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Motivacao

e Suponha que existam seis sistemas computacionais (A, B, C, D, E, e F) inter-

conectados entre si da seguinte forma:
B

=» Esta informacao pode ser representada por este diagrama, chamado de
grafo.

=» Este diagrama identifica unicamente um grafo.
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Motivacao

e Dois objetos especiais:

— Vértices
— Arestas
3, (Verice)
A lC
-~
F D
E
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Definicao
Um grafo G consiste de dois conjuntos finitos:

1. Vértices V(G)
2. Arestas E(G)

Em geral, um grafo GG é representado como:

G=(V,E)
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Terminologia

Cada aresta esta associada a um conjunto de um ou dois vértices, chamados
nds terminais.

Extremidade de uma aresta: vértice da aresta.

Funcao aresta—extremidade: associa aresta a vértices.

Laco (Loop): aresta somente com no terminal.

Arestas paralelas: arestas associadas ao mesmo conjunto de vértices.

Uma aresta é dita conectar seus nos terminais.

Dois veértices que sao conectados por uma aresta sao chamados de adja-
centes.

Um vértice que é n6 terminal de um laco é dito ser adjacente a si proprio.
Uma aresta é dita ser incidente a cada um de seus nos terminais.

Duas arestas incidentes ao mesmo veértice sdo chamadas de adjacentes.
Um vértice que nao possui nenhuma aresta incidente € chamado de isolado.
Um grafo com nenhum vértice € chamado de vazio.
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Terminologia

(Arestas paralelas ) (Vértice isolado )
V2 l €3 V3 \Vs V7
° °
€2
€4 €6
e
‘71 5 WOE o
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e Conjunto de vértices:
{Ul,UQ,U3,U4,U5,U6}.

e Conjunto de arestas:
{61762763764765766767}'

e Funcao aresta—veértice:

Aresta | Vértice
er | {vi,va}
ex | {v1,v3}
ez | {v1,vs}
ea | {vo,v3}
es | {vs,ve}
€6 {vs}
e7 {ve}

Terminologia

V1 €3 V3
o
€1 €4
V2
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Terminologia

e €1, e € e3 SA0 incidentes a

V1.

e v € v3Sao adjacentes a v;. V4 e V3
g . — =

® e, e3 € e4 SA0 adjacentes

dej.

~ €1 €4
® eg € e7 Sao lagos.
® e5 € e3 SAo0 paralelas.
V2

e ug € vg Sao adjacentes en-
tre si.

e v4 € um vértice isolado.
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Terminologia

Duas possiveis representacoes deste grafo:
e

- - 4
Seja um grafo especificado Q
como: V4 Vs 6y V2
e Conjunto de vértices: 0<:?20
{’U]_,’UQ,’U3,’U4}. €1
e Conjunto de arestas:
{61762763764}' ®
Vi
e Funcao aresta—vértice: €4

Aresta | Vértice
er | {vi,v3}
ex | {vo,va} e |€3 2
ez | {v2,va}
e4 {v3}
Vo ﬁ
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Terminologia

Considere os dois diagramas abaixo. Rotule os vértices e as arestas de tal
forma que os dois diagramas representem o mesmo grafo.
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Terminologia

Uma possivel identificacao de vértices e

rotulos pode ser:

Vi

Va i V3

€4

Os dois diagramas sao repre-
sentados por:
e Conjunto de vértices:

{v1,v2,v3,v4,v5}.

e Conjunto de arestas:
{61762763784765}'

e Funcao aresta—vértice:

Aresta | Vértice
er | {vi,v2}
ex | {vo,v3}
ez | {v3,va}
ea | {va,vs}
es | {vs,v1}
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Modelos usando grafos

Grafo

Vértice

Aresta

Comunicagao

Centrais telefébnicas, Com-

putadores, Satélites

Cabos, Fibra optica, Enlaces
de microondas

Circuitos Portas ldgicas, registradores, | Filamentos

processadores
Hidraulico Reservatorios, estacoes de | Tubulacdes

bombeamento
Financeiro AclOes, moeda Transacgoes
Transporte Cidades, Aeroportos Rodovias, Vias aéreas
Escalonamento Tarefas RestricOes de precedéncia
Arquitetura funcional de | Médulos Interacdes entre os mddulos
um software
Internet Paginas Web Links

Jogos de tabuleiro

Posicoes no tabuleiro

Movimentos permitidos

Relacbes sociais

Pessoas, Atores

Amizades, Trabalho conjunto
em filmes
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Modelos usando grafos
Circuito elétrico: Leis de Kirchoff

n. Gustav Kirchoff (1824—
1887), fisico alemé&o. Foi o primeiro a . 2 ; >
analisar o comportamento de “arvores i |
matematicas” com a investigacdo de - =
circuitos elétricos. T
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i1+ iq = io + i3
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Modelos usando grafos
Estruturas de moleéculas de hidrocarboneto

H H H H
H C C C C H
TREN\ W Arthur Cayley (1821- C C C C
1895), matematico inglés. Logo apds
o trabalho de Kirchoff, Cayley usou Butano
“arvores matematicas” para enumerar
todos os isbmeros para certos hidro- H H 4
carbonetos.
H C C C
H H C H H
H
Isobutano
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Modelos usando
grafos
Conectividade na
Internet

Este grafo mostra a conectividade
entre roteadores na Internet, re-
sultado do trabalho “Internet Map-
ping Project” de Hal Burch e Bill
Cheswick.

Atualmente o trabalho esta sendo
desenvolvido comercialmente pela
empresa Lumeta (www.lumeta.com).

Full nbamist miapas of 12 Fd 1900
RS54 eoges, BE 10T nocks (42443 kaves)

o s “Fa g !
Hal Eurch, Bl Chaswick - il
Folled | 800223 ¢S 230 hmi 01599 Lucenl Technol od sz
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Modelos usando grafos
Conectividade na Internet

Este trabalho de Stephen
Coast (http://www.fractalus

.com/ steve/stuff/ipmap/) esta
“medindo” e mapeando a estru-
tura e desempenho da Internet.
Este € um de seus trabalhos
Iniciais.

\‘\"; @'ﬂ
, \\‘! §
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Modelos usando grafos
Conectividade na RNP2

A Rede Nacional de Pesquisa
(RNP) criou a primeira infra-
estrutura de comunicacao (back-
bone) no Brasil para interconexao .
com a Internet.  Atualmente, '
este backbone é conhecido como
RNP2.

O grafo de conectividade da

RNP2 tem uma “estrutura”

(topologia) basicamente  na

forma de estrela. Note que dife-

rentes enlaces de comunicagao R
(arestas) possuem diferentes Conexdes e circuitos

. HUDM
capacidades. — R

B— 25 Gigabits

PDH

B 39 Megabits
16 Megabits
g Megabits

A Internet é formada basica-
mente por interconexao de Sis-
temas Autbnomos (AS - Au-
fonomous System), onde cada
AS é um backbone distinto.
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Modelos usando grafos
Grafo de derlvagao sintatica

Peter Naur

John Backus

Noam Chomsky

Chomsky e outros desenvolveram novas formas de
descrever a sintaxe (estrutura gramatical) de lingua-
gens naturais como inglés. Este trabalho tornou-se
bastante util na construgcdo de compiladores para
linguagens de programacao de alto nivel. Neste
estudo, arvores (grafos especiais) sdo usadas para
mostrar a derivacao de sentengas corretas gramati-
calmente a partir de certas regras basicas.

{sentence)

SN

{noun phrase} {verb phrase)

/ [ \ / {noun phrase)

(artlcle) (adjectlve) (noun) (verb) (artlcle) (noun)

([ The ][young][ man ][caught][ the ) ( baII ]

Notacao BNF (subconjunto da
gramatica da lingua inglesa):

(sentence)
(noun phrase)

= (noun phrase) (verb phrase)
(article) (noun) |

(article) (adjective) (noun)

(

3 (verb phrase) ::= (verb)(noun phrase)

E comum representar estas regras, chamadas de (article) — the

producao, usando uma notacao proposta por Backus (adjective) = young

(1959) e modificada por Naur (1960) usada para des- (noun) == man | ball

crever a linguagem de programacao Algol. Esta no- (verb) = caught

tacao é chamada de BNF (Backus-Naur Notation).
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Modelos usando grafos
Vegetarianos e Canibais (1)

e Seja uma regiao formada por vegetarianos e canibais.

e Inicialmente, dois vegetarianos e dois canibais estdao na margem esquerda
(ME) de um rio.

e Existe um barco que pode transportar no maximo duas pessoas e sempre
atravessa o rio com pelo menos uma pessoa.

e O objetivo é achar uma forma de transportar os dois vegetarianos e os dois
canibais para a margem direita (MD) do rio.

e Em nenhum momento, o nimero de canibais numa margem do rio pode ser
maior que o numero de vegetarianos, caso contrario, ...
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Modelos usando grafos
Vegetarianos e Canibais (2)

e Solucéo:
— Notacgao para representar cada cenario possivel.

— Modelo para representar a mudancga de um cenario em outro valido.

e Notacao: ME/MD
— vveeB/ — ME: 2v, 2c e o barco (B); MD: —.
— ve/Bve — ME: 1v, 1¢c; MD: B, 1v e 1c.

e Modelo: grafo
— Veértice: cenario valido.
— Aresta: transigcao valida de um dado cenario em outro.

(@!UFMG/ICEX/DCC PAA e Grafos: Conceitos e Algoritmos
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Modelos usando grafos
Vegetarianos e Canibais (3)

Uma possivel sequéncia valida de cenarios é:
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Modelos usando grafos
Visualizando grafos

Para muitas aplicacoes € importante dese-
nhar grafos com certas restricoes:

GRAPH DRAWING — Planares, i.e., nao ha cruzamento de

ALGORITHMS FOR THE VISUALIZATION OF GRAPHS

arestas

CIUSEPPE DI BATTISTA
PETER EADES
ROBERTO TAMASSIA
IOANNIS G OLLIS

Graph Drawing: Algorithms for the Vi-
sualization of Graphs. Giuseppe Di
Battista, Peter Eades, Roberto Tamas-
sia, e loannis G. Tollis. Prentice Hall
Engineering, Science & Math, 432 pp.,
ISBN 0-13-301615-3.
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Grafo simples

Definicao: Um grafo simples € um grafo que nao possui lagos nem arestas pa-
ralelas. Num grafo simples, uma aresta com vértices (nés terminais) v € v €
representada por uw.

Exemplo: Quais sao os grafos com quatro veértices {u, v, w, x} e duas arestas,

sendo que uma delas € a aresta uv?

— Dado quatro vértices, existem C(4,2) = 6 subconjuntos, que definem
arestas diferentes: {uv, vw, ux, vw, ve, wr}.

— Logo, todos os grafos simples de quatro vértices e duas arestas, sendo uma
delas a uv sao:

U[—‘V Uiv U7V U‘—IV Ue——o V
w o X We X w o X We X We—— o X
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Grafo dirigido (1)

Definicao: Um grafo dirigido ou digrafo ou direcionado G consiste de dois con-
juntos finitos:

1. Vértices V(G)

2. Arestas dirigidas E(G), onde cada aresta é associada a um par ordenado
de vértices chamados de nos terminais. Se a aresta e € associada ao par
(u,v) de vértices, diz-se que e é a aresta dirigida de « para v.

V2 €3 V3 V5 V7
®
€9 ’
€7 es €4 €8
&% o
V1 1 Vg Ve
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Grafo dirigido (2)

Para cada grafo dirigido, existe um grafo simples (nao dirigido) que é obtido
removendo as dire¢des das arestas, e 0s /oops.

Grafo dirigido: Grafo nao dirigido correspondente:

Vo V3 Vg V7 Vo V3 Vg V7
[ , ® [ ®

o) ° ® °

V4 V4 Ve Vi V4 Ve
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Grafo dirigido (3)

e A versdo dirigida de um grafo ndo dirigido G = (V, E)) € um grafo dirigido
G' = (V' E") onde (u,v) € E'sse (u,v) € E.

e Cada aresta nao dirigida (u,v) em G é substituida por duas arestas dirigidas
(u,v) e (v,u).

e Em um grafo dirigido, um vizinho de um veértice u € qualquer vértice adjacente
a u na versao nao dirigida de G.

Grafo nao dirigido: Grafo dirigido correspondente:
Vo V3 Vo V3
®
V1 Vi
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Grafo completo (1)

Definicao: Um grafo completo de n vértices, denominado K, *, € um grafo sim-
ples com n vértices v1, vo, ..., vy, CUjO cONjunto de arestas contém exatamente
uma aresta para cada par de vértices distintos.

Exemplo: Grafos completos com 2, 3, 4, e 5 vértices.

Vie 1% V1 Vo V1 Vo V1 Vo

*A letra K representa a letra inicial da palavra komplett do alemao, que significa “completo”.
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Grafo completo (2)

Dado o grafo completo K, temos que

Vértice esta conectado aos vértices através de # arestas
(nao conectados ainda)

V1 V2, V3, .. .,Un n—1

Vo V3, V4, - . ,Un n—2
Vp—1 Un 1

’Un - O

Ou seja, se contarmos o numero total de arestas de K, temos

"il. (n—1)-n_n?2—n_ (VI?-|V])
1 = = =

) 2 2 2

1
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Grafo completo (3)

Os grafos Ko, K3, K4, € K5

Vie 1% V1 Vo V1 Vo V1 Vo

K, K, K, K.

possuem a seguinte quantidade de arestas:

Grafo | # arestas
K5 1
K3 3
Ka 6
Ks 10
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Quantidade de grafos distintos com n» vértices (1)

O numero total de grafos distintos com n vértices (|V|) é

n2-n  (IVI?=|V])
5 2 _>5 2
que representa a quantidade de maneiras diferentes de escolher um subcon-
junto a partir de

n®—n _ (V| =|V])
2 2
possiveis arestas de um grafo com n vértices.
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Quantidade de grafos distintos com n veértices (2)

Exemplo: Quantos grafos distintos com 3 vértices existem?

e Um grafo com 3 vértices vq, vo € v3 pOSSuUi NoO
E = {v1v2,v1v3,v2v3}.

maximo 3 arestas, ou seja,

e O numero de sub-conjuntos distintos de E é dado por P(E), ou seja, o con-

junto poténcia de E que vale 2/Z!.

( @7
{vivo},
}0103{,
_ vov3},
PLE) =« {v1vo,vous},
{v1vs, vou3},
{v1vo,v1v3},
| {v1v2,v1v3, 203}

-~

Cada elemento de P(E) deve
ser mapeado num grafo com 3
vértices levando a um grafo dis-

tinto:

(@.\UFMG/ICEX/DCC PAA e Grafos: Conceitos e Algoritmos
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Quantidade de grafos distintos com n vértices (3)

Exemplo: Quantos grafos distintos com 3 vértices existem (continuacao)?

e Para cada elemento (sub-conjunto) do conjunto poténcia de E temos um grafo
distinto associado, ou seja, o numero total de grafos com 3 vértices é:

n?—n 323 e p S %
2 2
2 =2 =23 =238
(] (] o—————0 (] o
V1 Vo V1 Vo V1 Vo V4 Vo
V3 V3 V3 V3
V1 Vo V1 Vo V1 Vo V4 Vo
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Grafo ciclo

Definicao: Um grafo ciclo de n vértices, denominado Cy, n > 3, € um grafo
simples com n vértices v, vy, ..., vy, € arestas vivo, vov3, ..., Vy_1Un, Unv1.

Exemplo: Grafos ciclos de 3, 4, e 5 vértices.

Vig o3

UFMG/ICEx/DCC PAA e Grafos: Conceitos e Algoritmos
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Grafo roda

Definicao: Um grafo roda, denominado W, € um grafo simples com n + 1
vértices que € obtido acrescentado um vértice ao grafo ciclo C,,, n > 3, e
conectando este novo vertice a cada um dos n vértices de C',.

Exemplo: Grafos rodas de 3, 4, e 5 vértices.

V3 V4 V3
Vs ‘» V3
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Grafo Cubo-n (1)

Definicao: Um grafo cubo-n de 2™ vértices, denominado @y, € um grafo simples
que representa os 2" strings de n bits. Dois vértices sdo adjacentes sse 0s
strings que eles representam diferem em exatamente uma posicao.

O grafo Q,,41 pode ser obtido a partir do grafo @, usando o seguinte algoritmo:

1. Faga duas copias de Qn;
2. Prefixe uma das cépias de ), com 0 e a outra com 1;
3. Acrescente uma aresta conectando os vertices que so diferem no primeiro

bit.
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Grafo Cubo-n (2)

Exemplo: Grafos @, paran =1, 2, e 3 vértices.

110

111

0@ ® 11 100/

il

010

011

@ ® ® L
0 1 00 01 000

001
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Grafo bipartido (1)

Definicao: Um grafo bipartido € um grafo com vértices vq,vo,...,vm €
wq,wny, ..., Wn, que satisfaz as seguintes propriedades:

V i,k=1,2,...,mA
V 5,1 =1,2,...,n

1. V as arestas do grafo, cada aresta conecta algum vértice v; a algum vértice
wj;

2. —3 uma aresta entre cada par de vertices v; e v;

3. —J uma aresta entre cada par de vertices w; e wy;
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Grafo bipartido (1)

Definicao: Um grafo bipartido € um grafo com vértices vq,vo,...,vm €
wq,wny, ..., Wn, que satisfaz as seguintes propriedades:

V i,k=1,2,...,mA
V 5,1 =1,2,...,n

1. V as arestas do grafo, cada aresta conecta algum vértice v; a algum vértice
wj;

2. —3 uma aresta entre cada par de vertices v; e v;

3. —J uma aresta entre cada par de vertices w; e wy;

As duas ultimas propriedades sao consequéncias da primeira.
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Grafo bipartido (2)

Exemplo: Grafos bipartidos.

V4 Vo V4 W,
O
Ws Vs
Vy Wy
o,
2 Wy Wy W, Wy Vs

UFMG/ICEx/DCC PAA e Grafos: Conceitos e Algoritmos
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Grafo bipartido completo (1)

Definigao: Um grafo bipartido completo de m, n veértices, denominado K, n, €
um grafo simples com vértices vy, vo,...,vm € wi, wo, ..

seguintes propriedades:

1. 3 uma aresta entre cada par de vertices v; € wj;
2. —3 uma aresta entre cada par de vertices v; e v;
3. —J uma aresta entre cada par de vertices w; e wy;

7

., Wnp, que satisfaz as

UFMG/ICEX/DCC PAA e Grafos: Conceitos e Algoritmos
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Grafo de Petersen

Definicao: grafo nao dirigido cubico com 10 vértices e 15 arestas, como ilustrado
abaixo. E um grafo largamente utilizado como exemplo e contra-exemplo para
muitos problemas em teoria dos grafos.

[Recebe esse nome em homenagem ao matematico dinamarqués Julius Petersen, que o utilizou
em um trabalho publicado em 1898. No entanto, o primeiro registro do uso desse grafo se deve
a um trabalho de Alfred Kempe, matematico inglés, 12 anos antes, em 1886.]

=» Em teoria dos grafos, existem varios outros grafos que recebem nomes es-
peciais sejam eles baseados em nomes de pessoas (e.g, Folkman, Gabriel,
Heawood, Turan, Yao) ou em propriedades (e.g., autocomplementar, com-
plementar, disco unitario, intervalar, orientado balanceado, poliedro).
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Multigrafo

Definicao: Um multigrafo € um grafo que nao possui lacos mas pode ter arestas
paralelas. Formalmente, um multigrafo G = (V, E/) consiste de um conjunto V/
de vértices, um conjunto E de arestas, e uma funcao f de E para {{u,v}|u,v €
V,u # v}. As arestas e e eo> sdo chamadas multiplas ou paralelas se f(eq1) =

f(e2).

V1 €3 V3 V4
— = ° ® s
€1 €4 E5
o /5
V2

=» Varias aplicacOes precisam ser modeladas como um multigrafo.
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Pseudografo

Definicao: Um pseudografo € um grafo que pode ter lagos e arestas paralelas.
Formalmente, um pseudografo G = (V, E') consiste de um conjunto V' de vér-
tices, um conjunto E de arestas, e uma funcéo f de E para {{u,v}|u,v € V}.

=» Pseudografo € mais geral que um multigrafo.
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Multigrafo dirigido

Definicao: Um multigrafo dirigido é um grafo que pode ter lacos e arestas pa-
ralelas. Formalmente, um multigrafo dirigido G = (V, E') consiste de um con-
junto V de vértices, um conjunto E de arestas, e uma funcao f de E para
{{u,v}|u,v € V}. As arestas e e eo sdo arestas multiplas se f(e1) = f(eo).
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Hipergrafo

Definicdo: Um hipergrafo H(V, F') é definido pelo par de conjuntos V' e F', onde:

e V' é um conjunto ndo vazio de veértices;
e F' € um conjunto que representa uma “familia” e partes nao vazias de V..

Um hipergrafo € um grafo nao dirigido em que cada aresta conecta um numero
arbitrario de vértices.

Seja, por exemplo, o grafo H(V, F)
dado por:

|%4
F

{Ul,UQ,U3,U4}
{{Ul,UQ,U4},{UQ,Ug,U4},{U2,U3}}
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Terminologia de grafos

Tipo Aresta Arestas multiplas? | Lacos permitidos?
Grafo simples Nao dirigida Nao Nao
Multigrafo Nao dirigida Sim Nao
Pseudografo Nao dirigida Sim Sim
Grafo dirigido Dirigida Nao Sim
Multigrafo dirigido | Dirigida Sim Sim

@©)UFMG/ICEx/DCC
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Grafo valorado

Definicao: Um grafo valorado € um grafo em que cada aresta tem um valor as-
sociado. Formalmente, um grafo valorado G = (V, E) consiste de um conjunto
V de vertices, um conjunto E de arestas, e uma fungao f de E para P, onde P
representa o conjunto de valores (pesos) associados as arestas.

=» Grafo valorado é usado para modelar varios problemas importantes em Cién-
cia da Computacao.
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Grafo imersivel

Definicao: Um grafo € imersivel em uma superficie S se puder ser representado
geograficamente em S de tal forma que arestas se cruzem nas extremidades
(vertices).

Um grafo planar € um grafo que € imersivel no plano.

=» As conexOes de uma placa de circuito impresso devem ser representadas
por um grafo planar.

/ SloJON=I
() ( Ik

_i- o0 ) O R
ol OLo 0o OO T—3
o) C o
']

05505(

[e]le]

odf oo 6o

0000000Q00D
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Subgrafo

Definicdo: Um grafo H = (V/, E") é dito ser um subgrafo de um grafo G =

(V, F) sse:

— cada vértice de H é também um vértice de G, ou seja, V/ C V;
— cada aresta de H é também uma aresta de G, ou seja, £’ C E; e
— cada aresta de H tem os mesmos nés terminais em G, ou seja, se (u,v) € B’

entdo (u,v) € F.

Exemplo: Todos os subgrafos do grafo G:

V2 e Vi Vi V2
Gle——_ ——eOF . o
€
V2 Vi V2 e Vi V2 V1
o o o— e - === e
&2
Vi V2 Vi V2 e V4
«%%| o %l e—— e
) €2
V2 e Vi V2 Vi V2 e V1
o @ —eO%Ble—_ = &%l e——  —e)%
€D) &2 €2
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Grau de um vertice (1)

Definicao: Seja G um grafo e um vértice v de G. O grau de v, denominado
grau(v) (deg(v)), é igual ao nimero de arestas que sao incidentes a v, com
uma aresta que seja um lago contada duas vezes. O grau total de G € a soma

dos graus de todos os vertices de G.

Exemplo: Determinando o grau de v1 no grafo abaixo.

Vi (=D
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Grau de um vértice (2)

Em um grafo dirigido o grau de um vértice v € 0 numero de arestas quem saem
dele (out-deg(v)) mais o numero de arestas que chegam nele (in-deg(v)).

Exemplo: Determinando o grau de v3 no grafo abaixo.

(grau(Va) =4)

V2 €3 ‘;3 V5 V7
o
€9 r
€7 o6 €4 Eg
: % o
Vy 1 Vs Ve
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Grau de um vertice (3)

Exemplo: Seja o grafo G abaixo. Determine o grau de cada vértice e o grau total
de G.

V1 Vo e V3
e e ——aO&
€-

— grau(v1) = 0, ja que nao existe aresta incidente a v1, que é um vértice
isolado.

— grau(vo) = 2, ja que e € e Sa0 incidentes a v».

— grau(vz) = 4, ja que eq, e> € e3 SA0 incidentes a vz, sendo que ez contribui
com dois para o grau de vs.

=» Graude G = grau(vy) + grau(vs) + grau(vz) =0+2+4 =06
=» Grau de GG = 2 x numero de arestas de G, que é 3, ou seja, cada aresta
contribui com dois para o grau total do grafo.
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Grau de um vertice (4)

Teorema (do aperto de maos ou handshaking): Seja G um grafo. A soma dos
graus de todos os vértices de G é duas vezes o numero de arestas de GG. Es-
pecificamente, se os vértices de G sao vy, vy, ..., vn, ONde n € um inteiro pPosi-
tivo, entao

Graude G = grau(vy) + grau(vo) + ...+ grau(vy)
2 X numero de arestas de G.
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Grau de um vertice (5)

Prova:

e Seja GG um grafo especifico mas escolhido arbitrariamente.

e Se (G nao possui vértices entao nao possui arestas, e o grau total é 0, que é
o dobro das arestas, que € 0.

e Se G tem n vértices vy, vy, ...,v, € m arestas, onde n € um inteiro positivo
e m € um inteiro ndo negativo. A hipotese é que cada aresta de G contribui
com 2 para o grau total de G.

e Suponha que e seja uma aresta arbitraria com extremidades v; e v;. Esta
aresta contribui com 1 para o grau de v; € 1 para o grau de v;.
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Grau de um vertice (6)

Prova (continuacao):

e |sto é verdadeiro mesmo se ¢ = j ja que no caso de um laco conta-se duas
vezes para o grau do vértice no qual incide.

e Assim, a aresta e contribui com 2 para o grau total de G. Como e foi escolhido
arbitrariamente, isto mostra que cada aresta de G contribui com 2 para o grau
total de G.

.". O grau total de G = 2x numero de arestas de G.

=» Corolario: O grau total de um grafo é par.
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Grafo regular

Definicdo: Um grafo é dito ser regular quando todos os seus vértices tém o

mesmo grau.

Exemplo: Os grafos completos com 2, 3, 4, e 5 vértices sao grafos regulares.

Vie 1% V1 Vo V1 Vo V1 Vo
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Determinando a existencia de certos grafos (1)

e E possivel ter um grafo com quatro vértices de graus 1, 1, 2, e 3?
Nao. O grau total deste grafo € 7, que € um numero impar.

e E possivel ter um grafo com quatro vértices de graus 1, 1, 3, e 3?

Sim. Exemplos:
a b

a b a b

a b o o
(—a) LJ
d ¢ d C d C C
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Determinando a existéncia de certos grafos (2)

e E possivel ter um grafo simples com quatro vértices de graus 1, 1, 3, e 3?
Nao.
Prova (por contradicao):

— Suponha que exista um grafo simples GG com quatro vertices de graus 1, 1, 3, e 3. Chame
a e b 0s vértices de grau 1, e c e d os vértices de grau 3. Como grau(c) = 3 e G néo
possui lacos ou arestas paralelas, devem existir arestas que conectam c aos vértices a, b

e d.
a b
d C
— Pelo mesmo raciocinio devem existir arestas que conectam d aos vértices a, b € c.
a b
d C
— Mas o grau(a) > 2 e grau(b) > 2, o que contradiz a suposicao que estes vértices tém
grau 1.

.. A suposicao inicial é falsa e, conseglentemente, ndo existe um grafo simples com quatro
vértices com graus 1, 1, 3, e 3.
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Determinando a existéncia de certos grafos (3)

e E possivel num grupo de nove pessoas, cada um ser amigo de exatamente
cinco outras pessoas?
Nao.

Prova (por contradicao):
— Suponha que cada pessoa represente um vértice de um grafo e a aresta
indigue uma relacao de amizade entre duas pessoas (vertices).

— Suponha que cada pessoa seja amiga de exatamente cinco outras pes-
soas.

— Entao o grau de cada vértice é cinco e o grau total do grafo € 45.

.". Isto contradiz o corolario que o grau total de um grafo € par e, consequen-
temente, a suposicao é falsa.
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Caracteristica de um grafo

Teorema: Em qualquer grafo G, existe um numero par de vértices de grau impatr.

Prova:

— Suponha que G tenha n vértices de grau impar e m vértices de grau par, onde n € m sao
inteiros ndo negativos. [Deve-se mostrar que n é par.]

— Sen = 0, entdo G tem um nuamero par de vértices de grau impar.

— Suponha que n > 1. Seja P a soma dos graus de todos os vértices de grau par, I a soma
dos graus de todos os vértices de grau impar, e T' o grau total de G.

— Se p1,p2,...,pm SA0 0S Vértices de grau par € i1, 12, ..., i, SA0 0S Vértices de grau impar,
P = grau(p1) + grau(p2) + ... + grau(pm),
I = grau(ii) + grau(iz) + ... + grau(iy),
T = grau(p1) + grau(pz) + ... + grau(pm,) +
grau(i1) + grau(iz) + ... + grau(iy)
= P+ I [que deve ser um numero par]
— P épar, jaque P =0o0u P éasomade grau(p,), 0 <r < m, que é par.
— MasT =P+ 1Tel=T-— P.Assim, I é adiferenca de dois inteiros pares, que € par.

— Pela suposicao, grau(is), 0 < s < n, é impar. Assim, I, um inteiro par, € a soma de n inteiros
impares grau(i1) + grau(iz) + ...+ grau(i,). Mas a soma de n inteiros impares é par, entao
n € par [0 que devia ser mostrado].
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Determinando a existéncia de certos grafos (4)

e E possivel ter um grafo com 10 vértices de graus 1,1, 2,2, 2, 3, 4, 4, 4, e 67
N&o. Duas formas de provar:
1. Este grafo supostamente possui trés vertices de grau impar, o que nao e
possivel.
2. Este grafo supostamente possui um grau total = 29, o que nao é possivel.
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O problema das sete pontes de Konigsberg ou
O inicio da teoria dos grafos (1)

. Leonhard Euler (1707-1783) aos 49 anos. Tela em 6leo pintada por
Jakob Emanuel Handmann em 1756.

Leonhard Euler, matematico suico. Considerado um dos maiores matematicos de todos os
tempos. Foi um cientista extremamente produtivo contribuindo para muitas areas da matematica
como teoria dos numeros, analise combinatéria e analise, bem como o seu uso em areas como
musica e arquitetura naval. Euler foi o primeiro a usar o termo “funcao” para descrever uma
expressao envolvendo varios argumentos, ou seja, y = F(x). No total escreveu mais de
1100 artigos e livros. Durante os ultimos 17 anos de vida, ele ficou praticamente cego, quando
produziu quase que metade de seus trabalhos.

A area de teoria dos grafos comeca em 1736 quando publica um artigo (Solutio problematis ad
geometriam situs pertinentis) contendo a solucao para o problema das sete pontes de Konigs-
berg, na época uma cidade da Prussia e, atualmente, cidade da Russia.
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O problema das sete pontes de Konigsberg ou
O inicio da teoria dos grafos (2)

A cidade de Kdnigsberg foi construida numa regidao onde haviam dois bracos do Rio Pregel e
uma ilha. Foram construidas sete pontes ligando diferentes partes da cidade, como mostrado
na figura:

Problema: E possivel que uma pessoa faga um percurso na cidade de tal forma que inicie e
volte a mesma posicao passando por todas as pontes somente uma unica vez?
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O problema das sete pontes de Konigsberg ou
Onde é Konigsberg (3)

Referéncia: “Northern Ger-
many as far as the Bavar-
lan and Austrian Frontiers;
Handbook for Travellers” by
Karl Baedeker. Fifteenth Re-
vised Edition. Leipzig, Karl
Baedeker; New York, Charles
Scribner’s Sons 1910.

History: Kaliningrad was for-
merly the Prussian port of
Kénigsberg, capital of East
Prussia. It was captured by
the Red Army in April 1945
and ceded to the Soviet Union
at the Potsdam conference.
It was renamed in honor of
senior Soviet leader Mikhail
Kalinin, although he never ac-
tually visited the area.

Estonia

Belarus

Mapa parcial (recente) da

cidade.
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O problema das sete pontes de Konigsberg (4)

e Euler resolveu este problema dando inicio a teoria dos grafos.

e Modelagem proposta por Euler:

— Todos os “pontos” de uma dada area de terra podem ser representados por
um unico ponto ja que uma pessoa pode andar de um lado para o outro
sem atravessar uma ponte.

— Um ponto é conectado a outro se houver uma ponte de um lado para o

outro.
— Graficamente, Euler representou o problema como:
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O problema das sete pontes de Konigsberg (5)

e Problema a ser resolvido:
— E possivel achar um caminho que comece e termine num vértice qualquer
(A, B, C, ou D) e passe por cada aresta, exatamente, e uma unica vez?,

ou ainda,
— E possivel desenhar este grafo que comece e termine na mesma posicao

sem levantar o lapis do papel?
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O problema das sete pontes de Konigsberg (6)

e Aparentemente nao existe solucao!

e Partindo do vértice A, toda vez que se passa por qual-
quer outro vértice, duas arestas sdo usadas: a de
“chegada” e a de “saida”.

e Assim, se for possivel achar uma rota que usa todas
as arestas do grafo e comecga e termina em A, entdo o
nuamero total de “chegadas” e “saidas” de cada vértice
deve ser um valor multiplo de 2.

e No entanto, temos:
— grau(A) = grau(C) = grau(D) = 3; e
— grau(B) = 5.

e Assim, por este raciocinio informal ndo é possivel ter
uma solucao para este problema.
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Caminhamentos em grafos
Caminho (1)

Seja GG um grafo nao dirigido, n > 1, e v e w vértices de G.

Caminho (walk): Um caminho de v para w é uma sequéncia alternada de
vértices e arestas adjacentes de G. Um caminho tem a forma:

(v =)vpgerviesvs ... v,_1envn(= w)

ou ainda

volvg, v1]vilvy, valva .. vp—1[vn—_1, vn]un

onde vg = v € vy, = w.

Um possivel caminho entre v{ € vy

V1E6UV3E2V4ETVDE] V3EDVLEZV] €4V2EFV4
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e No caso de arestas multiplas, deve-se indicar qual delas esta sendo usada.

Caminhamentos em grafos
Caminho (2)

e Vértices vg e v, sS40 extremidades do caminho.

e Tamanho (comprimento) do caminho: numero de arestas do mesmo, ou seja,
numero de vértices menos um.

e O caminho trivial de v para v consiste apenas do vertice v.

e Se existir um caminho ¢ de v para w entao w € alcancgavel a partir de v via c.
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Caminhamentos em grafos
Caminho fechado (1)

Caminho fechado (Closed walk): Caminho que comeca e termina no mesmo
vértice:

(v =)vgervienvs. .. v,_1envn(= w)

onde v = w.

Um possivel caminho fechado é:

V1E6U3EDV4ETVUDE]VIEDVLE3V] E4VDEFVLEZV]

Um caminho fechado com pelo menos uma aresta € chamado de ciclo.
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Caminhamentos em grafos
Caminho fechado (2)

Dois caminhos fechados

/.. /
VoV - .- Un e VU7 - - - Upy

formam o mesmo ciclo se existir um inteiro j tal que
/
v; = V44 Mod n,
para:i=0,1,...,n — 1.

O caminho fechado wvjvpovzvavy forma o
mesmo ciclo que os caminhos fechados

V2 e V3
( U2U3V4V1V2, U3U4VLIV2V3 € V4V1U2U3V4-
2
€7
v
V-| 63 4
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Caminhamentos em grafos
Trajeto

Trajeto (Path): Caminho de v para w sem arestas repetidas:

(v =)vpgeivienvs. .. vy_1envn(= w)
onde todas as arestas e; sao distintas, ou seja, e; # e, para qualquer ¢ = k.
Um possivel trajeto é:

V2 ey V3
—= V1€6V3EDV4ETVRE] VI
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Caminhamentos em grafos
Trajeto simples

Trajeto simples (Simple path): Caminho de v para w sem arestas e vértices
repetidos.

Um possivel trajeto simples é:
V1E(V3E2V4E7VD
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Caminhamentos em grafos
Circuito

Circuito (Circuit): Trajeto fechado, ou seja, um caminho onde n&o ha aresta
repetida e os vertices inicial e final sao idénticos:

(v =)vgervienvs. .. v,_1envn(= w)

onde toda aresta e;, 1 < i < n, é distinta e vg = wvy,.

Um possivel circuito é:

V2 ey V3

V1€6V3€E2V4E7V2€] V3
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Caminhamentos em grafos
Circuito simples

Circuito simples (Simple circuit): Trajeto fechado, ou seja, um caminho onde
nao ha arestas e vertices repetidos, exceto os vertices inicial e final que sao
idénticos.

Um possivel circuito simples é:
V1ERU3EDVYETVREAQV]

Um circuito simples também & chamado de ciclo simples.
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Terminologia de caminhamentos

Aresta Vértice Comeca e termina

Tipo repetida? | repetido? | no mesmo vértice?
Caminho (walk) Pode Pode Pode
Caminho fechado (closed walk) Pode Pode Sim
Trajeto (path) Nao Pode Pode
Trajeto simples (simple path) Nao Nao Nao
Circuito (circuit) Nao Pode Sim
Circuito simples (simple circuit) Nao Vo = Up Sim
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Caminhamentos em grafos
Notacao simplificada (1)

Em geral um caminho pode ser identificado de forma nao ambigua através de
uma sequéncia de arestas ou vertices.

€1 2
e ——— L
V3

e
V1 V2 es

e O caminho ejesegez representa de forma nao ambigua o caminho
V1€1V2€E2V3E4V3E3VD

e A notacao e € ambigua, se usada para referenciar um caminho, pois pode
representar duas possibilidades: vieq1vo OU voeqv1.

e A notacao vpov3 € ambigua, se usada para referenciar um caminho, pois pode
representar duas possibilidades: voesv3 OU voezvs.
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Caminhamentos em grafos
Notacao simplificada (2)

€2
€1 Q €3
@ @
Vi Vo Vi3

A notacao viwvovovs, se for associada a um caminho, representa de forma
nao ambl'gua o0 caminho V1€1V2€2V2€E3V3

=» Se um grafo GG nao possui arestas paralelas, entao qualquer caminho em G
pode ser determinado de forma unica por uma sequéncia de vertices.
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Identificando o caminhamento (1)

Aresta Vértice Comeca e termina
Tipo repetida? | repetido? | no mesmo vértice?
Caminho (walk) Pode Pode Pode
Caminho fechado (closed walk) Pode Pode Sim
Trajeto (path) Nao Pode Pode
Trajeto simples (simple path) Nao N&o Nao
Circuito (circuit) Nao Pode Sim
Circuito simples (simple circuif) Nao vy = U, Sim
Que tipo de caminhamento é?
L V1€1V2€3V3€4V3€EK5V4 L €1€3€K5€EK€EH
— Aresta repetida? Nao. — Aresta repetida? Sim — es.
— Veértice repetido? Sim — v3. — Veértice repetido? Sim — v3.
— Comeca e termina no mesmo — Comecga e termina no mesmo
vértice? Nao. vértice? Nao.
=» Trajeto. =» Caminho.
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Identificando o caminhamento (2)

Aresta Vértice Comeca e termina
Tipo repetida? | repetido? | no mesmo vértice?
Caminho (walk) Pode Pode Pode
Caminho fechado (closed walk) Pode Pode Sim
Trajeto (path) Nao Pode Pode
Trajeto simples (simple path) Nao N&o Nao
Circuito (circuit) Nao Pode Sim
Circuito simples (simple circuif) Nao vy = U, Sim
Que tipo de caminhamento é?
L V2UV30V4V50V3VUD o V2UV30V4UV5V(VD
— Aresta repetida? Nao. — Aresta repetida? Nao.
— Veértice repetido? Sim — v, € v3. — Vértice repetido? Sim — v».
— Comeca e termina no mesmo — Comecga e termina no mesmo
vértice? Sim — v». vértice? Sim — v».
=>» Circuito. =» Circuito simples.
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Identificando o caminhamento (3)

Aresta Vértice Comeca e termina
Tipo repetida? | repetido? | no mesmo vértice?
Caminho (walk) Pode Pode Pode
Caminho fechado (closed walk) Pode Pode Sim
Trajeto (path) Nao Pode Pode
Trajeto simples (simple path) Nao N&o Nao
Circuito (circuit) Nao Pode Sim
Circuito simples (simple circuif) Nao vy = U, Sim
Que tipo de caminhamento é?
L V2UV30V4V5V6V3VD ® U1
— Aresta repetida? Sim — es. — Aresta repetida? Nao.
— Veértice repetido? Sim — vy € vs3. — Veértice repetido? Nao.
— Comeca e termina no mesmo — Comecga e termina no mesmo
vértice? Sim — v». vértice? Sim — v1.
=» Caminho fechado. =» Caminho (circuito) trivial.
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Fecho transitivo direto

Definicao: O fecho transitivo direto (FTD) de um vértice v € o conjunto de todos
0s vertices que podem ser atingidos por algum caminho iniciando em wv.

Exemplo: O FTD do vértice vs do grafo ao lado

. . V2
é o conjunto {vy,vo,v3,v4,v5,v6}. Note que v . V3
o proprio vértice faz parte do FTD ja que ele é
alcancavel partindo-se dele mesmo.
V4 Ve
Vg *
V7
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Fecho transitivo inverso

Definicao: O fecho transitivo inverso (FTI) de um vértice v é o conjunto de todos
0s vertices a partir dos quais se pode atingir v por algum caminho.

Exemplo: O FTI do vértice vs do grafo abaixo

. . V2
é o conjunto {vy,vp,v4,vs,v7}. Note que 0 v, . V3
proprio vértice faz parte do FTl ja que dele pode
alcancar ele mesmo.
Z V6
Vg *
V7
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Conectividade (1)

Informalmente um grafo é conexo (conectado) se for possivel caminhar de qual-
quer vértice para qualquer outro vértice através de uma sequéncia de arestas
adjacentes.

Definicdo: Seja G um grafo. Dois vértices v e w de GG estido conectados sse
existe um caminho de v para w. Um grafo G € conexo sse dado um par qualquer
de vértice v e w em G, existe um caminho de v para w. Simbolicamente,

G é conexo < V vértices v, w € V(G), 3 um caminho de v para w.

Se a negacao desta afirmacgao for tomada, é possivel ver que um grafo néao é
conexo sse existem dois vértices em G que nao estao conectados por qualquer
caminho.
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V2

Conectividade (2)

Vo V3 Vy V5 Ve

< —e—»

Gy
Grafo conexo.

vy Vs Ve V3 Vy
o V2
V5
V3 Vg V7 Vi Ve
G 2 G 3

Grafos nao conexos.
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Conectividade (3)
Lemas

Seja G um grafo.

(a) Se G é conexo, entao quaisquer dois vértices distintos de G podem ser
conectados por um trajeto simples (simple path).

(b) Se vértices v e w sdo parte de um circuito de G e uma aresta é removida
do circuito, ainda assim existe um trajeto de v para w em G.

(c) Se GG é conexo e contém um circuito, entao uma aresta do circuito pode ser
removida sem desconectar G.
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Conectividade (4)

Os grafos

Vo Vyq V5 V6

possuem trés “partes” cada um, sendo cada parte um grafo conexo.

Um componente conexo de um grafo € um subgrafo conexo de maior tamanho
possivel.
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Componente conexo (1)

Definicao: Um grafo H € um componente conexo de um grafo GG sse:

1. H é um subgrafo de G,
2. H é conexo;

3. Nenhum subgrafo conexo I de G tem H como um subgrafo e I contém
vértices ou arestas que nao estao em H.

=» Um grafo pode ser visto como a uniao de seus componentes conexos.

(@.\UFMG/ICEX/DCC PAA e Grafos: Conceitos e Algoritmos 89



Componente conexo (2)

Os componentes conexos do grafo G abaixo sao:

V3 V4 V5 V8
o
€1 €2
€5 €3
V1 Vs Vg €4 v

(G possui trés componentes conexos:
Hy: Vi = {vy,v2,v3} By = {ey,en}
H»> . VQZ{’U4} EQZ(D
H3 : V3 — {057?)677}77,08} E3 — {637 €4, 65}
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Componente fortemente conexo (conectado)

Um grafo dirigido G = (V, E) é fortemente conexo se cada dois vértices
quaisquer sao alcancaveis a partir um do outro.

Os componentes fortemente conexos de um grafo dirigido sao conjuntos de
vértices sob a relacao “sao mutuamente alcancaveis”.

Um grafo dirigido fortemente conexo tem apenas um componente fortemente

conexo.
V3 Vo Vg
? Os componentes fortemente conexos do grafo ao lado séao:
Hi: Vi ={vo,v1,v2,v3}
H2 . VQ = {U4}
H3 . V3 = {’05}
Observe que {v4,vs} ndo € um componente fortemente co-
- o NEXO0 ja que o vertice vs nao € alcancavel a partir do vértice
Vo V1 Vg wva.
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Circuito Euleriano (1)

Definicao: Seja G um grafo. Um circuito Euleriano € um circuito que contém
cada vértice e cada aresta de G. E uma sequéncia de vértices e arestas ad-
jacentes que comeca e termina no mesmo vértice de GG, passando pelo menos
uma vez por cada vértice e exatamente uma unica vez por cada aresta de G.
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Circuito Euleriano (2)

Teorema: Se um grafo possui um circuito Euleriano, entao cada vértice do grafo
tem grau par.

Prova:

— Suponha que GG € um grafo que tem um circuito Euleriano. [Deve-se mostrar que
qualquer vértice v de GG tem grau par.]

— Seja v um vértice particular de G mas escolhido aleatoriamente.

— O circuito Euleriano possui cada aresta de ¢ incluindo todas as arestas inci-
dentes a v.

— Vamos imaginar um caminho que comec¢a no meio de uma das arestas ad-
jacentes ao inicio do circuito Euleriano e continua ao longo deste circuito e
termina no mesmo ponto.
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Circuito Euleriano (3)

(Par de arestas entrada/saida)

Comece aqu\! vy Vg

V5 4 Vy

(Par de arestas entfada/sgid@

Prova (continuacao):

— Cada vez que o vértice v é visitado através de uma aresta de entrada, este
vértice é “deixado” ja que o caminho termina no meio de uma aresta.

— Ja que cada circuito Euleriano passa em cada aresta de G exatamente uma
unica vez, cada aresta incidente a v € visitada uma unica vez neste processo.

— Como o caminho que passa por v € feito através de arestas incidentes a v na
forma de pares entrada/saida, o grau de v deve ser multiplo de 2.

— Isto significa que o grau de v € par. [O que devia ser mostrado.]
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Circuito Euleriano (4)

O contrapositivo deste teorema (que € logicamente equivalente ao teorema ori-
ginal) é:

Teorema: Se algum vértice de um grafo tem grau impar, entao o grafo nao tem
um circuito Euleriano.

-=» Esta versado do teorema € util para mostrar que um grafo nao possui um
circuito Euleriano.

Vértices v1 e v3 possuem grau 3 e, assim, nao possuem um circuito Euleriano.
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Circuito Euleriano (5)

Revisitando o problema das sete pontes da cidade de Konigsberg.

Problema: E possivel que uma pessoa fagca um percurso na cidade de tal forma

que inicie e volte a mesma posicao passando por todas as pontes somente uma
unica vez?

=» N&o. Todos os vértices tém grau impar.
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Circuito Euleriano (6)

No entanto, se cada vértice de um grafo tem grau par, entao o grafo tem um
circuito Euleriano?

— Nao. Por exemplo, no grafo abaixo todos os vértices tém grau par, mas como
o grafo nao é conexo, nao possui um circuito Euleriano.

Vo V3
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Circuito Euleriano (7)

Teorema: Se cada vértice de um grafo nao vazio tem grau par e o grafo é conexo,
entao o grafo tem um circuito Euleriano.

Prova: [Esta é uma prova construtivista, ou seja, apresenta um algoritmo para achar um circuito

Euleriano para um grafo conexo no qual cada vértice tem grau par.]

e Suponha que GG é um grafo conexo nao vazio e que cada vértice de G tem
grau par. [Deve-se achar um circuito Euleriano para G.]
e Construa um circuito C usando o algoritmo descrito a seguir.

PASSO 1:
— Escolha qualquer vértice v de (G. [Este passo pode ser executado ja que pela su-
posicao o conjunto de vértices de G € nao vazio.]
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Circuito Euleriano (8)

Prova (continuacao):

PASSO 2:

— Escolha uma sequéncia qualquer de vértices e arestas adjacentes,
comecando e terminando em v, sem repetir arestas. Chame o circuito resul-
tante de C.

[Este passo pode ser executado pelas seguintes razoes:

e Como o grau de cada vértice de GG € par, é possivel entrar num vértice qualquer que néo
seja 0 v por arestas de entrada e saida n&o visitadas ainda.

e Assim, uma sequéncia de arestas adjacentes distintas pode ser obtida enquanto o vértice v
nao seja alcangado.

e Esta sequéncia de arestas deve voltar em v ja que existe um namero finito de arestas.

]
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Circuito Euleriano (9)

Prova (continuacao):

Passo 3: Verifigue se C' contém cada aresta e vértice de G. Se sim, C' € um
circuito Euleriano e o problema esta terminado. Caso contrario, execute os
passos abaixo.
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Circuito Euleriano (10)

Prova (continuacao):

PASSO 3A:

— Remova todas as arestas do circuito C' do grafo GG e quaisquer vértices que
se tornaram isolados quando as arestas de C' sao removidas.
— Chame o grafo resultante de G’.

[Note que G’ pode n&o ser conexo, como ilustrado abaixo, mas cada vértice de G’ tem grau

par, ja que removendo as arestas de C remove um numero par de arestas de cada vértice e a
diferenca de dois numeros pares ¢é par.]
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Circuito Euleriano (11)

Prova (continuacao):

PASSO 3B:
— Escolha qualquer vértice w comum a ambos C e G'.

[Deve haver pelo menos um vértice deste tipo ja que G € conexo. Na figura abaixo existem
dois vértices deste tipo: u e w.]
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Circuito Euleriano (12)

Prova (continuacao):

PASSO 3c:

— Escolha uma sequéncia qualquer de vértices e arestas adjacentes,
comecando e terminando em w, sem repetir arestas. Chame o circuito re-
sultante de C’.

[Este passo pode ser executado ja que o grau de cada vértice de G’ é par e G’ é finito. Veja a
justificativa para o passo 2.]
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Circuito Euleriano (13)

Prova (continuacao):

PASSO 3D:
— Agrupe C e C’ para criar um novo circuito C”” como segue:
e Comece em v e siga em direcao a w.
e Percorra todo o circuito C’ e volte a w.
e Caminhe pela parte de C' nao percorrida ainda até o vértice v.

[O efeito de executar os passos 3C e 3D para o grafo anterior € mostrado abaixo.]

C C ’
’ N

’ 4 \

’ 4 \
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Circuito Euleriano (14)

Prova (continuacao):

PASSO 3E:
— Seja C «— C" e retorne ao passo 3.

[Como o grafo G é finito, a execucao dos passos deste algoritmo termina, com a construcao de
um circuito Euleriano para G. Como diferentes escolhas podem ser feitas, diferentes circuitos

podem ser gerados.]
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Circuito Euleriano (15)

Determine se o grafo abaixo tem um circuito Euleriano. Em caso positivo ache
um circuito Euleriano para o grafo.

e Os vértices a,b,c, f,g,1,7 tém grau 2.
e Os veértices d, e, h tém grau 4.
=» Pelo teorema anterior, este grafo possui um circuito Euleriano.
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Circuito Euleriano (16)

Sejav = a e seja

C : abcda.

C' nao é um circuito Euleriano para este grafo, mas C possui uma interseccao
com o restante do grafo no vértice d.
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Circuito Euleriano (17)

Seja C' : deghjid. Agrupe C’ a C para obter
C" : abedeghjida.

Seja C + C". Entao C pode ser representado pelas arestas rotuladas no grafo
abaixo:

C' nao é um circuito Euleriano para este grafo, mas C possui uma interseccao
com o restante do grafo no vértice e.
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Circuito Euleriano (18)

Seja C' : efhe. Agrupe C’ a C para obter
C" : abede fheghjida.

Seja C + C". Entao C pode ser representado pelas arestas rotuladas no grafo
abaixo:

C' inclui cada aresta do grafo exatamente uma unica vez e, assim, C' € um
circuito Euleriano para este grafo.
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Circuito Euleriano (19)

Teorema: Um grafo G tem um circuito Euleriano sse G é conexo e cada vértice
de GG tem grau par.

Definicao: Seja G um grafo e seja v e w dois vértices de G. Um Trajeto Euleri-
ano de v para w € uma sequéncia de arestas e vértices adjacentes que comeca
em v, termina em w e passa por cada vertice de G pelo menos uma vez e passa
por cada aresta de G exatamente uma unica vez.

Coroléario: Seja G um grafo e dois vértices v e w de G. Existe um trajeto Eu-
leriano de v para w sse GG € conexo € v € w tém grau impar e todos 0s outros
vértices de GG tém grau par.
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Trajeto Euleriano (1)

Uma casa possui uma divisdo representada pela planta abaixo. E possivel uma
pessoa sair do comodo A, terminar no comodo B e passar por todas as portas
da casa exatamente uma unica vez? Se sim, apresente um possivel trajeto.

| HCch |
®n —1 ® 0
| .®.T | | | | |
| ®
| I | T @
© D T
T ®
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Trajeto Euleriano (2)

A planta da casa pode ser representada pelo grafo abaixo:

@5 ©

L 1L
§

Cada vertice deste grafo tem um grau par, exceto os vértices A e B que tém
grau 1. Assim, pelo corolario anterior, existe um trajeto Euleriano de A para B.

-> AGHFEIHEKJDCB
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Circuito Hamiltoniano (1)

Em 1859, prop6s um jogo na forma de um
dodecaedro (sélido de 12 faces).

%M%M

William Hamilton (1805- T —
0. 3081723559038 0 1

1865), matematico irlandés. Con-
tribuiu para o desenvolvimento da 6p-
tica, dindamica e algebra. Em particu-
lar, descobriu a algebra dos quater-

N,

nions. Seu trabalho provou ser sig-

Y
PRI
oy by,

nificante para o desenvolvimento da

mecanica quantica.
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Circuito Hamiltoniano (2)
Jogo proposto por Hamilton

Cada vértice recebeu o nome de uma cidade: Londres, Paris, Hong Kong, New
York, etc. O problema era: E possivel comecar em uma cidade e visitar todas
as outras cidades exatamente uma unica vez e retornar a cidade de partida?

O jogo é mais facil de ser imaginado projetando o dodecaedro no plano:
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Circuito Hamiltoniano (3)
Jogo proposto por Hamilton

Uma possivel solucao para este grafo é:

Definicao: Dado um grafo G, um Circuito Hamiltoniano para G € um circuito
simples que inclui cada vértice de GG, ou seja, uma sequéncia de vertices adja-
centes e arestas distintas tal que cada vértice de G aparece exatamente uma

unica vez.
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Comentarios sob_re circuitos Euleriano e
Hamiltoniano (1)

e Circuito Euleriano:
— Inclui todas as arestas uma unica vez.
=» Inclui todos os veértices, mas que podem ser repetidos, ou seja, pode nao
gerar um circuito Hamiltoniano.

e Circuito Hamiltoniano:
— Inclui todas os vértices uma unica vez (exceto o inicial = final).
=» Pode nao incluir todas as arestas, ou seja, pode nao gerar um circuito
Euleriano.
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Comentarios sob_re circuitos Euleriano e
Hamiltoniano (2)

e E possivel determinar a priori se um grafo G possui um circuito Euleriano.

e Nao existe um teorema que indique se um grafo possui um circuito Hamil-
toniano nem se conhece um algoritmo eficiente (polinomial) para achar um
circuito Hamiltoniano.

e No entanto, existe uma técnica simples que pode ser usada em muitos casos
para mostrar que um grafo nao possui um circuito Hamiltoniano.
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Determinando se um grafo nao possui um circuito
Hamiltoniano (1)

Suponha que um grafo G tenha um circuito Hamiltoniano C' dado por:

C :vpeqjvien...v,_1€envn

Como C' € um circuito simples, todas as arestas e; sao distintas e todos os
vértices sao distintos, exceto vg = vp,.

Seja H um subgrafo de GG que é formado pelos vértices e arestas de C', como
mostrado na figura abaixo (H é o subgrafo com as linhas grossas).

(@.\UFMG/ICEX/DCC PAA e Grafos: Conceitos e Algoritmos 118



Determinando se um grafo nao possui um circuito
Hamiltoniano (2)

Se um grafo G tem um circuito Hamiltoniano entdo G tem um subgrafo H com
as seguintes propriedades:

1. H contém cada vértice de G;

2. H é conexo;

3. H tem o mesmo numero de arestas e
de vértices;

4. Cada vértice de H tem grau 2.

Contrapositivo desta afirmacao:

=» Se um grafo G nao tem um subgrafo H com propriedades (1)—(4) entao G
nao possui um circuito Hamiltoniano.
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Determinando se um grafo nao possui um circuito
Hamiltoniano (3)

Prove que o grafo G abaixo nao tem um circuito Hamiltoniano.

a C

Se GG tem um circuito Hamiltoniano, entao G tem um subgrafo H que:

1. H contém cada vértice de G;

2. H é conexo;
3. H tem o0 mesmo numero de arestas e de vértices;

4. Cada veértice de H tem grau 2.
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Determinando se um grafo nao possui um circuito
Hamiltoniano (4)

— Em G, grau(b) = 4 e cada vértice de H tem grau 2;

— Duas arestas incidentes a b devem ser removidas de G para criar H;

— Qualquer aresta incidente a b que seja removida fara com que 0s outros vér-
tices restantes tenham grau menor que 2;

=» Conseguentemente, nao existe um subgrafo H com as quatro propriedades
acima e, assim, G nao possui um circuito Hamiltoniano.
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O Problema do Caixeiro Viajante (1)

e Eminglés, Traveling Salesman Problem, ou TSP.

e Suponha o mapa abaixo mostrando quatro cidades (A, B, C, D) e as distan-
cias em km entre elas.

B 30 C
30 25
50 35
A D
40

e Um caixeiro viajante deve percorrer um circuito Hamiltoniano, ou seja, visitar
cada cidade exatamente uma unica vez e voltar a cidade inicial.

=» Que rota deve ser escolhida para minimizar o total da distancia percorrida?
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O Problema do Caixeiro Viajante (2)

e Possivel solucao:
— Enumere todos os possiveis circuitos Hamiltonianos comecando e termi-
nando em A;

— Calcule a distancia de cada um deles;

— Determine o menor deles.

Rota Distancia (km)
ABCDA | 304+30+25+4+40 =125
ABDCA | 30+ 354+ 25450 = 140
ACBDA | 50430+ 35440 =155
ACDBA | 50+ 25+ 35+ 30 = 140
ADBCA | 404354+ 30+ 50 = 155
ADCBA | 404+25+30+4+ 30 =125

B. 30

30
50

35

40

25

=» Assim, tanto a rota ABC DA ou ADCBA tem uma distancia total de 125

km.
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O Problema do Caixeiro Viajante (3)

e A solucao do TSP é um circuito Hamiltoniano que minimiza a distancia to-
tal percorrida para um grafo valorado arbitrario G com n vértices, onde uma
distancia é atribuida a cada aresta.

e Algoritmo para resolver o TSP:
— Atualmente, forca bruta, como feito no exemplo anterior.
=» Problema da classe NP-Completo.

e Exemplo: para o grafo K3 existem

29! ~ 8,84 x 1030

circuitos Hamiltonianos diferentes comecando e terminando num determinado
vértice.

e Mesmo se cada circuito puder ser achado e calculado em apenas 1us, seria
necessario aproximadamente 2,8 x 1017 anos para terminar a computacao
nesse computador.
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Representacao de um grafo

e Dado um grafo G = (V, E):
— V = conjunto de vértices.
— FE = conjunto de arestas, que pode ser representado pelo subconjunto de

V x V.

e O tamanho da entrada de dados é medido em termos do:
— Numero de vértices |V|.
— NuUmero de arestas |E|.

e Se G é conexo entdo |E| > |V| — 1.
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Representacao de um grafo
Convencoes

e Convencao | (Notagao):
— Dentro e somente dentro da notagao assintotica os simbolos V' e E signifi-
cam respectivamente |V| e |E|.
-=» Se um algoritmo “executa em tempo O(V + E)” é equivalente a dizer que
“executa em tempo O(|V| + |E|)”.

e Convencéo Il (Em pseudo-cédigo):
— O conjunto V' de vértices de G é representado por V[G].
— O conjunto E de arestas de G é representado por E[G].
=» Os conjuntos V' e E sao vistos como atributos de G.
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Representacao de um grafo
Estruturas de dados

e Matriz de adjacéncia:
— Forma preferida de representar grafos densos (|E| ~ |V |?).
— Indica rapidamente (O(1)) se existe uma aresta conectando dois vértices.

e Lista de adjacéncia:
— Representagcao normalmente preferida.
— Prové uma forma compacta de representar grafos esparsos (|E| < |V |[?).

e Matriz de incidéncia:
— Representacao que inclui vértice e aresta.

=» As duas primeiras formas acima sao as principais formas de representar um
grafo.
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Representacao de um grafo
Matriz de adjacéncia e grafo dirigido (1)

Seja o grafo dirigido abaixo:  Este grafo pode ser representado por uma ma-

°3 triz A = (a;;), onde (a;;) representa o numero
Vo de arestas de v; para v;.
€2 =» Matriz de Adjacéncia
: es i v v3
V1 vy |1 0 O
% A= v |1 1 2
V3 vz |1 0 O
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Representacao de um grafo
Matriz de adjacéencia e grafo dirigido (2)

Definicao: Seja G um grafo dirigido com vertices vq,vo,...,vn. A matriz de
adjacéncia de G é a matriz A = (a;;) (A[1...n,1...n]) é definida como:

a;; = #de arestas de v; parav;,Vi,j = 1,2,...,n.

e Valor diferente de zero na diagonal principal: lacgo.

e Valorigual a 1 na entrada (a;;): uma Unica aresta de v; a v;.

o Valores maiores que 1 na entrada (a;;): arestas paralelas de v; a v;.
e Espaco: O(V?2).
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Representacao de um grafo
Matriz de adjacéncia e grafo dirigido (3)

€5 €5
V1 Vo V3 Vs
€2 €3 €2 €3
€1 €4 €1 €4
3 2
vi v2 03 vi v2 03
V1 O O O V1 1 1 O
A= wo O 1 1 A= wo 1 0 2
V3 2 1 0 V3 O O O
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Dada a matriz de adjacéncia de um

Representacao de um grafo
Matriz de adjacéncia e grafo dirigido (4)

Um possivel desenho deste grafo é:

grafo:
v V2
V1 Vo V3 V4
v1 0O 1 1 O
(3 1 1 0 2
A= °
vg [0 O 1 1
vg |2 1 0O O
L V3 4
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Representacao de um grafo
Matriz de adjacéncia e grafo nao dirigido

Definicao: Seja G um grafo nao dirigido com vértices vq,vo,...,vn. A matriz
de adjacéncia de G € a matriz A = (a;;) sobre o conjunto dos inteiros néo
negativos tal que

a;; = # de arestas conectando v; av;,Vi,j = 1,2,...,n.
Dado o grafo: A matriz de adjacéncia correspon-
dente é:
€3
Vi o L Vo v1 V2 U3 U4
vi |0 1 0 1
. . . . Ao V2 1 1 2 1
vg |0 2 0 O
ve |1 1 0 1
Zy Vs i i

UFMG/ICEx/DCC PAA e Grafos: Conceitos e Algoritmos 132



Representacao de um grafo
Matriz de adjacéncia e componentes conexos

Dado o grafo: A matriz de adjacéncia correspondente é:
Vo (101/00[00
0020000
e €3 |64 120/00/00
Q €5 A=1]000|01/00
Vi Va 0000|1100
o O0O00O0|02
Q & |000(00(20
V5 Vs

A matriz A consiste de “blocos” de diferentes tamanhos
Ve ao longo da diagonal principal, ja que o conjunto de vér-
tices é disjunto.
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Representacao de um grafo
Matriz de adjacéncia: Analise

e Deve ser utilizada para grafos densos, onde |E| é proximo de |V|? (|E| ~
VI?).

e Otempo necessario para acessar um elemento € independente de |V | ou |E]|.

e E muito util para algoritmos em que necessitamos saber com rapidez se existe
uma aresta ligando dois vértices.

e A maior desvantagem é que a matriz necessita O(V?2) de espaco.

e Ler ou examinar a matriz tem complexidade de tempo O(V?2).
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Representacao de um grafo
Uso de matriz de adjacencia

Quando usada, a maior parte dos algoritmos requer tempo O(V?2), mas exis-
tem excecoes.

Seja um grafo dirigido que contém um vértice sink, ou seja, um vértice com:
— Grau de entrada (in-degree) = |V | — 1

— Grau de saida (out-degree) = 0

— Nao existe uma aresta loop

Apresente um algoritmo para determinar se um grafo dirigido possui um veér-
tice sink em tempo O(V') usando uma matriz de adjacéncia.
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Representacao de um grafo
NuUmero de vértices sink num grafo dirigido

Quantos vértices sink um grafo dirigido G = (V, E') possui no maximo?
=» No maximo 1.

Prova por contradicao:

— Suponha que s; e s; sejam vértices sink.

— Deve existir uma aresta de todos os nos do grafo G para s; € s;, exceto loops.

— Em particular deve existir uma aresta (s;,s;) e uma aresta (s;, s;) ja que s;
e s; sao vertices sink.

J
— Isto n&o pode ocorrer ja que o grau de saida de um vértice sink € O.

Logo, se existir um vértice sink no grafo G € no maximo 1.
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Representacao de um grafo
Matriz de incidéncia

Definicdo: Seja G um grafo ndo dirigido com vértices vi,vo,...,v, € arestas e1,en,...,en. A
matriz de incidéncia de G é a matriz M = (m,;;) de tamanho n x m sobre o conjunto dos
inteiros nao negativos tal que

s — 4L quando a aresta e; € incidente a v;.
¥ O caso contrario.

Dado o grafo: A matriz de incidéncia correspondente é:
€3 €1 €2 €3 €4 e5 € €7
Vie €2 Vo U1 I 1 1 0 0 0 0O O
M= V2 O 1 1 1 1 0 1
v3 O 0 01 1 0 O
e ey e5 ey vy |1 0 O O O 1 1]
Vy € V3
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Representacao de um grafo
Lista de adjacéncia

e \etor Adj de |V/| listas, uma para cada veértice de V.

e Para cada vértice u € V, a lista Adj[u] contém apontadores para todos os
vértices v tal que a aresta (u,v) € E (todos os vértices adjacentes a u em
G).

=» Definicao vale para grafos nao dirigidos e dirigidos.

o Z,'L.‘Ql “comprimento da lista de adjacéncia”, vale:

— Grafo dirigido = | E'|, cada aresta aparece uma unica vez na lista.

— Grafo nao dirigido = 2| F/|, cada aresta aparece duas vezes na lista (entrada
de u e entrada de v).

e Espaco: O(V + FE).
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Representacao de um grafo
Lista de adjacencia e grafo dirigido (1)

Seja o grafo dirigido abaixo:  Este grafo pode ser representado por uma lista

“3 de adjacéncia Adj:
Vo
€2
‘. Adj[v1] = [vq]
v es Adj;vgg = ;111,@2,’037’03]
5 Adjlvz] = [vq]
V3 Adj
Vs Vi |+—
Vs Vq Vs V3 3T
V3 Vil T/
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Representacao de um grafo
Lista de adjacéencia e grafo dirigido (2)

€5 €5
V4 Vo V3 V4
Z €3 Z €3
€1 €4 €1 €4
3 2
Este grafo pode ser representado Este grafo pode ser representado
pela lista de adjacéncia: pela lista de adjacéncia:
Adj[v1] = [l Adj[v1] = [v1,v7]
Adjlvo] = [va,v3] Adj[va] = [v1,v3,v3]
Adj[vz] = [v1,v71,v2] Adjlvz] = |
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Representacao de um grafo
Lista de adjacencia e grafo nao dirigido

Dado o grafo: Uma lista de adjacéncia correspon-
dente é:
€3

v 62 V. iT41 = [

e 2 Adj[vi] = [vo,v4]
Ad/ :UQ: :’U]_, U2, U3, U3, ’U4]

6 e, e| e Adj[v3z] 2, V2]
Adj[va] = [v1,v2,v4]

Vy es V3
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Contando caminhos de tamanho n (1)

O tamanho (comprimento) de um caminho é o numero de arestas do mesmo,

ou seja, numero de vértices menos um.

Dado o grafo

€2
e
® 1 Vo
Vs
€3 €4
V3

Quantos caminhos distintos de tamanho 2 exis-
tem conectando v, a vo?

Vo€e1v1€102
V2E2V2E2UD
V2€E3V3€4V2
V2€e4v3€e302
V2€e3V3€3V9
V2E4V3€4V2

O caminho

V2E3U3€E4V2E2UDE3V3

tem tamanho 4.

=» Existem seis caminhos
distintos.
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Contando caminhos de tamanho n (2)

Quantos caminhos distintos de tamanho n existem conectando dois vértices de
um dado grafo G?

=» Este valor pode ser computado usando multiplicacao de matrizes.

Seja o grafo: A matriz de adjacéncia correspondente é:
€2
o v vy v2 U3
d Ay vy |0 1 0
N A= v |1 1 2
V3 vz |0 2 0
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Contando caminhos de tamanho n (3)

O valor de A2 é dado por:

O 10 O 10 1 1 2
1 1 2 1 1 2|=]16 2
' 020]|020] |22 4]
Observe que a>> = 6, que € 0 numero de caminhos o
de tamanho 2 de v, para v». . e Vo
Vi
€3 |€4

-» Se A é a matriz de adjacéncia de um grafo G, a entrada a;; da matriz A2
indica a quantidade de caminhos de tamanho 2 conectando v; a v; no grafo
G.

=» Este resultado € valido para caminhos de tamanho n calculando A™.
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Isomorfismo de grafos (1)

Os desenhos abaixo

Vi
4

€5 €1
€1
V5 Vo €3
V3 V4
€4
€4 €o
€5
Vy . V3 y €o y
3 5 2

representam o mesmo grafo G-
— Conjuntos de vértices e arestas sao idénticos;
— Funcobes aresta—vértice sao as mesmas.

=» Grafos isomorfos (do grego, o que significa a mesma forma).
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Isomorfismo de grafos (2)

G €4
Vq Vq - .
Estes grafos sao diferen-
e e; e e tes apesar de_ possuirem 0s
mesmos conjuntos de ver-
Vs Vo Vo Ve tices e arestas.
As fungbes aresta—veértice
&, & & 65 Nao sao as mesmas.
Vy V3 7 Vg
€3 €5
Vértices de G Vértices de G Arestas de G Arestas de G~
1@
Vo
V3
Vie-
Vs
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Isomorfismo de grafos (3)

Definicdo: Sejam os grafos G e G’ com conjuntos de vértices V(G) e V(G
e com conjuntos de arestas E(G) e E(G’), respectivamente. O grafo G é
isomorfo ao grafo G’ sse existem correspondéncias um-para-um

g:V(G) = V(G)
h: E(G) — E(G)
que preservam as funcoes aresta-vértice de G e G’ no sentido que

Vve V(G) Ne € E(G)

v € um né terminal de e < g(v) é um né terminal de h(e).
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Isomorfismo de grafos (4)

Os grafos
G
€4
€7 V2
V1 €6
€5 Vg
€4

sao isomorfos?

@) UFMG/ICEx/DCC

PAA e Grafos: Conceitos e Algoritmos

148



Isomorfismo de grafos (5)

Para resolver este problema,
devemos achar funcoes

g9:V(G) = V(&)

h:E(G) — E(G)

tal que exista a correspon-
déncia como mencionado
anteriormente.

=» Grafos G e G’ sao iso-
morfos.

€4 V3

V1 €6 € €3

V4

V(G) V(@)

L
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Isomorfismo de grafos (6)

Os grafos

sao isomorfos?
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Isomorfismo de grafos (7)

Para resolver este problema,
devemos achar funcoes

g9:V(G) = V(&)

h:E(G) — E(G)

tal que exista a correspon-
déncia como mencionado
anteriormente.

=» Grafos G e G’ sao iso-
morfos.

@) UFMG/ICEx/DCC
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Isomorfismo de grafos (8)
e |Isomorfismo de grafos € uma relacao de equivaléncia no conjunto de grafos.

e Informalmente, temos que esta propriedade é:
— Reflexiva: Um grafo é isomorfo a si proprio.
— Simétrica: Se um grafo G é isomorfo a um grafo G’ entdo G’ é isomorfo a

G.
— Transitiva: Se um grafo G é isomorfo a um grafo G’ e G’ é isomorfo a G”

entao G é isomorfo a G”.
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Representantes de classes de isomorfismo (1)

Ache todos os grafos nao isomorfos que tém dois vértices e duas arestas.

— 0| o | OO o o
(a) (b) (c) (d)

e Existe um algoritmo que aceita como entrada os grafos G e G’ e produz como
resultado uma afirmacao se estes grafos sdao isomorfos ou nao?
— Sim. Gere todas as funcdes g e h e determine se elas preservam as
funcoes aresta—vértice de G e G’
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Representantes de classes de isomorfismo (2)

e Se G e G’ tém cada um n vértices e m arestas, o nimero de fungdes g é n!
e o numero de fungdes h € m!, 0 que da um numero total de n! - m! fungoes.

e Exemplo para n = m = 20.
— Temos 20! - 20! ~ 5,9 x 103° pares a verificar.
— Assumindo que cada combinacao possa ser achada e calculada em ape-
nas 1us, seria necessario aproximadamente 1,9 x 1023 anos para termi-

nar a computagéo nesse computador.
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Invariantes para isomorfismo de grafos (1)

Teorema: Cada uma das seguintes propriedades € uma invariante para isomor-
fismo de dois grafos G e G’, onde n, m e k sdo inteiros nao negativos:

Tem n vértices;

Tem m arestas;

Tem um vértice de grau k;

Tem m vértices de grau k;

Tem um circuito de tamanho k;

Tem um circuito simples de tamanho k;
Tem m circuitos simples de tamanho k;
E conexo;

Tem um circuito Euleriano;

Tem um circuito Hamiltoniano.

COX®NOOAEWDND =

—

Isto significa que se G é isomorfo a G’ entdo se G tem uma destas propriedades
G’ também tem.
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Invariantes para isomorfismo de grafos (2)

sao isomorfos?

Os grafos

Nao. GG tem nove arestas e GG’ tem oito arestas.
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Invariantes para isomorfismo de grafos (3)

<P

H H’

Os grafos

sao isomorfos?

Ndo. H tem um vértice de grau 4 e H' ndo tem.
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Isomorfismo de grafos simples (1)

Definicdo: Se G e G’ sdo grafos simples (sem arestas paralelas e sem lacgos)
entdo G é isomorfo a G’ sse existe uma correspondéncia g um-para-um do
conjunto de vértices V(G) de G para o conjunto de vértices V(G’) de G’ que
preserva a fungdo aresta—vértice de G e de G’ no sentido que

V vértices u,v € G

wv é uma aresta de G < {g(u), g(v)} € uma aresta de G’.
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Isomorfismo de grafos simples (2)

b X
a c We y
d Z
G G’

Os grafos

sao isomorfos?
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Isomorfismo de grafos simples (3)
b X
a,<10 Ve [>y
d Z
G G’

Sim, sdo isomorfos. A funcao g preserva a funcao aresta—veértice
de G e de G":

V(G) g ViG)

Arestas de G Arestas de G/
ab yw = {g(a), g(b)}
ac yr = {g(a),g(c)}
ad yz = {g(a), g(d)}
cd rz = {g(c),g(d)}
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Arvore

Definicao: Uma arvore (também chamada de arvore livre) € um grafo nao di-

rigido aciclico e conexo.
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Floresta

Definicao: Uma floresta € um grafo nao dirigido aciclico podendo ou nao ser
conexo.
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Arvore geradora (1)

Suponha que uma companhia
aérea recebeu permissao para voar
nas seguintes rotas:

=» Este conjunto de rotas € minimo?

No entanto, por questoes de econo-
mia, esta empresa ira operar ape-
nas nas seguintes rotas:

Se L

N
Este conjunto de rotas interconecta
todas as cidades.

— Sim! Qualquer arvore deste grafo possui oito vértices e sete arestas.

@) UFMG/ICEX/DCC
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Arvore geradora (2)

Definicdo: Uma arvore geradora de um grafo G é um grafo que contém cada
vértice de GG e é uma arvore.

Esta definicao pode ser estendida para floresta geradora.

e Proposicao:
— Cada grafo conexo tem uma arvore geradora.
— Duas arvores geradores quaisquer de um grafo tém a mesma quantidade
de arestas.
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Arvore geradora (3)

Seja o grafo GG abaixo Este grafo possui o circuito vovqvavs.
Vg Vy4 V3 ~ A
. o A remocao de qualquer uma das trés arestas do

circuito leva a uma arvore.

Assim, todas as trés arvores geradoras sao:

V5 Vy4 V3 V5 Vy4 V3

Vs V4 V3
. ° ® ¢ ¢ * I
3 ® ° ® ¢ ? ”
Vg V; Vo Vo V4 Vo Vo V1 Vo
@) UFMG/ICEX/DCC
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Arvore geradora minima ou
Minimal Spanning Tree (1)

O grafo de rotas da companhia
aérea que recebeu permissao para
voar pode ser “rotulado” com as dis-
tancias entre as cidades:

A

Suponha que a companhia deseja
voar para todas as cidades mas u-
sando um conjunto de rotas que
minimiza o total de distancias per-
corridas:

A

355 M

Este conjunto de rotas interconecta
todas as cidades.
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Arvore geradora minima (2)

Definicao: Um grafo com peso é um grafo onde cada aresta possui um peso
representado por um numero real. A soma de todos os pesos de todas as
arestas é o peso total do grafo. Uma arvore geradora minima para um grafo
com peso € uma arvore geradora que tem o menor peso total possivel dentre
todas as possiveis arvores geradoras do grafo.

Se G é um grafo com peso e e uma aresta de GG entao:

— w(e) indica o peso da aresta e,
— w(@) indica o peso total do grafo G.
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Algoritmos para obter a arvore geradora minima

e Algoritmo de Kruskal.

e Algoritmo de Prim.

Grafo ipicial: Arvore geradora minima:
A

355 M

74
C

262
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Algoritmo de Kruskal (1)

e |déia basica:
— Seleciona a aresta de menor peso que conecta duas arvores de uma flo-
resta.
— Repita o processo até que todos os vértices estejam conectados sempre
preservando a invariante de se ter uma arvore.
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Algoritmo de Kruskal (2)
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Algoritmo de Kruskal (3)
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Algoritmo de Prim

e |déia basica:

— Tomando como Vvértice ini-
cial A, crie uma fila de priori-
dades classificada pelos pe-
sos das arestas conectando
A.

— Repita o processo até que
todos os vértices tenham
sido visitados.

1)
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Algoritmos de pesquisa em grafo

e Obijetivo:
— Pesquisa sistematica de cada aresta e vértice de um grafo.

e Grafo G = (V, E) pode ser tanto dirigido quanto ndo dirigido.

e Os algoritmos apresentados assumem que a estrutura de dados utilizada é
uma lista de adjacéncia.

e Exemplos de algoritmos de pesquisa em grafo:
— Pesquisa em profundidade (Depth-first search — DFS).
— Pesquisa em largura (Breadth-first search — BFS).

e Aplicacoes:

— Computacao grafica.

— Técnicas de verificacao formal.
— Compiladores.

— Resolugao de problemas.
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Pesquisa em largura (1)
e Sejaum grafo G = (V, E) e um vértice origem s.
e Pesquisa em largura:

— Descobre as arestas em GG que sao alcancaveis a partir de s.

— Computa a distancia (em n® de arestas) de s para os vértices que sao
alcancaveis.

— Produz uma arvore em largura com raiz s € seus vertices alcancaveis.

— Se v é um vértice alcancavel a partir de s, entdo o caminho entre s € v na
arvore corresponde ao caminho mais curto entre s e v no grafo G.
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Pesquisa em largura (2)

e Expande a fronteira entre vértices descobertos e nao descobertos uniforme-
mente através da extensao (largura) da fronteira.

e Pesquisa descobre todos os vértices que estao a distancia k antes de desco-
brir os vértices a distancia k + 1.
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Algoritmo para calcular BFS (1)

e Estruturas de dados:
— Grafo representado como uma lista de adjacéncia.
— Vetor color[u]: cor de cada vértice u € V.
— Vetor w[u]: predecessor de cada vértice u € V. Se u ndo tem predecessor
ou ainda nao foi descoberto entdo w[u] = nil.
— Vetor d[u]: distancia de cada vértice v € V' ao vertice s.
— Fila Q: contém os vértices ja descobertos em largura.

e Cores dos vértices:
— white: nao visitados ainda.

— gray: vértice descoberto mas que nao teve a sua lista de adjacéncia total-
mente examinada.

— black: vértice descoberto que ja teve a sua lista de adjacéncia totalmente
examinada.
=» garantir que a pesquisa caminha em largura

e Funcoes:
— Enqueue e Dequeue: operagdes sobre uma fila FIFO.
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Algoritmo para calcular BFS (2)

BFS(G, s)

’
2
3
4
)
6
7
8

9
10

12
13
14
15
16
17
18

for each vertex u € V[G] — {s}
do color[u] < white
d[u] < oo
7 [u] < nil
color([s] < gray
d[s] < O
[s] < nil
Q — {s}
while Q #
do u «— head|[Q)]
for each v € Adj[u]
do if color[v] = white
then color[v] < gray
d[v] < d[u] + 1
w[v] «— u
Enqueue(Q, v)
Dequeue(Q)
color[u] < black
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Comentarios e analise do algoritmo (1)

Linhas 1—4: Inicializacao |

1 for each vertex u € V[G] — {s}
2 do color[u] «— white e Inicializagdo de cada veértice para white (ndo
3 d[u] «— oo descoberto).
4 [u] < nil e Distancia para o vértice s como oo.
e Predecessor do vértice desconhecido.
Andlise:
e Linhas 1-4: O(V).
e Cada vértice (exceto s) € inicializado como
white e nenhum vértice volta a ser white.
5 color[s] — gray Linhas 5-8: Inicializacao
6 d[s] <0 e Inicializacdo de s com gray (é considerado
7 7[s] — nil descoberto).
8 Q«— {s} e Distancia para o proprio vértice s € 0.

e N&ao possui predecessor.

e A fila @ contém inicialmente apenas s (ira
conter apenas 0s vértices gray, ou seja, 0s
vértices descobertos em “largura”).

Analise:
e Linhas 5-8: O(1).
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Comentarios e analise do algoritmo (2)

9 while Q # 0
10 do u — head[Q] ¢
11 for each v € Adj[u]
12 do if color[v] = white ¢
13 then color[v] < gray .
14 d[v] — d[u] + 1
15 w[v] «— u
16 Enqueue(Q, v) °
17 Dequeue(Q) °
18 color[u] < black

Linhas 9—18: Loop

Loop é executado até que a fila esteja vazia,
Ou seja, nao hajam vertices gray.

Cada vértice € colocado e retirado da fila so-
mente uma unica vez.

Vértice gray € um vértice que foi descoberto
mas a sua lista de adjacéncia ainda n&o foi
totalmente descoberta.

Vértice black ja foi totalmente examinado.
Vértice u contém o primeiro elemento da fila
Q.

Linhas 11-16 examinam cada vértice v adja-
cente a u que nao foi descoberto ainda (white
(12)), marca como descoberto (gray (13)),
calcula a sua distancia até s (14), marca o
seu predecessor como u (15), e o coloca na
fila @ (16).

Quando todos os vértices adjacentes a u
forem examinados, u € retirado da fila @ (17)
e passa a ser black (18).
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Comentarios e analise do algoritmo (3)

9 while Q # ¢ Andlise:

10 do u «— head[Q)] o O,pe_ragc"),es de colocar e retirar da file_1 cada

11 for each v € Adj[u] vértice € O(1) e o tempo total relacionado

12 do if color[v] = white com as operagoes de fila 6 O(‘,/): .

13 then color[v] — gray e A I|s_ta de adjacéncia d'e pada vértice u é per-
corrida somente uma unica vez quando esse

14 d[v] — d[u] +1 vértice serd retirado de Q.

15 m[v] —u e A soma dos comprimentos das filas de ad-

16 Enqueue(Q, v) jacéncia & O(E), assim como o tempo para

17 Dequeue(Q) percorré-la.

18 color[u] < black e Linhas 9-18: O(V + E), que é o custo das

operacOes associadas a fila e a percorrer as
listas de adjacéncia.

Analise de todo algoritmo:
e Linhas 1—4: O(V).

e Linhas 5-8: O(1).

e Linhas 9-18: O(V + E).

=» Custo total: O(V + E).
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Execucao do algoritmo BFS (1)

r § f u
(D0 (=)
O |s

v W X ¥

O |w|r

¥ ) t U
(1 )=
O Bt X
(=) @=2)—(~ 1 2
v W X }
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Execucao do algoritmo BFS (2)

Q | ¢
2 2
§ § ! u
O |x|v|u
= 22
y W X )
I S ! U
Q |vull
3 2 ¥ 3
v W X
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Execucao do algoritmo BFS (3)

F 5 ! I
0 |
3 3
¥ W X
I § ! u
0 |
3 3
V W X
¥ 5 ! I
0 @
! W X 3
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Caminho mais curto

e BFS calcula a distancia (em n® de arestas) de s € V' para os vértices que sao
alcancaveisem G = (V, E).

e Caminho mais curto 6(s,v):
— NuUmero minimo de arestas em qualquer caminho de s para v, no caso de
ser alcancavel, ou co se nao for.
— d[v] = 6(s,v), paratodov € V.
=» Caminho mais curto entre s e v.

e Teorema: Sub-caminhos de caminhos mais curtos sao caminhos mais cur-
tos.
Prova: Se algum sub-caminho nao gerar o caminho mais curto, ele poderia
ser substituido por um sub-caminho atalho e gerar um caminho total
mais curto.

s e o € e - S b
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Inequacao triangular
e Teorema: 6 (u,v) < d(u,x) + 6(x,v).
— Caminho mais curto u ~ v nhdo é mais longo que qualquer outro caminho

u ~ v—em particular o caminho concatenando o caminho mais curto
u ~» £ COmM 0 caminho mais curto = ~» v.
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Arvore em largura (1)

e BFS produz uma arvore em largura com raiz s e seus veértices alcancaveis.
— Arvore representada pelo vetor .

e Sejaografo G = (V, E) e o vértice origem s. O sub-grafo predecessor de G
é definido como G = (Vx, Er), onde

Ve =A{v € V|x[v] # nil} U {s}

Er = {(nlv],v) € Efv € Vr — {s}}
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Arvore em largura (2)

e O sub-grafo predecessor GG € uma arvore em largura se:
— Vi consiste dos vértices alcancaveis a partir de s, Vv € V.
— 3 um caminho simples Unico de s a v em G que também € o caminho mais
curto de savem G.
= |Er| = |Vx| — 1.

e BFS constréi o vetor 7 tal que sub-grafo predecessor G, € uma arvore em
largura.
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Imprime caminho mais curto

PRINT-PATH(G, s, v)

1 ifo=s
2  thenprint s
3 elseif r[v] = nil
4 then print “no path from” s “t0” v “exists”
5 else PRINT-PATH(G, s, w[v])
6 print v
Analise:

e Executa em tempo O(V).
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Pesquisa em profundidade (1)
e Sejaum grafo G = (V, E), dirigido ou n&o.

e Pesquisa em profundidade:

— Explora os vértices do grafo a partir de arestas nao exploradas ainda, mais
fundo no grafo quanto possivel.

— Quando todas as arestas de v tiverem sido exploradas, a pesquisa volta
para explorar outras arestas do vértice do qual v foi descoberto.

— Processo continua até que todos os vértices alcancaveis a partir de uma
origem tenham sido descobertos.

— Se existe vértice nao descoberto ainda entdo um novo vértice é sele-
cionado e 0 processo comega todo novamente.
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Pesquisa em profundidade (2)

O
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Algoritmo para calcular DFS (1)

e Estruturas de dados:
— Grafo representado como uma lista de adjacéncia.

— Vetor color[u]: cor de cada vértice u € V.

— Vetor w[u]: predecessor de cada vértice u € V. Se u ndo tem predecessor
ou ainda nao foi descoberto entdo w[u] = nil.

— Vetor d[1...|V]]: marca quando o vértice é descoberto
(white — gray).

— Vetor f[1...|V|]: marca quando o vértice é finalizado
(gray — black).

— Variavel global time: indica o instante em que o vértice é descoberto e
terminado, ou seja, o timestamp.
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Algoritmo para calcular DFS (2)

e Cores dos vértices:
— white : nao visitados ainda.

— gray : vértice descoberto mas que nao teve a sua lista de adjacéncia to-
talmente examinada.

— BB vértice descoberto que j4 teve a sua lista de adjacéncia totalmente
examinada e esta terminado.

e Funcao:
— DFS-VisIT: Percorre recursivamente o grafo em profundidade.
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Algoritmo para calcular DFS (3)

e Saida: para cada vértice temos duas mar-

cas de tempo (timestamp) e um predeces-

sor (w(v)) para construir a arvore em pro-

fundidade.

e YVu € V, tempo logico:

white

— d[v]: instante de descoberta do vértice v;

— flv]: instante de finalizacao do vértice v; |

-=» Essas informagdes serao Uteis para out-

ros algoritmos.

e Timestamps estao entre 1 e 2|V/| |

— Yu € V, 3 um unico evento de descoberta
e um unico evento de término (inteiros

distintos).

— Vu € V,d[u] < flu] = d[u] < flu]
= 1 <d[v] < flv] <2|V].
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Algoritmo para calcular DFS (4)

DFS(G)

1 for each vertex u € V[G]

2 do color[u] < white

3 w[u] « nil

4 time «— 0O

5 for each vertex u € V[G]

6 do if color[u] = white

7 then DFS-VisIT(u)

DFS-ViIsIT(u)

color[u] < gray > Vértice u descoberto
time «— time + 1
d[u] « time
for each v € Adj[u] > Explore vértices v adjacentes a u
do if color[v] = white
then w[v] «— u
DFS-VisIT(v)
color[u] < black > Vértice u finalizado
time «— time + 1
flu] < time

COWoo~NOOOGLA~,WN =

—
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Comentarios e analise do algoritmo (1)

DFS(G)

1 for each vertex u € V[G]

2 do color[u] < white

3 w[u] < nil

4 time «— 0

5 for each vertex u € V[G]

6 do if color[u] = white

7 then DFS-VisIT(u)

Linhas 1—4: Inicializac&o

e Inicializacdo de cada vértice para branco (white)
(nao descoberto — linha 2).

e Predecessor do vértice desconhecido (linha 3).

e Variavel global usada para indicar o timestamp
(linha 4).

Linhas 5—-7: Loop

e Para cada vértice ainda ndo descoberto (linha 6)
faz a pesquisa em profundidade (linha 7). Vértice
u torna-se a raiz de uma nova arvore (se houver)
na floresta de pesquisa em profundidade.

Andlise:

e Linhas 1-3: ©(V). Cada vértice é inicializado
como white e nenhum vértice volta a ser white.

e Linha4: O(1).

e Linhas 5-7: ©(V 4+ E). As linhas 5-7 de DFS
gastam ©(V) sem contar o tempo de DFS-VISIT,
que sO é chamado uma unica vez para cada vér-
tice branco.

e DFS-VISIT executaem ©(F).
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Comentarios e analise do algoritmo (2)

DFS-VisIT(u)

color[u] < gray
time «— time + 1
d[u] < time
for each v € Adj[u]
do if color[v] = white
then w[v] «— u
DFS-VisIT(v)
color[u] < black
time «— time + 1
flu] < time

SQOwWoo~NOOOGLTPA~,WDN —

—

Comentarios:

Linha 1: Vértice u é descoberto e torna-se cinza
(gray).

Linha 2: Incrementa a variavel de timestamp.
Linha 3: Marca o instante em o vértice u foi des-
coberto.

Linhas 4 a 7: Verifica cada vértice v adjacente a
u (linha 4). Se o vértice v ainda néo foi desco-
berto (linha 5) marca como seu ancestral o vértice
u (linha 6) e continua pesquisando o grafo em pro-
fundidade (linha 7).

Linha 8: Vértice u € finalizado e torna-se preto
(black).

Linha 9: Incrementa a variavel de timestamp.
Linha 10: Marca o instante em o vértice u foi fina-
lizado.

Analise:

Todas as atribuicoes tém custo O(1).

Loop das linhas 4-7: é executado |Adj[u]| vezes,
sendo que X ,cyv|Adj[v]| = ©(FE). Assim o custo
de DFS-ViIsIT é ©(F).
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Execucao do algoritmo DFS

(m) (n) (o) {-pi
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Classificacao das arestas numa pesquisa em
profundidade

E possivel identificar quatro tipos de arestas durante a construcdo da floresta de pesquisa em
profundidade G obtida pelo algoritmo de DFS no grafo G. O primeiro tipo de aresta pertence a
floresta enquanto os outros trés nio:

— T (tree): aresta da floresta de pesquisa em profundidade G,. Aresta (u,v) é uma aresta da
arvore se o vértice v foi descoberto inicialmente ao explorar a aresta dirigida (u, v).

— B (back): aresta (u,v) que conecta um vértice v a um ancestral v ja presente na arvore.
Loops sao consideradas arestas back.

— F (forward): aresta (u,v) que conecta um vértice v a um descendente v na arvore de
pesquisa em profundidade.

— C (cross): sao todas as outras arestas.
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Propriedades da pesquisa em profundidade (1)

e O sub-grafo GG, define uma floresta de arvores (no caso do grafo G nao ser

conexo).

— As arvores da pesquisa em profundidade refletem a estrutura das
chamadas recursivas de DFS-VISIT.

— Temos que 7w[v] = u sse DFS-VISIT foi chamado durante uma pesquisa
da lista de adjacéncia de wu, i.e., vértice v tem como ancestral o vértice w.

— Pode-se dizer que veértice v € descendente do vértice u na floresta de
pesquisa em profundidade sse v foi descoberto quando u era cinza (gray).

e Pesquisa em profundidade apresenta “Estrutura de Parénteses”.
— Represente a descoberta do vértice u pelo paréntese da esquerda: (u.
— Represente a finalizagdo do vértice u pelo paréntese da direita: u).
=» Seqlencia de descobertas e finalizacbes de um dado vértice define uma
expressao bem formada no sentido que parénteses sao propriamente ani-
nhados.
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Propriedades da pesquisa em profundidade (2)

y )

Resultado de uma pesquisa em profundidade sobre
um grafo G.

Intervalos de descoberta e finalizacdo de cada
vértice correspondem a estrutura de parénteses
mostrada. Cada retangulo representa o “intervalo de
tempo” entre o instante de descoberta e finalizagao
de um vértice. Se ha sobreposicao de intervalos en-
tAo um esta inserido no outro e o vértice que repre-
senta o menor intervalo € um descendente do vértice
que representa o maior intervalo.

1 2 3 4 5 6 7 8 9 101112 13 14 15 16
(g (z (¥ (x x) ¥) (ww) 2) ) (t (v v) (0 w) 0

O grafo acima esta desenhado com todas as arestas
da arvore de cima para baixo e as outras arestas que
nao fazem parte dela (B, F e C).
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Teorema do Parénteses (1)

Seja uma pesquisa em profundidade em um grafo G = (V, E), dirigido ou no.
Para quaisquer dois vértices u € v desse grafo, temos que apenas uma das trés
condicoes abaixo é verdadeira:

1. Os intervalos [d[u], flu]] e [d[v], f[v]] s&o totalmente disjuntos e nem u
nem v é um descendente do outro na floresta de pesquisa em profundi-
dade.
= dlu] < flu] < d[v] <d[v] ou dv] < flv] < du] < flu].

2. O intervalo [d[u], f[u]] estd contido inteiramente dentro do intervalo
[d[v], f[v]] e o vértice u é um descendente do vértice v na arvore de
pesquisa em profundidade.
= d[v] < d[u] < flu] < f[v].

3. O intervalo [d[v], f[v]] estd contido inteiramente dentro do intervalo
[d[u], flu]] e o vértice v é um descendente do vértice u na arvore de
pesquisa em profundidade.
= du] < d[v] < flv] < flu].
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Teorema do Parénteses (2)

Prova. Seja o caso d[u] < d[v]. Existem duas possibilidades:
(@) dlv] < flu]
— Vértice v foi descoberto quando w era cinza (gray).
— Vértice v € um descendente de w.
— Arestas de saida de v sao exploradas.
— Veértice v ¢ finalizado antes da pesquisa retornar a u e ser finalizado.
.. Intervalo [d[v], f[v]] esta inteiramente contido em [d[u], f[u]].
(b) d[v] £ f[u], ou ainda, flu] < d[v]
— Sabe-se que d[u] < flu] e d[v] < f[v].
.. Intervalos sao disjuntos e os dois vértices ndo tém uma relacao de an-
cestral e descendente.

O caso d[v] < d[u] é similar ao que foi explicado acima.

Exemplos:
— Certo: () [1 ([1) [O]
— Errado: ([)1 [ (1)
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Aninhamento de intervalos de descendentes

Corolario: Vértice v é um descendente préprio do vértice u na floresta de
pesquisa em profundidade para um grafo GG (dirigido ou nao) sse

dlu] < d[v] < flv] < flu].

Prova. Imediato do Teorema do Parénteses.
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Teorema do Caminho Branco

Teorema: Na floresta de pesquisa em profundidade de um grafo G = (V, E) (dirigido ou ndo),
o vértice v € um descendente do vértice u sse (<) no instante d[u] que DFS descobre
u, 0 Vvértice v pode ser alcangcado a partir de v ao longo de um caminho formado
inteiramente de vértices brancos.

Prova.

(=) [se o vértice v é um descendente do vértice u entdo no instante d[u] que DFS descobre u,
0 vértice v pode ser alcancado a partir de v ao longo de um caminho formado inteiramente de
vértices brancos.]

Suponha que v € um descendente de u. Seja w um vértice qualquer no caminho entre u
e v na arvore de pesquisa em profundidade. Pelo corolario do “Aninhamento de Intervalos de
Descendentes” (AID), d[u] < d[w] e w é branco no instante d[u]. Como w é um vértice qualquer
no caminho entre u € v, a concluséo € verdadeira.

(<) [se no instante d[u] que DFS descobre u, o vértice v pode ser alcancado a partir de
u ao longo de um caminho formado inteiramente de veértices brancos entdo o vértice v € um
descendente do vértice u.]

Suponha que a hipbtese é verdadeira e que o0 vértice v ndo se torna um descendente de u
na arvore de pesquisa em profundidade. Assuma que todos 0s outros vértices ao longo do
caminho tornam-se descendentes de u. Seja w 0 predecessor de v no caminho tal que w € um
descendente de u (w e u podem ser o mesmo vértice) e, pelo corolario AID, f[w] < f[u]. Note
que v deve ser descoberto depois que u é descoberto, mas antes que w seja finalizado (w é o
predecessor de v). Assim, d[u] < d[v] < flw] < f[u]. Pelo teorema do Parénteses temos que
o intervalo [d[v], f[v]] esta contido inteiramente dentro do intervalo [d[u], f[u]]. Pelo corolario
AID, v deve ser um descendente de wu.
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Pesquisa em profundidade e Conjectura |

Se existe um caminho do vértice u para o vértice v num grafo dirigido GG e se
d[u] < d[v] na pesquisa em profundidade de G, entdo o vértice v é um descen-
dente do veértice u na floresta de pesquisa em profundidade obtida. [Exercicio
22.3-7 do livro CLRS]

A conjectura é verdadeira ou falsa?
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Pesquisa em profundidade e Conjectura |

Se existe um caminho do vértice u para o vértice v num grafo dirigido G e se
d[u] < d[v] na pesquisa em profundidade de GG, entdo o vértice v € um descen-
dente do vértice u na floresta de pesquisa em profundidade obtida. [Exercicio
22.3-7 do livro CLRS]

A conjectura é verdadeira ou falsa?
=» Falsa! Prova por contra-exemplo.

u 4

— Existe um caminho de « para v no grafo.

— A arvore de pesquisa em profundidade € produzida e as arestas identificadas.

— Temos que d[u] < d[v] na pesquisa em profundidade mas v ndo é um des-
cendente de w.
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Pesquisa em profundidade e Conjectura ll
Se existe um caminho do vértice u para o vértice v num grafo dirigido GG, entao
qualquer pesquisa em profundidade deve resultar em d[v] < f[u]. [Exercicio

22.3-8 do livro CLRS]

A conjectura é verdadeira ou falsa?
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Pesquisa em profundidade e Conjectura ll

Se existe um caminho do vértice u para o vertice v num grafo dirigido GG, entao
qualquer pesquisa em profundidade deve resultar em d[v] < f[u]. [Exercicio
22.3-8 do livro CLRS]

A conjectura é verdadeira ou falsa?
=» Falsa! Prova por contra-exemplo.

— Existe um caminho de u para v no grafo.
— A arvore de pesquisa em profundidade € produzida e as arestas identificadas.
— Contudo, d[v] > f[u].
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Pesquisa em profundidade e floresta com certa
propriedade

Seja um vértice u, que tem arestas de entrada e saida, em um grafo dirigido G.
E possivel que esse vértice fique sozinho na arvore de pesquisa em profundi-
dade? [Exercicio 22.3-10 do livro CLRS]
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Pesquisa em profundidade e floresta com certa
propriedade

Seja um vértice u, que tem arestas de entrada e saida, em um grafo dirigido G.
E possivel que esse vértice fique sozinho na arvore de pesquisa em profundi-
dade? [Exercicio 22.3-10 do livro CLRS]

Sim!

@ 0O O

w u 4

— Vértice u tem arestas de entrada e saida no grafo G.
— No entanto, a floresta de pesquisa em profundidade produzida faz com o vér-
tice u apareca sozinho na arvore de pesquisa em profundidade.
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Classificacao de arestas na DFS (1)

e A pesquisa em profundidade pode ser usada para classificar as arestas de
um grafo G.

e Exemplo de aplicacao:
— Um grafo dirigido € aciclico sse a pesquisa em profundidade nao identifica
nenhuma aresta do tipo back (retorno).

e O procedimento DFS pode ser modificado para classificar as arestas de um
grafo G a medida que elas forem sendo encontradas.
=> Nesta versao, arestas F (forward) e C (cross) nao sao discriminadas.

e Idéia: tem-se uma aresta incidente a um vértice
— white : indica uma aresta da arvore.

— gray : indica uma aresta B (back).

— BB indica uma aresta F (forward) ou C (cross).
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Classificacao de arestas na DFS (2)

Aresta incidente a um vértice:

e white: arestaT
— ldentificacao imediata a partir da especificagcao do algoritmo.

e (Qray : arestaB
— Vértices cinza (gray) formam uma sequéncia linear de descendentes que
correspondem a pilha de invocagOes ativas ao procedimento DFS-VISIT.
— Nesse processo de exploragao, se um vértice cinza encontra outro vértice
cinza entao foi encontrado um ancestral.

o BEBN: arestaFouC

— Possibilidade restante.

— E possivel mostrar que uma aresta (u, v) é
> F (forward) se d[u] < d[v] e,
> C (cross) se d[u] > d[v].
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Classificacao de arestas na DFS (3)

DFS-WITH-EDGE-CLASSIFICATION(G)
> Idéntico ao DFS

DFS-ViIsIT(u)

ONO O AWM=

— -1 1 a1
A~ WODN-—=2 O 0

color[u] < gray
time — time 4 1
d[u] < time
for each v € Adj[u]
do if color[v] = white
then (u,v) < T
w[v] «— u
DFS-VisIT(v)
else if color[v] = gray
then (u,v) — B
else (u,v) «— {F,C}
color[u] < black
time «— time + 1
flu] < time

> Vértice u descoberto

> Explore vértices v adjacentes a u

> Aresta pertence a arvore

> Aresta é do tipo B
> Aresta é do tipo F ou C
> Vértice u finalizado

@©)UFMG/ICEx/DCC
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Classificacao de arestas hum grafo nao dirigido

Teorema: Numa pesquisa em profundidade de um grafo nao dirigido G, cada aresta de G é
uma aresta da arvore (T) ou uma aresta de retorno (B).

Prova.

Seja (u, v) uma aresta arbitraria de G e suponha, sem perda de generalidade, que d[u] < d[v].
Nesse caso, o vértice v deve ser descoberto e finalizado antes de finalizar o vértice u (enquanto
u for cinza), ja que v esta na lista de adjacéncia de w.

Se a aresta (u,v) € explorada primeiro na direcao de u para v, entdo v ndo era conhecido
(white) naquele instante, caso contrario, a aresta ja teria sido explorada na direcao de v para w.
Assim, a aresta (u, v) torna-se uma aresta da arvore (T).

Se a aresta (u,v) é explorada primeiro na direcao de v para u, entdo (u,v) € uma aresta de
retorno (B), ja que o vértice u ainda tem a cor cinza (gray) no momento que a aresta € primeiro
explorada.
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Ordenacao topologica

e A busca em profundidade pode ser usada para executar uma ordenacao
topoldgica em um grafo dirigido aciclico (DAG — Directed Acyclic Graph).

e Uma ordenacéo topologica de um DAG G = (V, E) é uma ordenacao linear
de todos os seus vértices, tal que se GG contém uma aresta (u,v), entdo
aparece antes de v na ordenacao.

e Se 0 grafo nao é aciclico, entao nao é possivel nenhuma ordenacéao linear.
e Uma ordenacao topologica de um grafo pode ser vista como uma ordenacao

de seus vértices ao longo de uma linha horizontal, de tal forma que todas as
arestas orientadas sigam da esquerda para a direita.
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Ordenacao topologica

e DAGs sao usados em aplicacOes para indicar precedéncia entre eventos.
e O grafo abaixo mostra como um dado homem se veste pela manha.

e Uma aresta orientada (u, v) no DAG indica que a peca de roupa u deve ser
vestida antes da peca v.
(socks) 1718

11416

oo

— Algumas pecas devem ser vestidas antes de outras (meias antes dos sa-

patos);
— Qutras, em qualquer ordem (meias e calcas).

Uma ordenacéao topologica desse DAG fornece uma ordem para 0 processo
de se vestir.
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Algoritmo de ordenacao topologica

TOPOLOGICAL-SORT(G)

1 DFS(G) > Chama DFS para calcular o instante de término f|u] para cada ver-
tice u. A medida que cada vertice € terminado, ele deve ser inserido
na frente de uma lista encadeada.

2 return lista encadeada de vértices.

TOPOLOGICAL-SORT(G) DFS-VISIT(u)

> Versdo modificada de DFS
1 for each vertex u € V[G]
2 do color[u] < white
3 m[u] < nil
4 time <+ 0

5 for each vertex u € V[G]

6

7

8

color[u] < gray
time «— time + 1
d[u] < time
for each v € Adj[u]
do if color[v] = white
then 7[v] — u
DFS-VisiT(v)
color[u] < black
fime «— time+ 1

do if color[u] = white
then DFS-VIsSIT(u)
return

COWoOoONOOLA~,WN ==

—_—

flu] « time
> Monta a ordenacéo topoldgica
11 Enqueue(Q, u)
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Algoritmo de ordenacao topologica

@"@@_

17/18 11/16 12/15 13/14 E‘H{J M4

=» Os vértices topologicamente ordenados aparecem na ordem inversa de seus
tempos de término.
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Ordenacao topologica: Analise de complexidade

e A busca em profundidade é ©(V + FE) e leva tempo O(1) para inserir cada
um dos n vértices a frente da lista encadeada.

e Logo, a ordenacao topoldgica tem complexidade de tempo de ©(V + E).

UFMG/ICEx/DCC PAA e Grafos: Conceitos e Algoritmos 219



Componentes fortemente conexos

e Um grafo orientado é fortemente conexo se cada um de dois vértices quais-
quer € acessivel a partir do outro.

e Um componente fortemente conexo de um grafo orientado G = (V, E) é um
conjunto maximo de vértices C C V tal que, para todo par de vértices u e v
em C, temos que 0s vértices u € v sao acessiveis um a partir do outro.

a b [o; ad
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Componentes fortemente conexos

e A busca em profundidade pode ser utilizada também para realizar a decom-
posicao de um grafo orientado em seus componentes fortemente conexos.
— Varios algoritmos que trabalham com grafos dirigidos comegcam por essa
decomposicao.

— Uma vez feita essa decomposicao, o algoritmo € executado sobre cada
componente.

— As solugcoes sao combinadas de acordo com a estrutura das conexoes en-
tre os componentes.
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Componentes fortemente conexos

e Dado um um grafo G = (V, E), o seu grafo transposto G! = (V, ET) con-
siste das arestas de G com seus sentidos invertidos (E?).
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Componentes fortemente conexos: Algoritmo

O algoritmo abaixo calcula os componentes fortemente conexos de um grafo

orientado G = (V, E) fazendo duas pesquisas em profundidade, a primeira
sobre G e a segunda sobre GZ'.

STRONGLY-CONNECTED-COMPONENTS(G)

1 DFS(G) > Faz a pesquisa em profundidade e calcula o tempo de finalizagc&o f[u]
para cada vértice wu.

2 Gere GT > Gera o grafo transposto G* do grafo G.

3 DFS(GT) > Faz a pesquisa em profundidade para o grafo G*, mas no lago prin-

cipal de DFS, considere os vértices em ordem decrescente de f|u]
(como computado na linha 1).

4 Liste os vértices de cada arvore na floresta DFS formada na linha 3 como um componente
fortemente conexo..
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Componentes fortemente conexos: Analise
e Busca em profundidade sobre G : ©(V + E).

e Calculode G : ©(V + E).

e Busca em profundidade sobre G : ©(V + E).

e Assim, a complexidade de tempo é ©(V + FE).
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Componentes fortemente conexos: Exemplo
Passo 1

Seja o grafo G abaixo

Um possivel resultado para o calculo de DFS do grafo G é:

a b c a

X&)

<D
12113 X250
e f g h

Para a pesquisa resultante, temos o0s seguintes tempos de finalizacdo f[u] em ordem decres-
cente:

U b e a c d g h f
flu] |16 | 15 |14 |10 | 9 7/ 6
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Componentes fortemente conexos: Exemplo

Passo 2
Dado o grafo G-
a b c d
e r g h
O grafo transposto G do grafo G é:
a b c d
= f g h
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Componentes fortemente conexos: Exemplo

Passo 3

Pesquisa em profundidade o grafo G, sendo que no lago principal do DFS os vértices sdo

considerados em ordem decrescente de f[u] (como computado no passo 1).

f

flul

15114 10| 9 | 7

4
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Componentes fortemente conexos: Exemplo
Passo 4

Os vértices de cada arvore na floresta DFS formada no passo 3 sao listados como um compo-
nente fortemente conexo do grafo original.

Grafo GT com a floresta DFT:

a b c d

e f g h

Grafo GG com 0s componentes conexos:

a b c ad
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Componentes fortemente conexos e o grafo G°¢¢

O grafo GG pode ser representado por um grafo de componentes
GSCC = (y5CC pSCey

definido da seguinte forma:
— Suponha que G tenha componentes fortemente conexos C1, Co, . .., Ck.

— V5CC = {u1,vs,...,v;}, Onde v; representa o componente fortemente conexo C; de G.
— (v, v;) € E°CY, se G contém a aresta dirigida (z,y)|z € Ci,y € C;.

No grafo G°¢“, cada vértice representa um componente e cada aresta representa a conectivi-
dade entre componentes.

a b c d
e f g h
Grafo G com 0s componentes conexos Grafo G°¢¢
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Conectividade entre componentes fortemente
conexos

Lema: Sejam C e C’ dois componentes fortemente conexos distintos do grafo
G. Sejam os vértices u,v € C e u/,v' € C’. Suponha que exista um caminho
u ~ v € G. Entdo ndo pode haver um caminho v/ ~ v € G.

Prova. Suponha que exista um caminho v' ~ v € G. Devem existir, entao,
caminhos v ~ 4 ~ v e v/ ~ v ~ u € G. Assim, u, que pertence ao
componente fortemente conexo C, é alcancavel por um caminho que passa pelo
componente fortemente conexo C’, o que implica que os componentes conexos
C e C' deveriam ser um Unico componente. Isso contradiz a suposicédo que eles
sdo distintos e, assim, ndo pode haver o caminho v/ ~» v € G.
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