subgrafo. Uma
arvore geradora minima para um grafo com pesos € uma arvore geradora
com peso minimo.

e Problema: Determinar a arvore geradora minima (em inglés, minimum span-
ning tree), de um grafo com pesos.

e AplicagOes: Determinar a maneira mais barata de se conectar um conjunto de
terminais, sejam eles cidades, terminais elétricos, computadores, ou fabricas,
usando-se, por exemplo, estradas, fios, ou linhas de comunicacao
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Arvore geradora minima:
Solucoes

O exemplo abaixo mostra que um grafo pode ter mais de uma arvore geradora
minima.
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Grafo conexo

e Um grafo € conexo se, para cada par de vértices v e w, existir um caminho
de v para w.

e Observacoes:
— Se G nao for conexo ele ndo possui nenhuma arvore geradora, muito

menos uma que seja minima.
— Neste caso ele teria uma floresta geradora.
e Para simplificar a apresentacdo do algoritmo para arvore geradora minima,

vamos assumir que G é conexo. E facil estender o algoritmo (e sua justifica-
tiva) para determinar uma floresta de arvores geradoras minimas.
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Arvore geradora minima
Algoritmo de Dijkstra—Prim (1959/57)

O algoritmo de Dijkstra—Prim comeca selecionando um vértice arbitrario, e de-
pois “aumenta” a arvore construida até entao escolhendo um novo vertice (e
um nova aresta) a cada iteracao. Durante a execucao do algoritmo, podemos
imaginar os vértices divididos em trés categorias:

1. Vértices da arvore: aqueles que fazem parte da arvore construida até en-
tao;

2. Vertices da borda: nao estao na arvore, mas sao adjacentes a algum vértice
da arvore;

3. Veértices nao-vistos: todos os outros.
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Arvore geradora minima
Algoritmo de Dijkstra—Prim

O principal passo do algoritmo € a selecao de um vértice da borda e de uma
aresta incidente a este vertice. O algoritmo de Dijkstra—Prim sempre escolhe
uma aresta entre um vértice da arvore e um vértice da borda que tenha peso
minimo. A estrutura geral do algoritmo pode ser descrita do seguinte modo:

DIJKSTRA-PRIM(Grafo)

1 Seleciona um vértice arbitrario para inicializar a arvore;
2 while existem vértices da borda

3 do Seleciona uma aresta de peso minimo entre um vértice da arvore e um vértice da
borda;
4 Adiciona a aresta selecionada e o vértice da borda a arvore;
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Algoritmo de
Dijkstra—Prim

e |déia basica:

— Tomando como vértice ini-
cial A, crie uma fila de priori-
dades classificada pelos pe-
sos das arestas conectando
A.

— Repita o processo até que
todos os vértices tenham
sido visitados.

1)
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Principio da técnica de algoritmos gulosos

e A cada passo faca a melhor escolha:
— Escolha local é 6tima.

e Objetivo:
=» A solucéo final ser 6tima também.

e Sempre funciona?
— Nao. Por exemplo, 0—1 Knapsack Problem.

e Propriedades de problemas que, em geral, levam ao uso da estratégia gu-
losa:
— Propriedade da escolha gulosa.
— Sub-estrutura 6tima.
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Propriedade da escolha gulosa

e Solucao global 6tima pode ser obtida a partir de escolhas locais 6timas.
e Estratégia diferente de programacao dinamica (PD).

e Uma vez feita a escolha, resolve o problema a partir do “estado” em que se
encontra.

e Escolha na técnica gulosa depende s6 do que foi feito e nao do que sera feito
no futuro.

e Progride na forma top-down:
— Através de iteracOes vai “transformando” uma instancia do problema em
uma outra menor.
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Propriedade da escolha gulosa

e Estratégia da prova que a escolha gulosa leva a uma solucao global 6tima:

— Examine a solucao global 6tima.

— Mostre que a solucao pode ser modificada de tal forma que uma escolha
gulosa pode ser aplicada como primeiro passo.

— Mostre que essa escolha reduz o problema a um similar mas menor.

— Aplique inducao para mostrar que uma escolha gulosa pode ser aplicada a
cada passo.

(@UFMG/ICEX/DCC PAA e Paradigmas de Projeto de Algoritmos 131




Sub-estrutura otima

e Um problema exibe sub-estrutura 6tima se uma solucdo étima para o pro-
blema é formada por solugdes otimas para os sub-problemas.

e Técnicas de escolha gulosa e programacao dinamica possuem essa carac-
teristica.
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Técnica gulosa vs.
Programacao dinamica

e Possuem sub-estrutura 6tima.

e Programacao dinamica:
— Faz uma escolha a cada passo.
— Escolha depende das solucboes dos sub-problemas.
— Resolve os problemas bottom-up.

e Técnica gulosa:
— Trabalha na forma top-down.
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Diferencas das duas tecnicas atraves de um
exemplo

e Problema da Mochila (enunciado):

— Um ladrao acha n itens numa loja.

— ltem ¢ vale v; unidades (dinheiro, e.g., R$, US$, etc).
— Item 7 pesa w; unidades (kg, etc).

— v; € w; Sao inteiros.

— Consegue carregar W unidades no maximo.

— Deseja carregar a “carga” mais valiosa.
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Versoes do Problema da Mochila

e Problema da Mochila 0—1 ou (0—171 Knapsack Problem):
— O item ¢ € levado integralmente ou € deixado.

e Problema da Mochila Fracionario:
— Fracdo do item i pode ser levada.
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Consideracoes sobre as duas versoes

e Possuem a propriedade de sub-estrutura 6tima.

e Problema inteiro:
— Considere uma carga que pesa no maximo W com n itens.
— Remova o item j da carga (especifico mas genérico).
— Carga restante deve ser a mais valiosa pesando no maximo W — w,; com

n — 1 itens.

e Problema fracionario:
— Considere uma carga que pesa no maximo W com n itens.
— Remova um peso w do item 5 da carga (especifico mas generico).
— Carga restante deve ser a mais valiosa pesando no maximo W — w com
n — 1 itens mais o0 peso w; — w do item j.
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Consideracoes sobre as duas versoes

e Problema inteiro:
=> Nao é resolvido usando a técnica gulosa.

e Problema fracionario:
-» E resolvido usando a técnica gulosa.

e Estratégia para resolver o problema fracionario:

— (Calcule o valor por unidade de peso 5)—@2 para cada item.

— Estratégia gulosa é levar tanto quanto possivel do item de maior valor por
unidade de peso.

— Repita o processo para o proximo item com esta propriedade até alcancar

a carga maxima.

e Complexidade para resolver o problema fracionario:
— Ordene ositens i (¢ = 1...n), pelas fragdes _-.
= O(nlogn).
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$60

$100

Exemplo: Situacao inicial

$120

Problema 0 -1

Mochila

ltem | Peso | Valor | V/P
1 10 60 6
2 20 100 5
3 30 120 4

Carga maxima da mochila: 50
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Exemplo: Estratégia gulosa
Problema 0-1

Solugdes possiveis:

$120 # ltem (Valor)
$100 112+3=100+ 120 =220
21 1+2=60+100=160
t * 3/1+3=60+120=180
10| $60 10| $60
= $160 =$180 = Solugdo 2 é a gulosa.
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Exemplo: Estratégia gulosa
Problema 0-1

e Consideracoes:
— Levar o item 1 faz com que a mochila fique com espaco vazio

— Espago vazio diminui o valor efetivo da relagéo -

— Neste caso deve-se comparar a solugcao do sub-problema quando:

ltem € incluido na solugcao x ltem é excluido da solugao
— Passam a existir varios sub-problemas

— Programacao dinamica passa a ser a técnica adequada
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Exemplo: Estratégia gulosa
Problema Fracionario

$80

$100

10| $60
= $240

ltem | Peso | Valor | Fracao
1 10 60 1
2 20 100 1
3 30 80 2/3
=» Total = 240.

=» Solucao 6timal!
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Algoritmos aproximados

e Problemas que somente possuem algoritmos exponenciais para resolvé-los
sao considerados “dificeis”.

e Problemas considerados intrataveis ou dificeis sao muito comuns, tais
como:
— Problema do caixeiro viajante cuja complexidade de tempo é O(n!).

e Diante de um problema dificil € comum remover a exigéncia de que o algo-
ritmo tenha sempre que obter a solucao otima.

e Neste caso procuramos por algoritmos eficientes que nao garantem obter a
solucao 6tima, mas uma que seja a mais proxima possivel da solucao o6tima.
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Tipos de algoritmos aproximados

e Heuristica: é um algoritmo que pode produzir um bom resultado, ou até
mesmo obter a solucao 6tima, mas pode também n&o produzir solucao al-
guma ou uma solucao que esta distante da solucao otima.

e Algoritmo aproximado: é um algoritmo que gera solucbées aproximadas den-
tro de um limite para a razao entre a solucao 6tima e a produzida pelo algo-
ritmo aproximado (comportamento monitorado sob o ponto de vista da quali-
dade dos resultados).
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