
Projeto e Análise de Algoritmos
Grafos: Conceitos e Algoritmos

Antonio Alfredo Ferreira Loureiro
loureiro@dcc.ufmg.br

http://www.dcc.ufmg.br/~loureiro

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 1

loureiro@dcc.ufmg.br
http://www.dcc.ufmg.br/~loureiro

Motivação

• Suponha que existam seis sistemas computacionais (A, B, C, D, E, e F) inter-
conectados entre si da seguinte forma:

E

A

B

C

DF

Ü Esta informação pode ser representada por este diagrama, chamado de
grafo.

Ü Este diagrama identifica unicamente um grafo.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 2

Motivação

• Dois objetos especiais:
– Vértices
– Arestas

F

E

B

A C

D

Vértice

Aresta

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 3

Definição

Um grafo G consiste de dois conjuntos finitos:

1. Vértices V (G)

2. Arestas E(G)

Em geral, um grafo G é representado como:

G = (V,E)

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 4

Terminologia

– Cada aresta está associada a um conjunto de um ou dois vértices, chamados
nós terminais.

– Extremidade de uma aresta: vértice da aresta.
– Função aresta–extremidade: associa aresta a vértices.
– Laço (Loop): aresta somente com nó terminal.
– Arestas paralelas: arestas associadas ao mesmo conjunto de vértices.
– Uma aresta é dita conectar seus nós terminais.
– Dois vértices que são conectados por uma aresta são chamados de adja-

centes.
– Um vértice que é nó terminal de um laço é dito ser adjacente a si próprio.
– Uma aresta é dita ser incidente a cada um de seus nós terminais.
– Duas arestas incidentes ao mesmo vértice são chamadas de adjacentes.
– Um vértice que não possui nenhuma aresta incidente é chamado de isolado.
– Um grafo com nenhum vértice é chamado de vazio.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 5

Terminologia

v

2v 5v 7v

6v1e
4v

5e

2e

3e

6e4e

3v

1

Arestas paralelas Vértice isolado

Laço

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 6

Terminologia

• Conjunto de vértices:
{v1, v2, v3, v4, v5, v6}.

• Conjunto de arestas:
{e1, e2, e3, e4, e5, e6, e7}.

• Função aresta–vértice:

Aresta Vértice
e1 {v1, v2}
e2 {v1, v3}
e3 {v1, v3}
e4 {v2, v3}
e5 {v5, v6}
e6 {v5}
e7 {v6}

e

3e 3v

1e 4e

2v

1v 4v

6v

5v

6e

5e

7e

2

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 7

Terminologia

• e1, e2 e e3 são incidentes a
v1.

• v2 e v3 são adjacentes a v1.

• e2, e3 e e4 são adjacentes
a e1.

• e6 e e7 são laços.

• e2 e e3 são paralelas.

• v5 e v6 são adjacentes en-
tre si.

• v4 é um vértice isolado.

e

3e 3v

1e 4e

2v

1v 4v

6v

5v

6e

5e

7e

2

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 8

Terminologia

Seja um grafo especificado
como:
• Conjunto de vértices:
{v1, v2, v3, v4}.

• Conjunto de arestas:
{e1, e2, e3, e4}.

• Função aresta–vértice:

Aresta Vértice
e1 {v1, v3}
e2 {v2, v4}
e3 {v2, v4}
e4 {v3}

Duas possíveis representações deste grafo:

v4v
3e

2e

3v

4e

1e

1v

2

v

2e 3e

2v

3v

4e

1v

1e

4

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 9

Terminologia

Considere os dois diagramas abaixo. Rotule os vértices e as arestas de tal
forma que os dois diagramas representem o mesmo grafo.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 10

Terminologia

Uma possível identificação de vértices e
rótulos pode ser:

v

2v

3v4v

5v

1e

4e

3e

2e

5e

1

v

4v

2v

3v

1e

5v

2e

3e

4e

5e

1

Os dois diagramas são repre-
sentados por:
• Conjunto de vértices:
{v1, v2, v3, v4, v5}.

• Conjunto de arestas:
{e1, e2, e3, e4, e5}.

• Função aresta–vértice:

Aresta Vértice
e1 {v1, v2}
e2 {v2, v3}
e3 {v3, v4}
e4 {v4, v5}
e5 {v5, v1}

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 11

Modelos usando grafos
Grafo Vértice Aresta

Comunicação Centrais telefônicas, Com-
putadores, Satélites

Cabos, Fibra óptica, Enlaces
de microondas

Circuitos Portas lógicas, registradores,
processadores

Filamentos

Hidráulico Reservatórios, estações de
bombeamento

Tubulações

Financeiro Ações, moeda Transações
Transporte Cidades, Aeroportos Rodovias, Vias aéreas
Escalonamento Tarefas Restrições de precedência
Arquitetura funcional de
um software

Módulos Interações entre os módulos

Internet Páginas Web Links
Jogos de tabuleiro Posições no tabuleiro Movimentos permitidos
Relações sociais Pessoas, Atores Amizades, Trabalho conjunto

em filmes

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 12

Modelos usando grafos
Circuito elétrico: Leis de Kirchoff

Gustav Kirchoff (1824–
1887), físico alemão. Foi o primeiro a
analisar o comportamento de “árvores
matemáticas” com a investigação de
circuitos elétricos.

i1 + i4 = i2 + i3

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 13

Modelos usando grafos
Estruturas de moléculas de hidrocarboneto

Arthur Cayley (1821–
1895), matemático inglês. Logo após
o trabalho de Kirchoff, Cayley usou
“árvores matemáticas” para enumerar
todos os isômeros para certos hidro-
carbonetos.

HH C

C

H

C C

C

H

C C

C

H

C C

C

H

C

Butano

CH

H

H

H

H

C

C

HC

H

H

CC

H

H

Isobutano

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 14

Modelos usando
grafos
Conectividade na
Internet

Este grafo mostra a conectividade
entre roteadores na Internet, re-
sultado do trabalho “Internet Map-
ping Project” de Hal Burch e Bill
Cheswick.

Atualmente o trabalho está sendo
desenvolvido comercialmente pela
empresa Lumeta (www.lumeta.com).

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 15

Modelos usando grafos
Conectividade na Internet

Este trabalho de Stephen
Coast (http://www.fractalus
.com/steve/stuff/ipmap/) está
“medindo” e mapeando a estru-
tura e desempenho da Internet.
Este é um de seus trabalhos
iniciais.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 16

Modelos usando grafos
Conectividade na RNP2

A Rede Nacional de Pesquisa
(RNP) criou a primeira infra-
estrutura de comunicação (back-
bone) no Brasil para interconexão
com a Internet. Atualmente,
este backbone é conhecido como
RNP2.

O grafo de conectividade da
RNP2 tem uma “estrutura”
(topologia) basicamente na
forma de estrela. Note que dife-
rentes enlaces de comunicação
(arestas) possuem diferentes
capacidades.

A Internet é formada basica-
mente por interconexão de Sis-
temas Autônomos (AS – Au-
tonomous System), onde cada
AS é um backbone distinto.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 17

Modelos usando grafos
Grafo de derivação sintática

Noam Chomsky John Backus Peter Naur

Chomsky e outros desenvolveram novas formas de
descrever a sintaxe (estrutura gramatical) de lingua-
gens naturais como inglês. Este trabalho tornou-se
bastante útil na construção de compiladores para
linguagens de programação de alto nível. Neste
estudo, árvores (grafos especiais) são usadas para
mostrar a derivação de sentenças corretas gramati-
calmente a partir de certas regras básicas.

É comum representar estas regras, chamadas de
produção, usando uma notação proposta por Backus
(1959) e modificada por Naur (1960) usada para des-
crever a linguagem de programação Algol. Esta no-
tação é chamada de BNF (Backus-Naur Notation).

Notação BNF (subconjunto da
gramática da língua inglesa):

〈sentence〉 ::= 〈noun phrase〉〈verb phrase〉
〈noun phrase〉 ::= 〈article〉〈noun〉 |

〈article〉〈adjective〉〈noun〉
〈verb phrase〉 ::= 〈verb〉〈noun phrase〉
〈article〉 ::= the
〈adjective〉 ::= young
〈noun〉 ::= man | ball
〈verb〉 ::= caught

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 18

Modelos usando grafos
Vegetarianos e Canibais (1)

• Seja uma região formada por vegetarianos e canibais.

• Inicialmente, dois vegetarianos e dois canibais estão na margem esquerda
(ME) de um rio.

• Existe um barco que pode transportar no máximo duas pessoas e sempre
atravessa o rio com pelo menos uma pessoa.

• O objetivo é achar uma forma de transportar os dois vegetarianos e os dois
canibais para a margem direita (MD) do rio.

• Em nenhum momento, o número de canibais numa margem do rio pode ser
maior que o número de vegetarianos, caso contrário, . . .

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 19

Modelos usando grafos
Vegetarianos e Canibais (2)

• Solução:
– Notação para representar cada cenário possível.
– Modelo para representar a mudança de um cenário em outro válido.

• Notação: ME/MD
– vvccB/→ ME: 2v, 2c e o barco (B); MD: –.
– vc/Bvc→ ME: 1v, 1c; MD: B, 1v e 1c.

• Modelo: grafo
– Vértice: cenário válido.
– Aresta: transição válida de um dado cenário em outro.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 20

Modelos usando grafos
Vegetarianos e Canibais (3)

Uma possível sequência válida de cenários é:

/Bvvcc

vv/Bcc

vvc/Bc

cc/Bvv

vvcB/c

vvccB/

c/Bvvc

ccB/vv

vcB/vc

vc/Bvc

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 21

Modelos usando grafos
Visualizando grafos

Graph Drawing: Algorithms for the Vi-
sualization of Graphs. Giuseppe Di
Battista, Peter Eades, Roberto Tamas-
sia, e Ioannis G. Tollis. Prentice Hall
Engineering, Science & Math, 432 pp.,
ISBN 0-13-301615-3.

Para muitas aplicações é importante dese-
nhar grafos com certas restrições:
– Planares, i.e., não há cruzamento de

arestas

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 22

Grafo simples

Definição: Um grafo simples é um grafo que não possui laços nem arestas pa-
ralelas. Num grafo simples, uma aresta com vértices (nós terminais) u e v é
representada por uv.

Exemplo: Quais são os grafos com quatro vértices {u, v, w, x} e duas arestas,
sendo que uma delas é a aresta uv?
– Dado quatro vértices, existem C(4,2) = 6 subconjuntos, que definem

arestas diferentes: {uv, uw, ux, vw, vx,wx}.
– Logo, todos os grafos simples de quatro vértices e duas arestas, sendo uma

delas a uv são:

x

vu

w x

vu

w x

vu

w x

vu

w x

vu

w

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 23

Grafo dirigido (1)

Definição: Um grafo dirigido ou digrafo ou direcionado G consiste de dois con-
juntos finitos:

1. Vértices V (G)

2. Arestas dirigidas E(G), onde cada aresta é associada a um par ordenado
de vértices chamados de nós terminais. Se a aresta e é associada ao par
(u, v) de vértices, diz-se que e é a aresta dirigida de u para v.

v

2v 5v 7v

6v1e
5e

2e

3e

8e4e

3v

4v

7e
6e

1

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 24

Grafo dirigido (2)

Para cada grafo dirigido, existe um grafo simples (não dirigido) que é obtido
removendo as direções das arestas, e os loops.

Grafo dirigido:

v

2v 5v 7v

6v

3v

4v1

Grafo não dirigido correspondente:

v

2v 5v 7v

6v

3v

4v1

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 25

Grafo dirigido (3)

• A versão dirigida de um grafo não dirigido G = (V,E) é um grafo dirigido
G′ = (V ′, E′) onde (u, v) ∈ E′ sse (u, v) ∈ E.

• Cada aresta não dirigida (u, v) em G é substituída por duas arestas dirigidas
(u, v) e (v, u).

• Em um grafo dirigido, um vizinho de um vértice u é qualquer vértice adjacente
a u na versão não dirigida de G.

Grafo não dirigido:

v

2v 3v

1

Grafo dirigido correspondente:

v

2v 3v

1

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 26

Grafo completo (1)

Definição: Um grafo completo de n vértices, denominado Kn∗, é um grafo sim-
ples com n vértices v1, v2, . . . , vn, cujo conjunto de arestas contém exatamente
uma aresta para cada par de vértices distintos.

Exemplo: Grafos completos com 2, 3, 4, e 5 vértices.

vv 1v 2v

3v

2v

3v4v
4v

3v5v

1v 2v

5K4K3K2K

1v21

∗A letra K representa a letra inicial da palavra komplett do alemão, que significa “completo”.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 27

Grafo completo (2)

Dado o grafo completo Kn temos que

Vértice está conectado aos vértices através de # arestas
(não conectados ainda)

v1 v2, v3, . . . , vn n− 1

v2 v3, v4, . . . , vn n− 2

...

vn−1 vn 1

vn – 0

ou seja, se contarmos o número total de arestas de Kn temos

n−1∑
i=1

i =
(n− 1) · n

2
=
n2 − n

2
=

(|V |2 − |V |)
2

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 28

Grafo completo (3)

Os grafos K2, K3, K4, e K5

vv 1v 2v

3v

2v

3v4v
4v

3v5v

1v 2v

5K4K3K2K

1v21

possuem a seguinte quantidade de arestas:

Grafo # arestas
K2 1
K3 3
K4 6
K5 10

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 29

Quantidade de grafos distintos com n vértices (1)

O número total de grafos distintos com n vértices (|V |) é

2

n2−n
2

= 2

(|V |2−|V |)
2

que representa a quantidade de maneiras diferentes de escolher um subcon-
junto a partir de

n2 − n
2

=
(|V |2 − |V |)

2

possíveis arestas de um grafo com n vértices.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 30

Quantidade de grafos distintos com n vértices (2)

Exemplo: Quantos grafos distintos com 3 vértices existem?

• Um grafo com 3 vértices v1, v2 e v3 possui no máximo 3 arestas, ou seja,
E = {v1v2, v1v3, v2v3}.
• O número de sub-conjuntos distintos de E é dado por P(E), ou seja, o con-

junto potência de E que vale 2|E|.

P(E) =



∅,
{v1v2},
{v1v3},
{v2v3},

{v1v2, v2v3},
{v1v3, v2v3},
{v1v2, v1v3},

{v1v2, v1v3, v2v3}



Cada elemento de P(E) deve

ser mapeado num grafo com 3

vértices levando a um grafo dis-

tinto:

v

1v 2v

3

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 31

Quantidade de grafos distintos com n vértices (3)

Exemplo: Quantos grafos distintos com 3 vértices existem (continuação)?

• Para cada elemento (sub-conjunto) do conjunto potência deE temos um grafo
distinto associado, ou seja, o número total de grafos com 3 vértices é:

2

n2−n
2

= 2

32−3
2

= 23 = 8

v

1v 2v

3v

1v 2v

3v

1v 2v

3v

1v 2v

3v

1v 2v

3v

1v 2v

3v

1v 2v

3v

1v 2v

3

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 32

Grafo ciclo

Definição: Um grafo ciclo de n vértices, denominado Cn, n ≥ 3, é um grafo
simples com n vértices v1, v2, . . . , vn, e arestas v1v2, v2v3, . . ., vn−1vn, vnv1.

Exemplo: Grafos ciclos de 3, 4, e 5 vértices.

vv 2v

3v

2v

3v4v
4v

3v5v

1v 2v

5C4C3C

11

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 33

Grafo roda

Definição: Um grafo roda, denominado Wn, é um grafo simples com n + 1

vértices que é obtido acrescentado um vértice ao grafo ciclo Cn, n ≥ 3, e
conectando este novo vértice a cada um dos n vértices de Cn.

Exemplo: Grafos rodas de 3, 4, e 5 vértices.

vv 2v

3v

2v

3v4v
4v

3v5v

1v 2v

5W4W3W

4v 5v
6v

11

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 34

Grafo Cubo-n (1)

Definição: Um grafo cubo-n de 2n vértices, denominadoQn, é um grafo simples
que representa os 2n strings de n bits. Dois vértices são adjacentes sse os
strings que eles representam diferem em exatamente uma posição.

O grafo Qn+1 pode ser obtido a partir do grafo Qn usando o seguinte algoritmo:

1. Faça duas cópias de Qn;
2. Prefixe uma das cópias de Qn com 0 e a outra com 1;
3. Acrescente uma aresta conectando os vértices que só diferem no primeiro

bit.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 35

Grafo Cubo-n (2)

Exemplo: Grafos Qn, para n = 1, 2, e 3 vértices.

100

Q 2Q 3Q

0 1 00

10 11

01

011

110 111

010

101

000 001

1

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 36

Grafo bipartido (1)

Definição: Um grafo bipartido é um grafo com vértices v1, v2, . . . , vm e
w1, w2, . . . , wn, que satisfaz as seguintes propriedades:

∀ i, k = 1,2, . . . ,m ∧
∀ j, l = 1,2, . . . , n

1. ∀ as arestas do grafo, cada aresta conecta algum vértice vi a algum vértice
wj;

2. ¬∃ uma aresta entre cada par de vértices vi e vk;
3. ¬∃ uma aresta entre cada par de vértices wj e wl;

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 37

Grafo bipartido (1)

Definição: Um grafo bipartido é um grafo com vértices v1, v2, . . . , vm e
w1, w2, . . . , wn, que satisfaz as seguintes propriedades:

∀ i, k = 1,2, . . . ,m ∧
∀ j, l = 1,2, . . . , n

1. ∀ as arestas do grafo, cada aresta conecta algum vértice vi a algum vértice
wj;

2. ¬∃ uma aresta entre cada par de vértices vi e vk;
3. ¬∃ uma aresta entre cada par de vértices wj e wl;

As duas últimas propriedades são consequências da primeira.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 38

Grafo bipartido (2)

Exemplo: Grafos bipartidos.

1w

4v

3w 3v

4w

v 1

2v

3v

4v

1w

2w

3w

7v

8v

v 6

5v

4w

5w

2vv 1

1w 2w 3w 4w 2w 2v

v 1

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 39

Grafo bipartido completo (1)

Definição: Um grafo bipartido completo de m,n vértices, denominado Km,n, é
um grafo simples com vértices v1, v2, . . . , vm e w1, w2, . . . , wn, que satisfaz as
seguintes propriedades:

∀ i, k = 1,2, . . . ,m ∧
∀ j, l = 1,2, . . . , n

1. ∃ uma aresta entre cada par de vértices vi e wj;
2. ¬∃ uma aresta entre cada par de vértices vi e vk;
3. ¬∃ uma aresta entre cada par de vértices wj e wl;

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 40

Grafo bipartido completo (2)

Exemplo: Grafos bipartidos completos K3,2 e K3,3.

w

2w

1w

K3,2

2v

1

K3,3

v

3v

1w1v

2w2v

3v 3

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 41

Grafo de Petersen

Definição: grafo não dirigido cúbico com 10 vértices e 15 arestas, como ilustrado
abaixo. É um grafo largamente utilizado como exemplo e contra-exemplo para
muitos problemas em teoria dos grafos.

[Recebe esse nome em homenagem ao matemático dinamarquês Julius Petersen, que o utilizou
em um trabalho publicado em 1898. No entanto, o primeiro registro do uso desse grafo se deve
a um trabalho de Alfred Kempe, matemático inglês, 12 anos antes, em 1886.]

Ü Em teoria dos grafos, existem vários outros grafos que recebem nomes es-
peciais sejam eles baseados em nomes de pessoas (e.g, Folkman, Gabriel,
Heawood, Turán, Yao) ou em propriedades (e.g., autocomplementar, com-
plementar, disco unitário, intervalar, orientado balanceado, poliedro).

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 42

Multigrafo

Definição: Um multigrafo é um grafo que não possui laços mas pode ter arestas
paralelas. Formalmente, um multigrafo G = (V,E) consiste de um conjunto V
de vértices, um conjunto E de arestas, e uma função f de E para {{u, v}|u, v ∈
V, u 6= v}. As arestas e1 e e2 são chamadas múltiplas ou paralelas se f(e1) =

f(e2).

e

3e 3v

1e 4e

2v

1v 4v

6v

5v

5e

2

Ü Várias aplicações precisam ser modeladas como um multigrafo.
UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 43

Pseudografo

Definição: Um pseudografo é um grafo que pode ter laços e arestas paralelas.
Formalmente, um pseudografo G = (V,E) consiste de um conjunto V de vér-
tices, um conjunto E de arestas, e uma função f de E para {{u, v}|u, v ∈ V }.

Ü Pseudografo é mais geral que um multigrafo.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 44

Multigrafo dirigido

Definição: Um multigrafo dirigido é um grafo que pode ter laços e arestas pa-
ralelas. Formalmente, um multigrafo dirigido G = (V,E) consiste de um con-
junto V de vértices, um conjunto E de arestas, e uma função f de E para
{{u, v}|u, v ∈ V }. As arestas e1 e e2 são arestas múltiplas se f(e1) = f(e2).

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 45

Hipergrafo

Definição: Um hipergrafoH(V, F) é definido pelo par de conjuntos V e F , onde:
• V é um conjunto não vazio de vértices;
• F é um conjunto que representa uma “família” e partes não vazias de V .

Um hipergrafo é um grafo não dirigido em que cada aresta conecta um número
arbitrário de vértices.

Seja, por exemplo, o grafo H(V, F)

dado por:

V = {v1, v2, v3, v4}
F = {{v1, v2, v4}, {v2, v3, v4}, {v2, v3}}

v

1v 2v

3v4

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 46

Terminologia de grafos

Tipo Aresta Arestas múltiplas? Laços permitidos?

Grafo simples Não dirigida Não Não

Multigrafo Não dirigida Sim Não

Pseudografo Não dirigida Sim Sim

Grafo dirigido Dirigida Não Sim

Multigrafo dirigido Dirigida Sim Sim

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 47

Grafo valorado

Definição: Um grafo valorado é um grafo em que cada aresta tem um valor as-
sociado. Formalmente, um grafo valorado G = (V,E) consiste de um conjunto
V de vértices, um conjunto E de arestas, e uma função f de E para P , onde P
representa o conjunto de valores (pesos) associados às arestas.

Ü Grafo valorado é usado para modelar vários problemas importantes em Ciên-
cia da Computação.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 48

Grafo imersível

Definição: Um grafo é imersível em uma superfície S se puder ser representado
geograficamente em S de tal forma que arestas se cruzem nas extremidades
(vértices).

Um grafo planar é um grafo que é imersível no plano.

Ü As conexões de uma placa de circuito impresso devem ser representadas
por um grafo planar.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 49

Subgrafo

Definição: Um grafo H = (V ′, E′) é dito ser um subgrafo de um grafo G =

(V,E) sse:
– cada vértice de H é também um vértice de G, ou seja, V ′ ⊆ V ;
– cada aresta de H é também uma aresta de G, ou seja, E′ ⊆ E; e
– cada aresta deH tem os mesmos nós terminais emG, ou seja, se (u, v) ∈ E′

então (u, v) ∈ E.

Exemplo: Todos os subgrafos do grafo G:

v

1v2v

1v

3e

1e 1v2v

1v2v

3e

2v

2e

1v2v

2e

1e 1v2v

1e 1v2v

3e

2e

1v2v

3e

2e

1e 1v2v

3e

G

1

2e

1e 1v2v

3e

10

8

3

21

9

4 5

7

11

6

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 50

Grau de um vértice (1)

Definição: Seja G um grafo e um vértice v de G. O grau de v, denominado
grau(v) (deg(v)), é igual ao número de arestas que são incidentes a v, com
uma aresta que seja um laço contada duas vezes. O grau total de G é a soma
dos graus de todos os vértices de G.

Exemplo: Determinando o grau de v1 no grafo abaixo.

v3v2v

1v v

4

1grau() = 5

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 51

Grau de um vértice (2)

Em um grafo dirigido o grau de um vértice v é o número de arestas quem saem
dele (out-deg(v)) mais o número de arestas que chegam nele (in-deg(v)).

Exemplo: Determinando o grau de v3 no grafo abaixo.

v

1v

2v 5v 7v

6v1e

2e

3e

8e4e

3v

4v

7e
6e

5e

3grau() = 4

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 52

Grau de um vértice (3)

Exemplo: Seja o grafoG abaixo. Determine o grau de cada vértice e o grau total
de G.

e

1e 3v2v

3e

1v

2

– grau(v1) = 0, já que não existe aresta incidente a v1, que é um vértice
isolado.

– grau(v2) = 2, já que e1 e e2 são incidentes a v2.
– grau(v3) = 4, já que e1, e2 e e3 são incidentes a v3, sendo que e3 contribui

com dois para o grau de v3.

Ü Grau de G = grau(v1) + grau(v2) + grau(v3) = 0 + 2 + 4 = 6
Ü Grau de G = 2 × número de arestas de G, que é 3, ou seja, cada aresta

contribui com dois para o grau total do grafo.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 53

Grau de um vértice (4)

Teorema (do aperto de mãos ou handshaking): Seja G um grafo. A soma dos
graus de todos os vértices de G é duas vezes o número de arestas de G. Es-
pecificamente, se os vértices de G são v1, v2, . . . , vn, onde n é um inteiro posi-
tivo, então

Grau de G = grau(v1) + grau(v2) + . . . + grau(vn)

= 2 × número de arestas de G.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 54

Grau de um vértice (5)

Prova:

• Seja G um grafo específico mas escolhido arbitrariamente.

• Se G não possui vértices então não possui arestas, e o grau total é 0, que é
o dobro das arestas, que é 0.

• Se G tem n vértices v1, v2, . . . , vn e m arestas, onde n é um inteiro positivo
e m é um inteiro não negativo. A hipótese é que cada aresta de G contribui
com 2 para o grau total de G.

• Suponha que e seja uma aresta arbitrária com extremidades vi e vj. Esta
aresta contribui com 1 para o grau de vi e 1 para o grau de vj.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 55

Grau de um vértice (6)

Prova (continuação):

• Isto é verdadeiro mesmo se i = j já que no caso de um laço conta-se duas
vezes para o grau do vértice no qual incide.

v
eiv j

e
=iv v j

i 6= j i = j

• Assim, a aresta e contribui com 2 para o grau total de G. Como e foi escolhido
arbitrariamente, isto mostra que cada aresta de G contribui com 2 para o grau
total de G.

.
.
. O grau total de G = 2× número de arestas de G.

Ü Corolário: O grau total de um grafo é par.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 56

Grafo regular

Definição: Um grafo é dito ser regular quando todos os seus vértices têm o
mesmo grau.

Exemplo: Os grafos completos com 2, 3, 4, e 5 vértices são grafos regulares.

vv 1v 2v

3v

2v

3v4v
4v

3v5v

1v 2v

5K4K3K2K

1v21

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 57

Determinando a existência de certos grafos (1)

• É possível ter um grafo com quatro vértices de graus 1, 1, 2, e 3?
Não. O grau total deste grafo é 7, que é um número ímpar.

• É possível ter um grafo com quatro vértices de graus 1, 1, 3, e 3?
Sim. Exemplos:

d
d c

a
a b

cd

a b

cd

a b

c

b

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 58

Determinando a existência de certos grafos (2)

• É possível ter um grafo simples com quatro vértices de graus 1, 1, 3, e 3?
Não.

Prova (por contradição):

– Suponha que exista um grafo simples G com quatro vértices de graus 1, 1, 3, e 3. Chame
a e b os vértices de grau 1, e c e d os vértices de grau 3. Como grau(c) = 3 e G não
possui laços ou arestas paralelas, devem existir arestas que conectam c aos vértices a, b
e d.

d c

a b

– Pelo mesmo raciocínio devem existir arestas que conectam d aos vértices a, b e c.
a b

d c

– Mas o grau(a) ≥ 2 e grau(b) ≥ 2, o que contradiz a suposição que estes vértices têm
grau 1.

.
.
. A suposição inicial é falsa e, conseqüentemente, não existe um grafo simples com quatro
vértices com graus 1, 1, 3, e 3.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 59

Determinando a existência de certos grafos (3)

• É possível num grupo de nove pessoas, cada um ser amigo de exatamente
cinco outras pessoas?
Não.

Prova (por contradição):
– Suponha que cada pessoa represente um vértice de um grafo e a aresta

indique uma relação de amizade entre duas pessoas (vértices).

– Suponha que cada pessoa seja amiga de exatamente cinco outras pes-
soas.

– Então o grau de cada vértice é cinco e o grau total do grafo é 45.

.
.
. Isto contradiz o corolário que o grau total de um grafo é par e, conseqüen-
temente, a suposição é falsa.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 60

Característica de um grafo

Teorema: Em qualquer grafoG, existe um número par de vértices de grau ímpar.

Prova:

– Suponha que G tenha n vértices de grau ímpar e m vértices de grau par, onde n e m são
inteiros não negativos. [Deve-se mostrar que n é par.]

– Se n = 0, então G tem um número par de vértices de grau ímpar.
– Suponha que n ≥ 1. Seja P a soma dos graus de todos os vértices de grau par, I a soma

dos graus de todos os vértices de grau ímpar, e T o grau total de G.
– Se p1, p2, . . . , pm são os vértices de grau par e i1, i2, . . . , in são os vértices de grau ímpar,

P = grau(p1) + grau(p2) + . . . + grau(pm),
I = grau(i1) + grau(i2) + . . . + grau(in),
T = grau(p1) + grau(p2) + . . . + grau(pm) +

grau(i1) + grau(i2) + . . . + grau(in)

= P + I [que deve ser um número par]

– P é par, já que P = 0 ou P é a soma de grau(pr), 0 ≤ r ≤ m, que é par.
– Mas T = P + I e I = T − P . Assim, I é a diferença de dois inteiros pares, que é par.
– Pela suposição, grau(is), 0 ≤ s ≤ n, é ímpar. Assim, I, um inteiro par, é a soma de n inteiros

ímpares grau(i1) + grau(i2) + . . . + grau(in). Mas a soma de n inteiros ímpares é par, então
n é par [o que devia ser mostrado].

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 61

Determinando a existência de certos grafos (4)

• É possível ter um grafo com 10 vértices de graus 1, 1, 2, 2, 2, 3, 4, 4, 4, e 6?
Não. Duas formas de provar:
1. Este grafo supostamente possui três vértices de grau ímpar, o que não é

possível.
2. Este grafo supostamente possui um grau total = 29, o que não é possível.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 62

O problema das sete pontes de Königsberg ou
O início da teoria dos grafos (1)

Leonhard Euler (1707-1783) aos 49 anos. Tela em óleo pintada por
Jakob Emanuel Handmann em 1756.

Leonhard Euler, matemático suíço. Considerado um dos maiores matemáticos de todos os
tempos. Foi um cientista extremamente produtivo contribuindo para muitas áreas da matemática
como teoria dos números, análise combinatória e análise, bem como o seu uso em áreas como
música e arquitetura naval. Euler foi o primeiro a usar o termo “função” para descrever uma
expressão envolvendo vários argumentos, ou seja, y = F (x). No total escreveu mais de
1100 artigos e livros. Durante os últimos 17 anos de vida, ele ficou praticamente cego, quando
produziu quase que metade de seus trabalhos.

A área de teoria dos grafos começa em 1736 quando publica um artigo (Solutio problematis ad
geometriam situs pertinentis) contendo a solução para o problema das sete pontes de Königs-
berg, na época uma cidade da Prússia e, atualmente, cidade da Rússia.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 63

O problema das sete pontes de Königsberg ou
O início da teoria dos grafos (2)

A cidade de Königsberg foi construída numa região onde haviam dois braços do Rio Pregel e
uma ilha. Foram construídas sete pontes ligando diferentes partes da cidade, como mostrado
na figura:

Problema: É possível que uma pessoa faça um percurso na cidade de tal forma que inicie e
volte a mesma posição passando por todas as pontes somente uma única vez?

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 64

O problema das sete pontes de Königsberg ou
Onde é Königsberg (3)

Referência: “Northern Ger-
many as far as the Bavar-
ian and Austrian Frontiers;
Handbook for Travellers” by
Karl Baedeker. Fifteenth Re-
vised Edition. Leipzig, Karl
Baedeker; New York, Charles
Scribner’s Sons 1910.

History: Kaliningrad was for-
merly the Prussian port of
Königsberg, capital of East
Prussia. It was captured by
the Red Army in April 1945
and ceded to the Soviet Union
at the Potsdam conference.
It was renamed in honor of
senior Soviet leader Mikhail
Kalinin, although he never ac-
tually visited the area.

Mapa parcial (recente) da

cidade.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 65

O problema das sete pontes de Königsberg (4)

• Euler resolveu este problema dando início à teoria dos grafos.

• Modelagem proposta por Euler:
– Todos os “pontos” de uma dada área de terra podem ser representados por

um único ponto já que uma pessoa pode andar de um lado para o outro
sem atravessar uma ponte.

– Um ponto é conectado a outro se houver uma ponte de um lado para o
outro.

– Graficamente, Euler representou o problema como:

A

B

C

D

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 66

O problema das sete pontes de Königsberg (5)

• Problema a ser resolvido:
– É possível achar um caminho que comece e termine num vértice qualquer

(A, B, C, ou D) e passe por cada aresta, exatamente, e uma única vez?,
ou ainda,

– É possível desenhar este grafo que comece e termine na mesma posição
sem levantar o lápis do papel?

D

C

A

B

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 67

O problema das sete pontes de Königsberg (6)

• Aparentemente não existe solução!

• Partindo do vértice A, toda vez que se passa por qual-
quer outro vértice, duas arestas são usadas: a de
“chegada” e a de “saída”.

• Assim, se for possível achar uma rota que usa todas
as arestas do grafo e começa e termina em A, então o
número total de “chegadas” e “saídas” de cada vértice
deve ser um valor múltiplo de 2.

• No entanto, temos:
– grau(A) = grau(C) = grau(D) = 3; e
– grau(B) = 5.

• Assim, por este raciocínio informal não é possível ter
uma solução para este problema.

D

C

A

B

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 68

Caminhamentos em grafos
Caminho (1)

Seja G um grafo não dirigido, n ≥ 1, e v e w vértices de G.

Caminho (walk): Um caminho de v para w é uma sequência alternada de
vértices e arestas adjacentes de G. Um caminho tem a forma:

(v =)v0e1v1e2v2 . . . vn−1envn(= w)

ou ainda

v0[v0, v1]v1[v1, v2]v2 . . . vn−1[vn−1, vn]vn

onde v0 = v e vn = w.

e

7

4e

2v
1 3v

2e5e6e

1v 3e 4v
e

Um possível caminho entre v1 e v4:
v1e6v3e2v4e7v2e1v3e2v4e3v1e4v2e5v4

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 69

Caminhamentos em grafos
Caminho (2)

• No caso de arestas múltiplas, deve-se indicar qual delas está sendo usada.

• Vértices v0 e vn são extremidades do caminho.

• Tamanho (comprimento) do caminho: número de arestas do mesmo, ou seja,
número de vértices menos um.

• O caminho trivial de v para v consiste apenas do vértice v.

• Se existir um caminho c de v para w então w é alcançável a partir de v via c.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 70

Caminhamentos em grafos
Caminho fechado (1)

Caminho fechado (Closed walk): Caminho que começa e termina no mesmo
vértice:

(v =)v0e1v1e2v3 . . . vn−1envn(= w)

onde v = w.

e

7

4e

2v
1 3v

2e5e6e

1v 3e 4v
e

Um possível caminho fechado é:
v1e6v3e2v4e7v2e1v3e2v4e3v1e4v2e5v4e3v1

Um caminho fechado com pelo menos uma aresta é chamado de ciclo.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 71

Caminhamentos em grafos
Caminho fechado (2)

Dois caminhos fechados

v0v1 . . . vn e v′0v
′
1 . . . v

′
n

formam o mesmo ciclo se existir um inteiro j tal que

v′i = vi+j mod n,

para i = 0,1, . . . , n− 1.

e

7

4e

2v
1 3v

2e5e6e

1v 3e 4v
e

O caminho fechado v1v2v3v4v1 forma o
mesmo ciclo que os caminhos fechados
v2v3v4v1v2, v3v4v1v2v3 e v4v1v2v3v4.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 72

Caminhamentos em grafos
Trajeto

Trajeto (Path): Caminho de v para w sem arestas repetidas:

(v =)v0e1v1e2v3 . . . vn−1envn(= w)

onde todas as arestas ei são distintas, ou seja, ei 6= ek, para qualquer i 6= k.

e

7

4e

2v
1 3v

2e5e6e

1v 3e 4v
e

Um possível trajeto é:
v1e6v3e2v4e7v2e1v3

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 73

Caminhamentos em grafos
Trajeto simples

Trajeto simples (Simple path): Caminho de v para w sem arestas e vértices
repetidos.

e

7

4e

2v
1 3v

2e5e6e

1v 3e 4v
e

Um possível trajeto simples é:
v1e6v3e2v4e7v2

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 74

Caminhamentos em grafos
Circuito

Circuito (Circuit): Trajeto fechado, ou seja, um caminho onde não há aresta
repetida e os vértices inicial e final são idênticos:

(v =)v0e1v1e2v3 . . . vn−1envn(= w)

onde toda aresta ei,1 ≤ i ≤ n, é distinta e v0 = vn.

e

7

4e

2v
1 3v

2e5e6e

1v 3e 4v
e

Um possível circuito é:
v1e6v3e2v4e7v2e1v3

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 75

Caminhamentos em grafos
Circuito simples

Circuito simples (Simple circuit): Trajeto fechado, ou seja, um caminho onde
não há arestas e vértices repetidos, exceto os vértices inicial e final que são
idênticos.

e

7

4e

2v
1 3v

2e5e6e

1v 3e 4v
e

Um possível circuito simples é:
v1e6v3e2v4e7v2e4v1

Um circuito simples também é chamado de ciclo simples.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 76

Terminologia de caminhamentos
Aresta Vértice Começa e termina

Tipo repetida? repetido? no mesmo vértice?

Caminho (walk) Pode Pode Pode

Caminho fechado (closed walk) Pode Pode Sim

Trajeto (path) Não Pode Pode

Trajeto simples (simple path) Não Não Não

Circuito (circuit) Não Pode Sim

Circuito simples (simple circuit) Não v0 = vn Sim

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 77

Caminhamentos em grafos
Notação simplificada (1)

Em geral um caminho pode ser identificado de forma não ambígua através de
uma sequência de arestas ou vértices.

e

3e

1e

1v 2v 3v
4e

2

• O caminho e1e2e4e3 representa de forma não ambígua o caminho
v1e1v2e2v3e4v3e3v2

• A notação e1 é ambígua, se usada para referenciar um caminho, pois pode
representar duas possibilidades: v1e1v2 ou v2e1v1.

• A notação v2v3 é ambígua, se usada para referenciar um caminho, pois pode
representar duas possibilidades: v2e2v3 ou v2e3v3.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 78

Caminhamentos em grafos
Notação simplificada (2)

e

1v 2v

3e
2e

3v

1

• A notação v1v2v2v3, se for associada a um caminho, representa de forma
não ambígua o caminho v1e1v2e2v2e3v3

Ü Se um grafo G não possui arestas paralelas, então qualquer caminho em G

pode ser determinado de forma única por uma sequência de vértices.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 79

Identificando o caminhamento (1)

v

e

2e
3e

4e

5e

7e

9e

8e

1v

4v
3v

6e

6v 5v

e10
2

1

Que tipo de caminhamento é?
• v1e1v2e3v3e4v3e5v4

– Aresta repetida? Não.
– Vértice repetido? Sim – v3.
– Começa e termina no mesmo

vértice? Não.
Ü Trajeto.

• e1e3e5e5e6

– Aresta repetida? Sim – e5.
– Vértice repetido? Sim – v3.
– Começa e termina no mesmo

vértice? Não.
Ü Caminho.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 80

Identificando o caminhamento (2)

v

e

2e
3e

4e

5e

7e

9e

8e

1v

4v
3v

6e

6v 5v

e10
2

1

Que tipo de caminhamento é?
• v2v3v4v5v3v6v2

– Aresta repetida? Não.
– Vértice repetido? Sim – v2 e v3.
– Começa e termina no mesmo

vértice? Sim – v2.
Ü Circuito.

• v2v3v4v5v6v2

– Aresta repetida? Não.
– Vértice repetido? Sim – v2.
– Começa e termina no mesmo

vértice? Sim – v2.
Ü Circuito simples.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 81

Identificando o caminhamento (3)

v

e

2e
3e

4e

5e

7e

9e

8e

1v

4v
3v

6e

6v 5v

e10
2

1

Que tipo de caminhamento é?
• v2v3v4v5v6v3v2

– Aresta repetida? Sim – e3.
– Vértice repetido? Sim – v2 e v3.
– Começa e termina no mesmo

vértice? Sim – v2.
Ü Caminho fechado.

• v1

– Aresta repetida? Não.
– Vértice repetido? Não.
– Começa e termina no mesmo

vértice? Sim – v1.
Ü Caminho (circuito) trivial.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 82

Fecho transitivo direto

Definição: O fecho transitivo direto (FTD) de um vértice v é o conjunto de todos
os vértices que podem ser atingidos por algum caminho iniciando em v.

Exemplo: O FTD do vértice v5 do grafo ao lado
é o conjunto {v1, v2, v3, v4, v5, v6}. Note que
o próprio vértice faz parte do FTD já que ele é
alcançável partindo-se dele mesmo.

2v

4v 6v

7v

5v

3v
1v

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 83

Fecho transitivo inverso

Definição: O fecho transitivo inverso (FTI) de um vértice v é o conjunto de todos
os vértices a partir dos quais se pode atingir v por algum caminho.

Exemplo: O FTI do vértice v5 do grafo abaixo
é o conjunto {v1, v2, v4, v5, v7}. Note que o
próprio vértice faz parte do FTI já que dele pode
alcançar ele mesmo.

2v

4v 6v

7v

5v

3v
1v

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 84

Conectividade (1)

Informalmente um grafo é conexo (conectado) se for possível caminhar de qual-
quer vértice para qualquer outro vértice através de uma sequência de arestas
adjacentes.

Definição: Seja G um grafo. Dois vértices v e w de G estão conectados sse
existe um caminho de v para w. Um grafoG é conexo sse dado um par qualquer
de vértice v e w em G, existe um caminho de v para w. Simbolicamente,

G é conexo ⇔ ∀ vértices v, w ∈ V (G), ∃ um caminho de v para w.

Se a negação desta afirmação for tomada, é possível ver que um grafo não é
conexo sse existem dois vértices em G que não estão conectados por qualquer
caminho.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 85

Conectividade (2)

v 6v3v 4v2v

1v

1G

5

Grafo conexo.

v 3v

2v 4v 6v

8v 7v

5v

2G

1
v

3v

2v

5v

4v

6v

3G

1

Grafos não conexos.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 86

Conectividade (3)
Lemas

Seja G um grafo.

(a) Se G é conexo, então quaisquer dois vértices distintos de G podem ser
conectados por um trajeto simples (simple path).

(b) Se vértices v e w são parte de um circuito de G e uma aresta é removida
do circuito, ainda assim existe um trajeto de v para w em G.

(c) Se G é conexo e contém um circuito, então uma aresta do circuito pode ser
removida sem desconectar G.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 87

Conectividade (4)

Os grafos

v 3v

2v 4v 6v

8v 7v

5v

2G

1
v

3v

2v

5v

4v

6v

3G

1

possuem três “partes” cada um, sendo cada parte um grafo conexo.

Um componente conexo de um grafo é um subgrafo conexo de maior tamanho
possível.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 88

Componente conexo (1)

Definição: Um grafo H é um componente conexo de um grafo G sse:

1. H é um subgrafo de G;
2. H é conexo;
3. Nenhum subgrafo conexo I de G tem H como um subgrafo e I contém

vértices ou arestas que não estão em H.

Ü Um grafo pode ser visto como a união de seus componentes conexos.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 89

Componente conexo (2)

Os componentes conexos do grafo G abaixo são:

v 2v

3v 4v 8v

6v 7v

5v

1e 2e

5e 3e

4e
1

G possui três componentes conexos:

H1 : V1 = {v1, v2, v3} E1 = {e1, e2}
H2 : V2 = {v4} E2 = ∅
H3 : V3 = {v5, v6, v7, v8} E3 = {e3, e4, e5}

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 90

Componente fortemente conexo (conectado)

Um grafo dirigido G = (V,E) é fortemente conexo se cada dois vértices
quaisquer são alcançáveis a partir um do outro.

Os componentes fortemente conexos de um grafo dirigido são conjuntos de
vértices sob a relação “são mutuamente alcançáveis”.

Um grafo dirigido fortemente conexo tem apenas um componente fortemente
conexo.

v

3v 0v

1v

4v

5v2

Os componentes fortemente conexos do grafo ao lado são:

H1 : V1 = {v0, v1, v2, v3}
H2 : V2 = {v4}
H3 : V3 = {v5}

Observe que {v4, v5} não é um componente fortemente co-

nexo já que o vértice v5 não é alcançável a partir do vértice

v4.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 91

Circuito Euleriano (1)

Definição: Seja G um grafo. Um circuito Euleriano é um circuito que contém
cada vértice e cada aresta de G. É uma sequência de vértices e arestas ad-
jacentes que começa e termina no mesmo vértice de G, passando pelo menos
uma vez por cada vértice e exatamente uma única vez por cada aresta de G.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 92

Circuito Euleriano (2)

Teorema: Se um grafo possui um circuito Euleriano, então cada vértice do grafo
tem grau par.

Prova:
– Suponha que G é um grafo que tem um circuito Euleriano. [Deve-se mostrar que

qualquer vértice v de G tem grau par.]

– Seja v um vértice particular de G mas escolhido aleatoriamente.
– O circuito Euleriano possui cada aresta de G incluindo todas as arestas inci-

dentes a v.
– Vamos imaginar um caminho que começa no meio de uma das arestas ad-

jacentes ao início do circuito Euleriano e continua ao longo deste circuito e
termina no mesmo ponto.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 93

Circuito Euleriano (3)

v
2v

3v

4v5v

0

1v

Par de arestas entrada/saída

Par de arestas entrada/saída

Comece aqui

Prova (continuação):
– Cada vez que o vértice v é visitado através de uma aresta de entrada, este

vértice é “deixado” já que o caminho termina no meio de uma aresta.
– Já que cada circuito Euleriano passa em cada aresta de G exatamente uma

única vez, cada aresta incidente a v é visitada uma única vez neste processo.
– Como o caminho que passa por v é feito através de arestas incidentes a v na

forma de pares entrada/saída, o grau de v deve ser múltiplo de 2.
– Isto significa que o grau de v é par. [O que devia ser mostrado.]

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 94

Circuito Euleriano (4)

O contrapositivo deste teorema (que é logicamente equivalente ao teorema ori-
ginal) é:

Teorema: Se algum vértice de um grafo tem grau ímpar, então o grafo não tem
um circuito Euleriano.

Ü Esta versão do teorema é útil para mostrar que um grafo não possui um
circuito Euleriano.

e

7

4e

2v
1 3v

2e5e6e

1v 3e 4v
e

Vértices v1 e v3 possuem grau 3 e, assim, não possuem um circuito Euleriano.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 95

Circuito Euleriano (5)

Revisitando o problema das sete pontes da cidade de Königsberg.

A

B

C

D

Problema: É possível que uma pessoa faça um percurso na cidade de tal forma
que inicie e volte a mesma posição passando por todas as pontes somente uma
única vez?

Ü Não. Todos os vértices têm grau ímpar.
UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 96

Circuito Euleriano (6)

No entanto, se cada vértice de um grafo tem grau par, então o grafo tem um
circuito Euleriano?

– Não. Por exemplo, no grafo abaixo todos os vértices têm grau par, mas como
o grafo não é conexo, não possui um circuito Euleriano.

v

1v

1e

2e

3v

4v

3e

4e

2

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 97

Circuito Euleriano (7)

Teorema: Se cada vértice de um grafo não vazio tem grau par e o grafo é conexo,
então o grafo tem um circuito Euleriano.

Prova: [Esta é uma prova construtivista, ou seja, apresenta um algoritmo para achar um circuito

Euleriano para um grafo conexo no qual cada vértice tem grau par.]

• Suponha que G é um grafo conexo não vazio e que cada vértice de G tem
grau par. [Deve-se achar um circuito Euleriano para G.]

• Construa um circuito C usando o algoritmo descrito a seguir.

PASSO 1:

– Escolha qualquer vértice v de G. [Este passo pode ser executado já que pela su-

posição o conjunto de vértices de G é não vazio.]

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 98

Circuito Euleriano (8)

Prova (continuação):

PASSO 2:

– Escolha uma sequência qualquer de vértices e arestas adjacentes,
começando e terminando em v, sem repetir arestas. Chame o circuito resul-
tante de C.

[Este passo pode ser executado pelas seguintes razões:
• Como o grau de cada vértice de G é par, é possível entrar num vértice qualquer que não

seja o v por arestas de entrada e saída não visitadas ainda.
• Assim, uma sequência de arestas adjacentes distintas pode ser obtida enquanto o vértice v

não seja alcançado.
• Esta sequência de arestas deve voltar em v já que existe um número finito de arestas.

]

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 99

Circuito Euleriano (9)

Prova (continuação):

PASSO 3: Verifique se C contém cada aresta e vértice de G. Se sim, C é um
circuito Euleriano e o problema está terminado. Caso contrário, execute os
passos abaixo.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 100

Circuito Euleriano (10)

Prova (continuação):

PASSO 3A:

– Remova todas as arestas do circuito C do grafo G e quaisquer vértices que
se tornaram isolados quando as arestas de C são removidas.

– Chame o grafo resultante de G′.

[Note que G′ pode não ser conexo, como ilustrado abaixo, mas cada vértice de G′ tem grau

par, já que removendo as arestas de C remove um número par de arestas de cada vértice e a

diferença de dois números pares é par.]

G:

u
v

w

C

G´

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 101

Circuito Euleriano (11)

Prova (continuação):

PASSO 3B:

– Escolha qualquer vértice w comum a ambos C e G′.

[Deve haver pelo menos um vértice deste tipo já que G é conexo. Na figura abaixo existem

dois vértices deste tipo: u e w.]

G:

u
v

w

C

G´

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 102

Circuito Euleriano (12)

Prova (continuação):

PASSO 3C:

– Escolha uma sequência qualquer de vértices e arestas adjacentes,
começando e terminando em w, sem repetir arestas. Chame o circuito re-
sultante de C′.

[Este passo pode ser executado já que o grau de cada vértice de G′ é par e G′ é finito. Veja a

justificativa para o passo 2.]

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 103

Circuito Euleriano (13)

Prova (continuação):

PASSO 3D:

– Agrupe C e C′ para criar um novo circuito C′′ como segue:
• Comece em v e siga em direção a w.
• Percorra todo o circuito C′ e volte a w.
• Caminhe pela parte de C não percorrida ainda até o vértice v.

[O efeito de executar os passos 3C e 3D para o grafo anterior é mostrado abaixo.]

C

u
v

w

G:

C´´

C´

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 104

Circuito Euleriano (14)

Prova (continuação):

PASSO 3E:

– Seja C ← C′′ e retorne ao passo 3.

[Como o grafo G é finito, a execução dos passos deste algoritmo termina, com a construção de

um circuito Euleriano para G. Como diferentes escolhas podem ser feitas, diferentes circuitos

podem ser gerados.]

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 105

Circuito Euleriano (15)

Determine se o grafo abaixo tem um circuito Euleriano. Em caso positivo ache
um circuito Euleriano para o grafo.

g

i

d

c

e h

f ja

b

• Os vértices a, b, c, f, g, i, j têm grau 2.
• Os vértices d, e, h têm grau 4.
Ü Pelo teorema anterior, este grafo possui um circuito Euleriano.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 106

Circuito Euleriano (16)

Seja v = a e seja

C : abcda.

i

b
g

jd

c

e h

fa

3

1

4

2

C não é um circuito Euleriano para este grafo, mas C possui uma intersecção
com o restante do grafo no vértice d.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 107

Circuito Euleriano (17)

Seja C′ : deghjid. Agrupe C′ a C para obter

C′′ : abcdeghjida.

Seja C ← C′′. Então C pode ser representado pelas arestas rotuladas no grafo
abaixo:

g

d

c

e h

f j

i

a

b 2

1

5

3

6

7

8

9

10

4

C não é um circuito Euleriano para este grafo, mas C possui uma intersecção
com o restante do grafo no vértice e.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 108

Circuito Euleriano (18)

Seja C′ : efhe. Agrupe C′ a C para obter

C′′ : abcdefheghjida.

Seja C ← C′′. Então C pode ser representado pelas arestas rotuladas no grafo
abaixo:

i

d

c

e h

f ja

b
g

92

4

11

5

10

6

13

7

12

8

1

3

C inclui cada aresta do grafo exatamente uma única vez e, assim, C é um
circuito Euleriano para este grafo.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 109

Circuito Euleriano (19)

Teorema: Um grafo G tem um circuito Euleriano sse G é conexo e cada vértice
de G tem grau par.

Definição: Seja G um grafo e seja v e w dois vértices de G. Um Trajeto Euleri-
ano de v para w é uma sequência de arestas e vértices adjacentes que começa
em v, termina em w e passa por cada vértice deG pelo menos uma vez e passa
por cada aresta de G exatamente uma única vez.

Corolário: Seja G um grafo e dois vértices v e w de G. Existe um trajeto Eu-
leriano de v para w sse G é conexo e v e w têm grau ímpar e todos os outros
vértices de G têm grau par.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 110

Trajeto Euleriano (1)

Uma casa possui uma divisão representada pela planta abaixo. É possível uma
pessoa sair do cômodo A, terminar no cômodo B e passar por todas as portas
da casa exatamente uma única vez? Se sim, apresente um possível trajeto.

K

J

IA

B

C D

G

F

H

E

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 111

Trajeto Euleriano (2)

A planta da casa pode ser representada pelo grafo abaixo:

J

I

E

K

H

F

G

DC

B

A H

F

G

DC

B

A

J

I

E

K

Cada vértice deste grafo tem um grau par, exceto os vértices A e B que têm
grau 1. Assim, pelo corolário anterior, existe um trajeto Euleriano de A para B.

Ü AGHFEIHEKJDCB
UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 112

Circuito Hamiltoniano (1)

William Hamilton (1805–

1865), matemático irlandês. Con-

tribuiu para o desenvolvimento da óp-

tica, dinâmica e álgebra. Em particu-

lar, descobriu a álgebra dos quater-

nions. Seu trabalho provou ser sig-

nificante para o desenvolvimento da

mecânica quântica.

Em 1859, propôs um jogo na forma de um
dodecaedro (sólido de 12 faces).

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 113

Circuito Hamiltoniano (2)
Jogo proposto por Hamilton

Cada vértice recebeu o nome de uma cidade: Londres, Paris, Hong Kong, New
York, etc. O problema era: É possível começar em uma cidade e visitar todas
as outras cidades exatamente uma única vez e retornar à cidade de partida?

O jogo é mais fácil de ser imaginado projetando o dodecaedro no plano:

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 114

Circuito Hamiltoniano (3)
Jogo proposto por Hamilton

Uma possível solução para este grafo é:

Definição: Dado um grafo G, um Circuito Hamiltoniano para G é um circuito
simples que inclui cada vértice de G, ou seja, uma sequência de vértices adja-
centes e arestas distintas tal que cada vértice de G aparece exatamente uma
única vez.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 115

Comentários sobre circuitos Euleriano e
Hamiltoniano (1)

• Circuito Euleriano:
– Inclui todas as arestas uma única vez.
Ü Inclui todos os vértices, mas que podem ser repetidos, ou seja, pode não

gerar um circuito Hamiltoniano.

• Circuito Hamiltoniano:
– Inclui todas os vértices uma única vez (exceto o inicial = final).
Ü Pode não incluir todas as arestas, ou seja, pode não gerar um circuito

Euleriano.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 116

Comentários sobre circuitos Euleriano e
Hamiltoniano (2)

• É possível determinar a priori se um grafo G possui um circuito Euleriano.

• Não existe um teorema que indique se um grafo possui um circuito Hamil-
toniano nem se conhece um algoritmo eficiente (polinomial) para achar um
circuito Hamiltoniano.

• No entanto, existe uma técnica simples que pode ser usada em muitos casos
para mostrar que um grafo não possui um circuito Hamiltoniano.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 117

Determinando se um grafo não possui um circuito
Hamiltoniano (1)

Suponha que um grafo G tenha um circuito Hamiltoniano C dado por:

C : v0e1v1e2 . . . vn−1envn

Como C é um circuito simples, todas as arestas ei são distintas e todos os
vértices são distintos, exceto v0 = vn.

Seja H um subgrafo de G que é formado pelos vértices e arestas de C, como
mostrado na figura abaixo (H é o subgrafo com as linhas grossas).

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 118

Determinando se um grafo não possui um circuito
Hamiltoniano (2)

Se um grafo G tem um circuito Hamiltoniano então G tem um subgrafo H com
as seguintes propriedades:

1. H contém cada vértice de G;
2. H é conexo;
3. H tem o mesmo número de arestas e

de vértices;
4. Cada vértice de H tem grau 2.

Contrapositivo desta afirmação:
Ü Se um grafo G não tem um subgrafo H com propriedades (1)–(4) então G

não possui um circuito Hamiltoniano.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 119

Determinando se um grafo não possui um circuito
Hamiltoniano (3)

Prove que o grafo G abaixo não tem um circuito Hamiltoniano.

a

e

c

d

b

Se G tem um circuito Hamiltoniano, então G tem um subgrafo H que:

1. H contém cada vértice de G;
2. H é conexo;
3. H tem o mesmo número de arestas e de vértices;
4. Cada vértice de H tem grau 2.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 120

Determinando se um grafo não possui um circuito
Hamiltoniano (4)

a

e

c

d

b

– Em G, grau(b) = 4 e cada vértice de H tem grau 2;
– Duas arestas incidentes a b devem ser removidas de G para criar H;
– Qualquer aresta incidente a b que seja removida fará com que os outros vér-

tices restantes tenham grau menor que 2;

Ü Conseqüentemente, não existe um subgrafo H com as quatro propriedades
acima e, assim, G não possui um circuito Hamiltoniano.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 121

O Problema do Caixeiro Viajante (1)

• Em inglês, Traveling Salesman Problem, ou TSP.

• Suponha o mapa abaixo mostrando quatro cidades (A,B,C,D) e as distân-
cias em km entre elas.

A

C

D

B

40

50 35

25

30

30

• Um caixeiro viajante deve percorrer um circuito Hamiltoniano, ou seja, visitar
cada cidade exatamente uma única vez e voltar a cidade inicial.

Ü Que rota deve ser escolhida para minimizar o total da distância percorrida?

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 122

O Problema do Caixeiro Viajante (2)

• Possível solução:
– Enumere todos os possíveis circuitos Hamiltonianos começando e termi-

nando em A;
– Calcule a distância de cada um deles;
– Determine o menor deles.

Rota Distância (km)

ABCDA 30 + 30 + 25 + 40 = 125

ABDCA 30 + 35 + 25 + 50 = 140

ACBDA 50 + 30 + 35 + 40 = 155

ACDBA 50 + 25 + 35 + 30 = 140

ADBCA 40 + 35 + 30 + 50 = 155

ADCBA 40 + 25 + 30 + 30 = 125

A

C

D

B

40

50 35

25

30

30

Ü Assim, tanto a rota ABCDA ou ADCBA tem uma distância total de 125
km.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 123

O Problema do Caixeiro Viajante (3)

• A solução do TSP é um circuito Hamiltoniano que minimiza a distância to-
tal percorrida para um grafo valorado arbitrário G com n vértices, onde uma
distância é atribuída a cada aresta.

• Algoritmo para resolver o TSP:
– Atualmente, força bruta, como feito no exemplo anterior.
Ü Problema da classe NP-Completo.

• Exemplo: para o grafo K30 existem

29! ≈ 8,84× 1030

circuitos Hamiltonianos diferentes começando e terminando num determinado
vértice.

• Mesmo se cada circuito puder ser achado e calculado em apenas 1µs, seria
necessário aproximadamente 2,8 × 1017 anos para terminar a computação
nesse computador.
UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 124

Representação de um grafo

• Dado um grafo G = (V,E):
– V = conjunto de vértices.
– E = conjunto de arestas, que pode ser representado pelo subconjunto de
V × V .

• O tamanho da entrada de dados é medido em termos do:
– Número de vértices |V |.
– Número de arestas |E|.

• Se G é conexo então |E| ≥ |V | − 1.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 125

Representação de um grafo
Convenções

• Convenção I (Notação):
– Dentro e somente dentro da notação assintótica os símbolos V e E signifi-

cam respectivamente |V | e |E|.
Ü Se um algoritmo “executa em tempo O(V +E)” é equivalente a dizer que

“executa em tempo O(|V |+ |E|)”.

• Convenção II (Em pseudo-código):
– O conjunto V de vértices de G é representado por V [G].
– O conjunto E de arestas de G é representado por E[G].
Ü Os conjuntos V e E são vistos como atributos de G.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 126

Representação de um grafo
Estruturas de dados

• Matriz de adjacência:
– Forma preferida de representar grafos densos (|E| ≈ |V |2).
– Indica rapidamente (O(1)) se existe uma aresta conectando dois vértices.

• Lista de adjacência:
– Representação normalmente preferida.
– Provê uma forma compacta de representar grafos esparsos (|E| � |V |2).

• Matriz de incidência:
– Representação que inclui vértice e aresta.

Ü As duas primeiras formas acima são as principais formas de representar um
grafo.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 127

Representação de um grafo
Matriz de adjacência e grafo dirigido (1)

Seja o grafo dirigido abaixo:

e

2e

4e 5e

6e

1v

2v

3v

3e

1

Este grafo pode ser representado por uma ma-
triz A = (aij), onde (aij) representa o número
de arestas de vi para vj.
Ü Matriz de Adjacência

v1 v2 v3

v1

A = v2

v3


1

1

1

0

1

0

0

2

0



UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 128

Representação de um grafo
Matriz de adjacência e grafo dirigido (2)

Definição: Seja G um grafo dirigido com vértices v1, v2, . . . , vn. A matriz de
adjacência de G é a matriz A = (aij) (A[1 . . . n,1 . . . n]) é definida como:

aij = # de arestas de vi para vj, ∀i, j = 1,2, . . . , n.

• Valor diferente de zero na diagonal principal: laço.

• Valor igual a 1 na entrada (aij): uma única aresta de vi a vj.

• Valores maiores que 1 na entrada (aij): arestas paralelas de vi a vj.

• Espaço: O(V 2).

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 129

Representação de um grafo
Matriz de adjacência e grafo dirigido (3)

v

3v

1e

3e

4e

5e

2v

2e

1

v1 v2 v3

v1

A = v2

v3


0

0

2

0

1

1

0

1

0



v

1e

2e 3e

4e

5e

1v3v

2

v1 v2 v3

v1

A = v2

v3


1

1

0

1

0

0

0

2

0



UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 130

Representação de um grafo
Matriz de adjacência e grafo dirigido (4)

Dada a matriz de adjacência de um
grafo:

v1 v2 v3 v4

A =

v1

v2

v3

v4


0

1

0

2

1

1

0

1

1

0

1

0

0

2

1

0



Um possível desenho deste grafo é:

v

4v
3v

v1 2

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 131

Representação de um grafo
Matriz de adjacência e grafo não dirigido

Definição: Seja G um grafo não dirigido com vértices v1, v2, . . . , vn. A matriz
de adjacência de G é a matriz A = (aij) sobre o conjunto dos inteiros não
negativos tal que

aij = # de arestas conectando vi a vj, ∀i, j = 1,2, . . . , n.

Dado o grafo:

v

3e

4e5e

3v4v

2v2e

7e

6e

1e

1

A matriz de adjacência correspon-
dente é:

v1 v2 v3 v4

A =

v1

v2

v3

v4


0

1

0

1

1

1

2

1

0

2

0

0

1

1

0

1



UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 132

Representação de um grafo
Matriz de adjacência e componentes conexos

Dado o grafo:

v
3v

2v

3e

2e

4e

1e

1

v
4v

6e

5e

5

v

6v

7e 8e

7

A matriz de adjacência correspondente é:

A =



1 0 1 0 0 0 0

0 0 2 0 0 0 0

1 2 0 0 0 0 0

0 0 0 0 1 0 0

0 0 0 1 1 0 0

0 0 0 0 0 0 2

0 0 0 0 0 2 0


A matriz A consiste de “blocos” de diferentes tamanhos
ao longo da diagonal principal, já que o conjunto de vér-
tices é disjunto.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 133

Representação de um grafo
Matriz de adjacência: Análise

• Deve ser utilizada para grafos densos, onde |E| é próximo de |V |2 (|E| ≈
|V |2).

• O tempo necessário para acessar um elemento é independente de |V | ou |E|.

• É muito útil para algoritmos em que necessitamos saber com rapidez se existe
uma aresta ligando dois vértices.

• A maior desvantagem é que a matriz necessita O(V 2) de espaço.

• Ler ou examinar a matriz tem complexidade de tempo O(V 2).

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 134

Representação de um grafo
Uso de matriz de adjacência

• Quando usada, a maior parte dos algoritmos requer tempo O(V 2), mas exis-
tem exceções.

• Seja um grafo dirigido que contém um vértice sink, ou seja, um vértice com:
– Grau de entrada (in-degree) = |V | − 1

– Grau de saída (out-degree) = 0
– Não existe uma aresta loop

• Apresente um algoritmo para determinar se um grafo dirigido possui um vér-
tice sink em tempo O(V) usando uma matriz de adjacência.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 135

Representação de um grafo
Número de vértices sink num grafo dirigido

Quantos vértices sink um grafo dirigido G = (V,E) possui no máximo?
Ü No máximo 1.

Prova por contradição:
– Suponha que si e sj sejam vértices sink.
– Deve existir uma aresta de todos os nós do grafo G para si e sj, exceto loops.
– Em particular deve existir uma aresta (si, sj) e uma aresta (sj, si) já que si

e sj são vértices sink.
– Isto não pode ocorrer já que o grau de saída de um vértice sink é 0.

Logo, se existir um vértice sink no grafo G é no máximo 1.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 136

Representação de um grafo
Matriz de incidência

Definição: Seja G um grafo não dirigido com vértices v1, v2, . . . , vn e arestas e1, e2, . . . , em. A
matriz de incidência de G é a matriz M = (mij) de tamanho n × m sobre o conjunto dos
inteiros não negativos tal que

mij =

{
1 quando a aresta ej é incidente a vi.
0 caso contrário.

Dado o grafo:

v

3e

4e5e

3v4v

2v2e

7e

6e

1e

1

A matriz de incidência correspondente é:

e1 e2 e3 e4 e5 e6 e7

M =

v1

v2

v3

v4


1

0

0

1

1

1

0

0

0

1

0

0

0

1

1

0

0

1

1

0

0

0

0

1

0

1

0

1



UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 137

Representação de um grafo
Lista de adjacência

• Vetor Adj de |V | listas, uma para cada vértice de V .

• Para cada vértice u ∈ V , a lista Adj [u] contém apontadores para todos os
vértices v tal que a aresta (u, v) ∈ E (todos os vértices adjacentes a u em
G).
Ü Definição vale para grafos não dirigidos e dirigidos.

•
∑|V |
i=1 “comprimento da lista de adjacência”, vale:

– Grafo dirigido = |E|, cada aresta aparece uma única vez na lista.
– Grafo não dirigido = 2|E|, cada aresta aparece duas vezes na lista (entrada

de u e entrada de v).

• Espaço: O(V + E).

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 138

Representação de um grafo
Lista de adjacência e grafo dirigido (1)

Seja o grafo dirigido abaixo:

e

2e

4e 5e

6e

1v

2v

3v

3e

1

Este grafo pode ser representado por uma lista
de adjacência Adj :

Adj[v1] = [v1]

Adj[v2] = [v1, v2, v3, v3]

Adj[v3] = [v1]

Adj

v

3v

1v
1v

1v

3v3v2v1v2

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 139

Representação de um grafo
Lista de adjacência e grafo dirigido (2)

v

3v

1e

3e

4e

5e

2v

2e

1

Este grafo pode ser representado
pela lista de adjacência:

Adj[v1] = []

Adj[v2] = [v2, v3]

Adj[v3] = [v1, v1, v2]

v

1e

2e 3e

4e

5e

1v3v

2

Este grafo pode ser representado
pela lista de adjacência:

Adj[v1] = [v1, v2]

Adj[v2] = [v1, v3, v3]

Adj[v3] = []

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 140

Representação de um grafo
Lista de adjacência e grafo não dirigido

Dado o grafo:

v

3e

4e5e

3v4v

2v2e

7e

6e

1e

1

Uma lista de adjacência correspon-
dente é:

Adj[v1] = [v2, v4]

Adj[v2] = [v1, v2, v3, v3, v4]

Adj[v3] = [v2, v2]

Adj[v4] = [v1, v2, v4]

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 141

Contando caminhos de tamanho n (1)

O tamanho (comprimento) de um caminho é o número de arestas do mesmo,
ou seja, número de vértices menos um.

Dado o grafo

e 4e

2v

3v

1v

1e

2e

3

O caminho

v2e3v3e4v2e2v2e3v3

tem tamanho 4.

Quantos caminhos distintos de tamanho 2 exis-
tem conectando v2 a v2?

v2e1v1e1v2
v2e2v2e2v2
v2e3v3e4v2
v2e4v3e3v2
v2e3v3e3v2
v2e4v3e4v2

Ü Existem seis caminhos
distintos.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 142

Contando caminhos de tamanho n (2)

Quantos caminhos distintos de tamanho n existem conectando dois vértices de
um dado grafo G?
Ü Este valor pode ser computado usando multiplicação de matrizes.

Seja o grafo:

e 4e

2v

3v

1v

1e

2e

3

A matriz de adjacência correspondente é:

v1 v2 v3

v1

A = v2

v3


0

1

0

1

1

2

0

2

0



UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 143

Contando caminhos de tamanho n (3)

O valor de A2 é dado por: 0 1 0
1 1 2
0 2 0


 0 1 0

1 1 2
0 2 0

 =

 1 1 2
1 6 2
2 2 4



Observe que a22 = 6, que é o número de caminhos
de tamanho 2 de v2 para v2.

e 4e

2v

3v

1v

1e

2e

3

Ü Se A é a matriz de adjacência de um grafo G, a entrada aij da matriz A2

indica a quantidade de caminhos de tamanho 2 conectando vi a vj no grafo
G.

Ü Este resultado é válido para caminhos de tamanho n calculando An.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 144

Isomorfismo de grafos (1)

Os desenhos abaixo

v

2v

3v4v

5v

1e5e

4e 2e

3e

1
v

4v

2v5v

3v

1e

2e

3e

4e

5e

1

representam o mesmo grafo G:
– Conjuntos de vértices e arestas são idênticos;
– Funções aresta–vértice são as mesmas.

Ü Grafos isomorfos (do grego, o que significa a mesma forma).
UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 145

Isomorfismo de grafos (2)

G G′
v

2v

3v4v

5v

1e5e

4e 2e

3e

1 v

3v

5v4v

2v

1e4e

2e 3e

5e

1

Vértices de

v

1v

2v

3v

4v

5v

1v

3v

4v

5v

Vértices de G G´

2

G´

e

1e

2e

3e

4e

5e

1e

3e

4e

5e

Arestas de Arestas de G

2

Estes grafos são diferen-
tes apesar de possuírem os
mesmos conjuntos de vér-
tices e arestas.

As funções aresta–vértice
não são as mesmas.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 146

Isomorfismo de grafos (3)

Definição: Sejam os grafos G e G′ com conjuntos de vértices V (G) e V (G′)
e com conjuntos de arestas E(G) e E(G′), respectivamente. O grafo G é
isomorfo ao grafo G′ sse existem correspondências um-para-um

g : V (G)→ V (G′)

h : E(G)→ E(G′)

que preservam as funções aresta-vértice de G e G′ no sentido que

∀v ∈ V (G) ∧ e ∈ E(G)

v é um nó terminal de e⇔ g(v) é um nó terminal de h(e).

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 147

Isomorfismo de grafos (4)

Os grafos

G G′

v

3v

4v

1e

4e

5e

7e

6e

2v

5v

3e2e1

w

5w

2f

2w

4f

5f

3f

7f

1f

3w

4w
6f

1

são isomorfos?

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 148

Isomorfismo de grafos (5)

Para resolver este problema,
devemos achar funções

g : V (G)→ V (G′)

e

h : E(G)→ E(G′)

tal que exista a correspon-
dência como mencionado
anteriormente.

Ü Grafos G e G′ são iso-
morfos.

G G′

v

3v

4v

1e

4e

5e

7e

6e

2v

5v

3e2e1

w

5w

2f

2w

4f

5f

3f

7f

1f

3w

4w
6f

1

g

w

1v

2v

3v

4v

5v

1w

3w

4w

5w

V(G) V(G´)

2

E(G´)

f

1e

2e

3e

4e

5e

1f

3f

4f

5f

7e

6e 6f

7f

h
E(G)

2

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 149

Isomorfismo de grafos (6)

Os grafos

G G′

v

2v3v

4v 5v

0v

2e

3e 1e

4e

6e

5e7e

0e

10e

9e

11e

8e

7v 6v

1

w 2w
3w

7w4w

0w 0f 1f 2f

3f

4f 5f 6f

7e

8f 9f 10f 11f

5w 6w

1

são isomorfos?

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 150

Isomorfismo de grafos (7)

Para resolver este problema,
devemos achar funções

g : V (G)→ V (G′)

e

h : E(G)→ E(G′)

tal que exista a correspon-
dência como mencionado
anteriormente.

Ü Grafos G e G′ são iso-
morfos.

G G′
v

2v3v

4v 5v

0v

2e

3e 1e

4e

6e

5e7e

0e

10e

9e

11e

8e

7v 6v

1

w 2w
3w

7w4w

0w 0f 1f 2f

3f

4f 5f 6f

7e

8f 9f 10f 11f

5w 6w

1

V(G´)

w

1v

2v

3v

4v

5v

1w

3w

4w

5w

6v 6w

g

0v 0w

V(G)

2

E(G´)

e

7e

8e

9e

10e

11e

0e

1e

2e

4e

5e

3e

7f

6f

8f

9f

10f

11f

1f

0f

2f

3f

4f

5f

h
E(G)

6

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 151

Isomorfismo de grafos (8)

• Isomorfismo de grafos é uma relação de equivalência no conjunto de grafos.

• Informalmente, temos que esta propriedade é:
– Reflexiva: Um grafo é isomorfo a si próprio.
– Simétrica: Se um grafo G é isomorfo a um grafo G′ então G′ é isomorfo a
G.

– Transitiva: Se um grafo G é isomorfo a um grafo G′ e G′ é isomorfo a G′′

então G é isomorfo a G′′.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 152

Representantes de classes de isomorfismo (1)

Ache todos os grafos não isomorfos que têm dois vértices e duas arestas.

(a) (b) (c) (d)

• Existe um algoritmo que aceita como entrada os grafos G e G′ e produz como
resultado uma afirmação se estes grafos são isomorfos ou não?
– Sim. Gere todas as funções g e h e determine se elas preservam as

funções aresta–vértice de G e G′.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 153

Representantes de classes de isomorfismo (2)

• Se G e G′ têm cada um n vértices e m arestas, o número de funções g é n!

e o número de funções h é m!, o que dá um número total de n! ·m! funções.

• Exemplo para n = m = 20.
– Temos 20! · 20! ≈ 5,9× 1036 pares a verificar.
– Assumindo que cada combinação possa ser achada e calculada em ape-

nas 1µs, seria necessário aproximadamente 1,9× 1023 anos para termi-
nar a computação nesse computador.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 154

Invariantes para isomorfismo de grafos (1)

Teorema: Cada uma das seguintes propriedades é uma invariante para isomor-
fismo de dois grafos G e G′, onde n,m e k são inteiros não negativos:

1. Tem n vértices;
2. Tem m arestas;
3. Tem um vértice de grau k;
4. Tem m vértices de grau k;
5. Tem um circuito de tamanho k;
6. Tem um circuito simples de tamanho k;
7. Tem m circuitos simples de tamanho k;
8. É conexo;
9. Tem um circuito Euleriano;

10. Tem um circuito Hamiltoniano.

Isto significa que seG é isomorfo aG′ então seG tem uma destas propriedades
G′ também tem.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 155

Invariantes para isomorfismo de grafos (2)

Os grafos

G´G

são isomorfos?

Não. G tem nove arestas e G′ tem oito arestas.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 156

Invariantes para isomorfismo de grafos (3)

Os grafos

H´H

são isomorfos?

Não. H tem um vértice de grau 4 e H ′ não tem.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 157

Isomorfismo de grafos simples (1)

Definição: Se G e G′ são grafos simples (sem arestas paralelas e sem laços)
então G é isomorfo a G′ sse existe uma correspondência g um-para-um do
conjunto de vértices V (G) de G para o conjunto de vértices V (G′) de G′ que
preserva a função aresta–vértice de G e de G′ no sentido que

∀ vértices u, v ∈ G

uv é uma aresta de G⇔ {g(u), g(v)} é uma aresta de G′.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 158

Isomorfismo de grafos simples (2)

Os grafos

z

b

c

d

a w y

G G´

x

são isomorfos?

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 159

Isomorfismo de grafos simples (3)

z

b

c

d

a w y

G G´

x

Sim, são isomorfos.

z

V(G) V(G´)g

a

b

c

d

w

x

y

A função g preserva a função aresta–vértice
de G e de G′:

Arestas de G Arestas de G′

ab yw = {g(a), g(b)}
ac yx = {g(a), g(c)}
ad yz = {g(a), g(d)}
cd xz = {g(c), g(d)}

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 160

Árvore

Definição: Uma árvore (também chamada de árvore livre) é um grafo não di-
rigido acíclico e conexo.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 161

Floresta

Definição: Uma floresta é um grafo não dirigido acíclico podendo ou não ser
conexo.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 162

Árvore geradora (1)

Suponha que uma companhia
aérea recebeu permissão para voar
nas seguintes rotas:

C

D

N

S L

I

M

A

No entanto, por questões de econo-
mia, esta empresa irá operar ape-
nas nas seguintes rotas:

C

D

N

S L

I

M

A

Este conjunto de rotas interconecta
todas as cidades.

Ü Este conjunto de rotas é mínimo?
– Sim! Qualquer árvore deste grafo possui oito vértices e sete arestas.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 163

Árvore geradora (2)

Definição: Uma árvore geradora de um grafo G é um grafo que contém cada
vértice de G e é uma árvore.

Esta definição pode ser estendida para floresta geradora.

• Proposição:
– Cada grafo conexo tem uma árvore geradora.
– Duas árvores geradores quaisquer de um grafo têm a mesma quantidade

de arestas.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 164

Árvore geradora (3)

Seja o grafo G abaixo

v0v 2v

3v4v5v

1

Este grafo possui o circuito v2v1v4v2.

A remoção de qualquer uma das três arestas do
circuito leva a uma árvore.

Assim, todas as três árvores geradoras são:

v0v 2v

3v4v5v

1 v0v 2v

3v4v5v

1 v0v 2v

3v4v5v

1

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 165

Árvore geradora mínima ou
Minimal Spanning Tree (1)

O grafo de rotas da companhia
aérea que recebeu permissão para
voar pode ser “rotulado” com as dis-
tâncias entre as cidades:

83

D

N

S

I

M

A

C
695

242

355

74

262

269

348

306
230

151

L

Suponha que a companhia deseja
voar para todas as cidades mas u-
sando um conjunto de rotas que
minimiza o total de distâncias per-
corridas:

230

D

N

S

I

M

A

C

242

355

74

262

151

L
83

Este conjunto de rotas interconecta
todas as cidades.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 166

Árvore geradora mínima (2)

Definição: Um grafo com peso é um grafo onde cada aresta possui um peso
representado por um número real. A soma de todos os pesos de todas as
arestas é o peso total do grafo. Uma árvore geradora mínima para um grafo
com peso é uma árvore geradora que tem o menor peso total possível dentre
todas as possíveis árvores geradoras do grafo.

Se G é um grafo com peso e e uma aresta de G então:
– w(e) indica o peso da aresta e, e
– w(G) indica o peso total do grafo G.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 167

Algoritmos para obter a árvore geradora mínima

• Algoritmo de Kruskal.

• Algoritmo de Prim.

Grafo inicial:

83

D

N

S

I

M

A

C
695

242

355

74

262

269

348

306
230

151

L

Árvore geradora mínima:

230

D

N

S

I

M

A

C

242

355

74

262

151

L
83

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 168

Algoritmo de Kruskal (1)

• Idéia básica:
– Seleciona a aresta de menor peso que conecta duas árvores de uma flo-

resta.
– Repita o processo até que todos os vértices estejam conectados sempre

preservando a invariante de se ter uma árvore.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 169

Algoritmo de Kruskal (2)

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 170

Algoritmo de Kruskal (3)

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 171

Algoritmo de Prim
• Idéia básica:

– Tomando como vértice ini-
cialA, crie uma fila de priori-
dades classificada pelos pe-
sos das arestas conectando
A.

– Repita o processo até que
todos os vértices tenham
sido visitados.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 172

Algoritmos de pesquisa em grafo

• Objetivo:
– Pesquisa sistemática de cada aresta e vértice de um grafo.

• Grafo G = (V,E) pode ser tanto dirigido quanto não dirigido.

• Os algoritmos apresentados assumem que a estrutura de dados utilizada é
uma lista de adjacência.

• Exemplos de algoritmos de pesquisa em grafo:
– Pesquisa em profundidade (Depth-first search – DFS).
– Pesquisa em largura (Breadth-first search – BFS).

• Aplicações:
– Computação gráfica.
– Técnicas de verificação formal.
– Compiladores.
– Resolução de problemas.
– . . .
UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 173

Pesquisa em largura (1)

• Seja um grafo G = (V,E) e um vértice origem s.

• Pesquisa em largura:
– Descobre as arestas em G que são alcançáveis a partir de s.

– Computa a distância (em no de arestas) de s para os vértices que são
alcançáveis.

– Produz uma árvore em largura com raiz s e seus vértices alcançáveis.

– Se v é um vértice alcançável a partir de s, então o caminho entre s e v na
árvore corresponde ao caminho mais curto entre s e v no grafo G.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 174

Pesquisa em largura (2)

• Expande a fronteira entre vértices descobertos e não descobertos uniforme-
mente através da extensão (largura) da fronteira.

• Pesquisa descobre todos os vértices que estão a distância k antes de desco-
brir os vértices a distância k + 1.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 175

Algoritmo para calcular BFS (1)

• Estruturas de dados:
– Grafo representado como uma lista de adjacência.
– Vetor color [u]: cor de cada vértice u ∈ V .
– Vetor π[u]: predecessor de cada vértice u ∈ V . Se u não tem predecessor

ou ainda não foi descoberto então π[u] = nil.
– Vetor d [u]: distância de cada vértice u ∈ V ao vértice s.
– Fila Q: contém os vértices já descobertos em largura.

• Cores dos vértices:
– white: não visitados ainda.

– gray : vértice descoberto mas que não teve a sua lista de adjacência total-
mente examinada.

– black : vértice descoberto que já teve a sua lista de adjacência totalmente
examinada.
Ü garantir que a pesquisa caminha em largura

• Funções:
– Enqueue e Dequeue: operações sobre uma fila FIFO.
UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 176

Algoritmo para calcular BFS (2)

BFS(G, s)

1 for each vertex u ∈ V [G]− {s}
2 do color [u]← white
3 d[u]←∞
4 π[u]← nil
5 color [s]← gray
6 d[s]← 0
7 π[s]← nil
8 Q← {s}
9 while Q 6= ∅

10 do u← head[Q]
11 for each v ∈ Adj[u]
12 do if color [v] = white
13 then color [v]← gray
14 d[v]← d[u] + 1
15 π[v]← u

16 Enqueue(Q, v)
17 Dequeue(Q)
18 color [u]← black

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 177

Comentários e análise do algoritmo (1)

1 for each vertex u ∈ V [G]− {s}
2 do color [u]← white
3 d[u]←∞
4 π[u]← nil

Linhas 1–4: Inicialização I
• Inicialização de cada vértice para white (não

descoberto).
• Distância para o vértice s como∞.
• Predecessor do vértice desconhecido.

Análise:
• Linhas 1–4: O(V).
• Cada vértice (exceto s) é inicializado como

white e nenhum vértice volta a ser white.

5 color [s]← gray
6 d[s]← 0
7 π[s]← nil
8 Q← {s}

Linhas 5–8: Inicialização II
• Inicialização de s com gray (é considerado

descoberto).
• Distância para o próprio vértice s é 0.
• Não possui predecessor.
• A fila Q contém inicialmente apenas s (irá

conter apenas os vértices gray, ou seja, os
vértices descobertos em “largura”).

Análise:
• Linhas 5–8: O(1).

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 178

Comentários e análise do algoritmo (2)

9 while Q 6= ∅
10 do u← head[Q]
11 for each v ∈ Adj[u]
12 do if color [v] = white
13 then color [v]← gray
14 d[v]← d[u] + 1
15 π[v]← u

16 Enqueue(Q, v)
17 Dequeue(Q)
18 color [u]← black

Linhas 9–18: Loop
• Loop é executado até que a fila esteja vazia,

ou seja, não hajam vértices gray.
• Cada vértice é colocado e retirado da fila so-

mente uma única vez.
• Vértice gray é um vértice que foi descoberto

mas a sua lista de adjacência ainda não foi
totalmente descoberta.

• Vértice black já foi totalmente examinado.
• Vértice u contém o primeiro elemento da fila
Q.

• Linhas 11–16 examinam cada vértice v adja-
cente a u que não foi descoberto ainda (white
(12)), marca como descoberto (gray (13)),
calcula a sua distância até s (14), marca o
seu predecessor como u (15), e o coloca na
fila Q (16).

• Quando todos os vértices adjacentes a u
forem examinados, u é retirado da fila Q (17)
e passa a ser black (18).

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 179

Comentários e análise do algoritmo (3)

9 while Q 6= ∅
10 do u← head[Q]
11 for each v ∈ Adj[u]
12 do if color [v] = white
13 then color [v]← gray
14 d[v]← d[u] + 1
15 π[v]← u

16 Enqueue(Q, v)
17 Dequeue(Q)
18 color [u]← black

Análise:
• Operações de colocar e retirar da fila cada

vértice é O(1) e o tempo total relacionado
com as operações de fila é O(V).

• A lista de adjacência de cada vértice u é per-
corrida somente uma única vez quando esse
vértice será retirado de Q.

• A soma dos comprimentos das filas de ad-
jacência é O(E), assim como o tempo para
percorrê-la.

• Linhas 9–18: O(V + E), que é o custo das
operações associadas à fila e a percorrer as
listas de adjacência.

Análise de todo algoritmo:
• Linhas 1–4: O(V).
• Linhas 5–8: O(1).
• Linhas 9–18: O(V + E).

Ü Custo total: O(V + E).
UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 180

Execução do algoritmo BFS (1)

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 181

Execução do algoritmo BFS (2)

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 182

Execução do algoritmo BFS (3)

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 183

Caminho mais curto

• BFS calcula a distância (em no de arestas) de s ∈ V para os vértices que são
alcançáveis em G = (V,E).

• Caminho mais curto δ(s, v):
– Número mínimo de arestas em qualquer caminho de s para v, no caso de

ser alcançável, ou∞ se não for.
– d[v] = δ(s, v), para todo v ∈ V .
Ü Caminho mais curto entre s e v.

• Teorema: Sub-caminhos de caminhos mais curtos são caminhos mais cur-
tos.
Prova: Se algum sub-caminho não gerar o caminho mais curto, ele poderia

ser substituído por um sub-caminho atalho e gerar um caminho total
mais curto.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 184

Inequação triangular

• Teorema: δ(u, v) ≤ δ(u, x) + δ(x, v).
– Caminho mais curto u ; v não é mais longo que qualquer outro caminho
u ; v— em particular o caminho concatenando o caminho mais curto
u ; x com o caminho mais curto x ; v.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 185

Árvore em largura (1)

• BFS produz uma árvore em largura com raiz s e seus vértices alcançáveis.
– Árvore representada pelo vetor π.

• Seja o grafo G = (V,E) e o vértice origem s. O sub-grafo predecessor de G
é definido como Gπ = (Vπ, Eπ), onde

Vπ = {v ∈ V |π[v] 6= nil} ∪ {s}

e

Eπ = {(π[v], v) ∈ E | v ∈ Vπ − {s}}

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 186

Árvore em largura (2)

• O sub-grafo predecessor Gπ é uma árvore em largura se:
– Vπ consiste dos vértices alcançáveis a partir de s, ∀v ∈ Vπ.
– ∃ um caminho simples único de s a v emGπ que também é o caminho mais

curto de s a v em G.
Ü |Eπ| = |Vπ| − 1.

• BFS constrói o vetor π tal que sub-grafo predecessor Gπ é uma árvore em
largura.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 187

Imprime caminho mais curto

PRINT-PATH(G, s, v)

1 if v = s

2 then print s
3 else if π[v] = nil
4 then print “no path from” s “to” v “exists”
5 else PRINT-PATH(G, s, π[v])
6 print v

Análise:
• Executa em tempo O(V).

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 188

Pesquisa em profundidade (1)

• Seja um grafo G = (V,E), dirigido ou não.

• Pesquisa em profundidade:
– Explora os vértices do grafo a partir de arestas não exploradas ainda, mais

fundo no grafo quanto possível.
– Quando todas as arestas de v tiverem sido exploradas, a pesquisa volta

para explorar outras arestas do vértice do qual v foi descoberto.
– Processo continua até que todos os vértices alcançáveis a partir de uma

origem tenham sido descobertos.
– Se existe vértice não descoberto ainda então um novo vértice é sele-

cionado e o processo começa todo novamente.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 189

Pesquisa em profundidade (2)

v v

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 190

Algoritmo para calcular DFS (1)

• Estruturas de dados:
– Grafo representado como uma lista de adjacência.

– Vetor color [u]: cor de cada vértice u ∈ V .

– Vetor π[u]: predecessor de cada vértice u ∈ V . Se u não tem predecessor
ou ainda não foi descoberto então π[u] = nil.

– Vetor d[1 . . . |V |]: marca quando o vértice é descoberto
(white→ gray).

– Vetor f [1 . . . |V |]: marca quando o vértice é finalizado
(gray → black).

– Variável global time: indica o instante em que o vértice é descoberto e
terminado, ou seja, o timestamp.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 191

Algoritmo para calcular DFS (2)

• Cores dos vértices:
– white : não visitados ainda.

– gray : vértice descoberto mas que não teve a sua lista de adjacência to-
talmente examinada.

– black : vértice descoberto que já teve a sua lista de adjacência totalmente
examinada e está terminado.

• Função:
– DFS-VISIT: Percorre recursivamente o grafo em profundidade.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 192

Algoritmo para calcular DFS (3)

• Saída: para cada vértice temos duas mar-
cas de tempo (timestamp) e um predeces-
sor (π(v)) para construir a árvore em pro-
fundidade.
– d[v]: instante de descoberta do vértice v;
– f [v]: instante de finalização do vértice v;
Ü Essas informações serão úteis para out-

ros algoritmos.
• Timestamps estão entre 1 e 2|V |

– ∀u ∈ V, ∃ um único evento de descoberta
e um único evento de término (inteiros
distintos).

– ∀u ∈ V, d[u] ≺ f [u]⇒ d[u] < f [u]

Ü 1 ≤ d[v] < f [v] ≤ 2|V |.

• ∀u ∈ V , tempo lógico:

d[u]

d[u]

f[u]

f[u]

white

gray

black

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 193

Algoritmo para calcular DFS (4)

DFS(G)

1 for each vertex u ∈ V [G]
2 do color [u]← white
3 π[u]← nil
4 time← 0
5 for each vertex u ∈ V [G]
6 do if color [u] = white
7 then DFS-VISIT(u)

DFS-VISIT(u)

1 color [u]← gray � Vértice u descoberto
2 time← time + 1
3 d[u]← time
4 for each v ∈ Adj[u] � Explore vértices v adjacentes a u
5 do if color [v] = white
6 then π[v]← u

7 DFS-VISIT(v)
8 color [u]← black � Vértice u finalizado
9 time← time + 1

10 f [u]← time

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 194

Comentários e análise do algoritmo (1)

DFS(G)

1 for each vertex u ∈ V [G]
2 do color [u]← white
3 π[u]← nil
4 time← 0
5 for each vertex u ∈ V [G]
6 do if color [u] = white
7 then DFS-VISIT(u)

Linhas 1–4: Inicialização
• Inicialização de cada vértice para branco (white)

(não descoberto – linha 2).
• Predecessor do vértice desconhecido (linha 3).
• Variável global usada para indicar o timestamp

(linha 4).

Linhas 5–7: Loop
• Para cada vértice ainda não descoberto (linha 6)

faz a pesquisa em profundidade (linha 7). Vértice
u torna-se a raiz de uma nova árvore (se houver)
na floresta de pesquisa em profundidade.

Análise:
• Linhas 1–3: Θ(V). Cada vértice é inicializado

como white e nenhum vértice volta a ser white.
• Linha 4: O(1).
• Linhas 5–7: Θ(V + E). As linhas 5–7 de DFS

gastam Θ(V) sem contar o tempo de DFS-VISIT,
que só é chamado uma única vez para cada vér-
tice branco.

• DFS-VISIT executa em Θ(E).

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 195

Comentários e análise do algoritmo (2)

DFS-VISIT(u)

1 color [u]← gray
2 time← time + 1
3 d[u]← time
4 for each v ∈ Adj[u]
5 do if color [v] = white
6 then π[v]← u

7 DFS-VISIT(v)
8 color [u]← black
9 time← time + 1

10 f [u]← time

Comentários:
• Linha 1: Vértice u é descoberto e torna-se cinza

(gray).
• Linha 2: Incrementa a variável de timestamp.
• Linha 3: Marca o instante em o vértice u foi des-

coberto.
• Linhas 4 a 7: Verifica cada vértice v adjacente a
u (linha 4). Se o vértice v ainda não foi desco-
berto (linha 5) marca como seu ancestral o vértice
u (linha 6) e continua pesquisando o grafo em pro-
fundidade (linha 7).

• Linha 8: Vértice u é finalizado e torna-se preto
(black).

• Linha 9: Incrementa a variável de timestamp.
• Linha 10: Marca o instante em o vértice u foi fina-

lizado.

Análise:
• Todas as atribuições têm custo O(1).
• Loop das linhas 4–7: é executado |Adj[u]| vezes,

sendo que Σv∈V |Adj[v]| = Θ(E). Assim o custo
de DFS-VISIT é Θ(E).

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 196

Execução do algoritmo DFS

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 197

Classificação das arestas numa pesquisa em
profundidade

É possível identificar quatro tipos de arestas durante a construção da floresta de pesquisa em
profundidade Gπ obtida pelo algoritmo de DFS no grafo G. O primeiro tipo de aresta pertence a
floresta enquanto os outros três não:
– T (tree): aresta da floresta de pesquisa em profundidade Gπ. Aresta (u, v) é uma aresta da

árvore se o vértice v foi descoberto inicialmente ao explorar a aresta dirigida (u, v).
– B (back): aresta (u, v) que conecta um vértice u a um ancestral v já presente na árvore.

Loops são consideradas arestas back.
– F (forward): aresta (u, v) que conecta um vértice u a um descendente v na árvore de

pesquisa em profundidade.
– C (cross): são todas as outras arestas.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 198

Propriedades da pesquisa em profundidade (1)

• O sub-grafo Gπ define uma floresta de árvores (no caso do grafo G não ser
conexo).
– As árvores da pesquisa em profundidade refletem a estrutura das

chamadas recursivas de DFS-VISIT.
– Temos que π[v] = u sse DFS-VISIT foi chamado durante uma pesquisa

da lista de adjacência de u, i.e., vértice v tem como ancestral o vértice u.
– Pode-se dizer que vértice v é descendente do vértice u na floresta de

pesquisa em profundidade sse v foi descoberto quando u era cinza (gray).

• Pesquisa em profundidade apresenta “Estrutura de Parênteses”.
– Represente a descoberta do vértice u pelo parêntese da esquerda: (u.
– Represente a finalização do vértice u pelo parêntese da direita: u).
Ü Seqüencia de descobertas e finalizações de um dado vértice define uma

expressão bem formada no sentido que parênteses são propriamente ani-
nhados.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 199

Propriedades da pesquisa em profundidade (2)
Resultado de uma pesquisa em profundidade sobre
um grafo G.

Intervalos de descoberta e finalização de cada
vértice correspondem a estrutura de parênteses
mostrada. Cada retângulo representa o “intervalo de
tempo” entre o instante de descoberta e finalização
de um vértice. Se há sobreposição de intervalos en-
tão um está inserido no outro e o vértice que repre-
senta o menor intervalo é um descendente do vértice
que representa o maior intervalo.

O grafo acima está desenhado com todas as arestas
da árvore de cima para baixo e as outras arestas que
não fazem parte dela (B, F e C).

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 200

Teorema do Parênteses (1)

Seja uma pesquisa em profundidade em um grafo G = (V,E), dirigido ou não.
Para quaisquer dois vértices u e v desse grafo, temos que apenas uma das três
condições abaixo é verdadeira:

1. Os intervalos [d[u], f [u]] e [d[v], f [v]] são totalmente disjuntos e nem u

nem v é um descendente do outro na floresta de pesquisa em profundi-
dade.
Ü d[u] < f [u] < d[v] < d[v] ou d[v] < f [v] < d[u] < f [u].

2. O intervalo [d[u], f [u]] está contido inteiramente dentro do intervalo
[d[v], f [v]] e o vértice u é um descendente do vértice v na árvore de
pesquisa em profundidade.
Ü d[v] < d[u] < f [u] < f [v].

3. O intervalo [d[v], f [v]] está contido inteiramente dentro do intervalo
[d[u], f [u]] e o vértice v é um descendente do vértice u na árvore de
pesquisa em profundidade.
Ü d[u] < d[v] < f [v] < f [u].

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 201

Teorema do Parênteses (2)

Prova. Seja o caso d[u] < d[v]. Existem duas possibilidades:
(a) d[v] < f [u]

– Vértice v foi descoberto quando u era cinza (gray).
– Vértice v é um descendente de u.
– Arestas de saída de v são exploradas.
– Vértice v é finalizado antes da pesquisa retornar a u e ser finalizado.
.
.
. Intervalo [d[v], f [v]] está inteiramente contido em [d[u], f [u]].

(b) d[v] 6< f [u], ou ainda, f [u] < d[v]

– Sabe-se que d[u] < f [u] e d[v] < f [v].
.
.
. Intervalos são disjuntos e os dois vértices não têm uma relação de an-

cestral e descendente.

O caso d[v] < d[u] é similar ao que foi explicado acima.

Exemplos:
– Certo: ()[] ([]) [()]

– Errado: ([)] [(])

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 202

Aninhamento de intervalos de descendentes

Corolário: Vértice v é um descendente próprio do vértice u na floresta de
pesquisa em profundidade para um grafo G (dirigido ou não) sse

d[u] < d[v] < f [v] < f [u].

Prova. Imediato do Teorema do Parênteses.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 203

Teorema do Caminho Branco
Teorema: Na floresta de pesquisa em profundidade de um grafo G = (V,E) (dirigido ou não),

o vértice v é um descendente do vértice u sse (⇔) no instante d[u] que DFS descobre
u, o vértice v pode ser alcançado a partir de u ao longo de um caminho formado
inteiramente de vértices brancos.

Prova.
(⇒) [se o vértice v é um descendente do vértice u então no instante d[u] que DFS descobre u,
o vértice v pode ser alcançado a partir de u ao longo de um caminho formado inteiramente de
vértices brancos.]

Suponha que v é um descendente de u. Seja w um vértice qualquer no caminho entre u
e v na árvore de pesquisa em profundidade. Pelo corolário do “Aninhamento de Intervalos de
Descendentes” (AID), d[u] < d[w] e w é branco no instante d[u]. Como w é um vértice qualquer
no caminho entre u e v, a conclusão é verdadeira.

(⇐) [se no instante d[u] que DFS descobre u, o vértice v pode ser alcançado a partir de
u ao longo de um caminho formado inteiramente de vértices brancos então o vértice v é um
descendente do vértice u.]

Suponha que a hipótese é verdadeira e que o vértice v não se torna um descendente de u
na árvore de pesquisa em profundidade. Assuma que todos os outros vértices ao longo do
caminho tornam-se descendentes de u. Seja w o predecessor de v no caminho tal que w é um
descendente de u (w e u podem ser o mesmo vértice) e, pelo corolário AID, f [w] ≤ f [u]. Note
que v deve ser descoberto depois que u é descoberto, mas antes que w seja finalizado (w é o
predecessor de v). Assim, d[u] < d[v] < f [w] ≤ f [u]. Pelo teorema do Parênteses temos que
o intervalo [d[v], f [v]] está contido inteiramente dentro do intervalo [d[u], f [u]]. Pelo corolário
AID, v deve ser um descendente de u.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 204

Pesquisa em profundidade e Conjectura I

Se existe um caminho do vértice u para o vértice v num grafo dirigido G e se
d[u] < d[v] na pesquisa em profundidade de G, então o vértice v é um descen-
dente do vértice u na floresta de pesquisa em profundidade obtida. [Exercício
22.3-7 do livro CLRS]

A conjectura é verdadeira ou falsa?

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 205

Pesquisa em profundidade e Conjectura I

Se existe um caminho do vértice u para o vértice v num grafo dirigido G e se
d[u] < d[v] na pesquisa em profundidade de G, então o vértice v é um descen-
dente do vértice u na floresta de pesquisa em profundidade obtida. [Exercício
22.3-7 do livro CLRS]

A conjectura é verdadeira ou falsa?
Ü Falsa! Prova por contra-exemplo.

– Existe um caminho de u para v no grafo.
– A árvore de pesquisa em profundidade é produzida e as arestas identificadas.
– Temos que d[u] < d[v] na pesquisa em profundidade mas v não é um des-

cendente de u.
UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 206

Pesquisa em profundidade e Conjectura II

Se existe um caminho do vértice u para o vértice v num grafo dirigido G, então
qualquer pesquisa em profundidade deve resultar em d[v] ≤ f [u]. [Exercício
22.3-8 do livro CLRS]

A conjectura é verdadeira ou falsa?

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 207

Pesquisa em profundidade e Conjectura II

Se existe um caminho do vértice u para o vértice v num grafo dirigido G, então
qualquer pesquisa em profundidade deve resultar em d[v] ≤ f [u]. [Exercício
22.3-8 do livro CLRS]

A conjectura é verdadeira ou falsa?
Ü Falsa! Prova por contra-exemplo.

– Existe um caminho de u para v no grafo.
– A árvore de pesquisa em profundidade é produzida e as arestas identificadas.
– Contudo, d[v] > f [u].

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 208

Pesquisa em profundidade e floresta com certa
propriedade

Seja um vértice u, que tem arestas de entrada e saída, em um grafo dirigido G.
É possível que esse vértice fique sozinho na árvore de pesquisa em profundi-
dade? [Exercício 22.3-10 do livro CLRS]

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 209

Pesquisa em profundidade e floresta com certa
propriedade

Seja um vértice u, que tem arestas de entrada e saída, em um grafo dirigido G.
É possível que esse vértice fique sozinho na árvore de pesquisa em profundi-
dade? [Exercício 22.3-10 do livro CLRS]

Sim!

– Vértice u tem arestas de entrada e saída no grafo G.
– No entanto, a floresta de pesquisa em profundidade produzida faz com o vér-

tice u apareça sozinho na árvore de pesquisa em profundidade.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 210

Classificação de arestas na DFS (1)

• A pesquisa em profundidade pode ser usada para classificar as arestas de
um grafo G.

• Exemplo de aplicação:
– Um grafo dirigido é acíclico sse a pesquisa em profundidade não identifica

nenhuma aresta do tipo back (retorno).

• O procedimento DFS pode ser modificado para classificar as arestas de um
grafo G à medida que elas forem sendo encontradas.
Ü Nesta versão, arestas F (forward) e C (cross) não são discriminadas.

• Idéia: tem-se uma aresta incidente a um vértice
– white : indica uma aresta da árvore.

– gray : indica uma aresta B (back).

– black : indica uma aresta F (forward) ou C (cross).

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 211

Classificação de arestas na DFS (2)

Aresta incidente a um vértice:
• white : aresta T

– Identificação imediata a partir da especificação do algoritmo.

• gray : aresta B
– Vértices cinza (gray) formam uma sequência linear de descendentes que

correspondem à pilha de invocações ativas ao procedimento DFS-VISIT.
– Nesse processo de exploração, se um vértice cinza encontra outro vértice

cinza então foi encontrado um ancestral.

• black : aresta F ou C
– Possibilidade restante.
– É possível mostrar que uma aresta (u, v) é
. F (forward) se d[u] < d[v] e,
. C (cross) se d[u] > d[v].

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 212

Classificação de arestas na DFS (3)

DFS-WITH-EDGE-CLASSIFICATION(G)

� Idêntico ao DFS

DFS-VISIT(u)

1 color [u]← gray � Vértice u descoberto
2 time← time + 1
3 d[u]← time
4 for each v ∈ Adj[u] � Explore vértices v adjacentes a u
5 do if color [v] = white
6 then (u, v)← T � Aresta pertence à árvore
7 π[v]← u

8 DFS-VISIT(v)
9 else if color [v] = gray

10 then (u, v)← B � Aresta é do tipo B
11 else (u, v)← {F,C} � Aresta é do tipo F ou C
12 color [u]← black � Vértice u finalizado
13 time← time + 1
14 f [u]← time

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 213

Classificação de arestas num grafo não dirigido

Teorema: Numa pesquisa em profundidade de um grafo não dirigido G, cada aresta de G é
uma aresta da árvore (T) ou uma aresta de retorno (B).

Prova.
Seja (u, v) uma aresta arbitrária de G e suponha, sem perda de generalidade, que d[u] < d[v].
Nesse caso, o vértice v deve ser descoberto e finalizado antes de finalizar o vértice u (enquanto
u for cinza), já que v está na lista de adjacência de u.

Se a aresta (u, v) é explorada primeiro na direção de u para v, então v não era conhecido
(white) naquele instante, caso contrário, a aresta já teria sido explorada na direção de v para u.
Assim, a aresta (u, v) torna-se uma aresta da árvore (T).

Se a aresta (u, v) é explorada primeiro na direção de v para u, então (u, v) é uma aresta de
retorno (B), já que o vértice u ainda tem a cor cinza (gray) no momento que a aresta é primeiro
explorada.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 214

Ordenação topológica

• A busca em profundidade pode ser usada para executar uma ordenação
topológica em um grafo dirigido acíclico (DAG – Directed Acyclic Graph).

• Uma ordenação topológica de um DAG G = (V,E) é uma ordenação linear
de todos os seus vértices, tal que se G contém uma aresta (u, v), então u
aparece antes de v na ordenação.

• Se o grafo não é acíclico, então não é possível nenhuma ordenação linear.

• Uma ordenação topológica de um grafo pode ser vista como uma ordenação
de seus vértices ao longo de uma linha horizontal, de tal forma que todas as
arestas orientadas sigam da esquerda para a direita.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 215

Ordenação topológica

• DAGs são usados em aplicações para indicar precedência entre eventos.

• O grafo abaixo mostra como um dado homem se veste pela manhã.

• Uma aresta orientada (u, v) no DAG indica que a peça de roupa u deve ser
vestida antes da peça v.

– Algumas peças devem ser vestidas antes de outras (meias antes dos sa-
patos);

– Outras, em qualquer ordem (meias e calças).

• Uma ordenação topológica desse DAG fornece uma ordem para o processo
de se vestir.
UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 216

Algoritmo de ordenação topológica

TOPOLOGICAL-SORT(G)

1 DFS(G) � Chama DFS para calcular o instante de término f [u] para cada vér-
tice u. À medida que cada vértice é terminado, ele deve ser inserido
na frente de uma lista encadeada.

2 return lista encadeada de vértices.

TOPOLOGICAL-SORT(G)

� Versão modificada de DFS
1 for each vertex u ∈ V [G]
2 do color [u]← white
3 π[u]← nil
4 time← 0
5 for each vertex u ∈ V [G]
6 do if color [u] = white
7 then DFS-VISIT(u)
8 return Q

DFS-VISIT(u)

1 color [u]← gray
2 time← time + 1
3 d[u]← time
4 for each v ∈ Adj[u]
5 do if color [v] = white
6 then π[v]← u

7 DFS-VISIT(v)
8 color [u]← black
9 time← time + 1

10 f [u]← time
� Monta a ordenação topológica

11 Enqueue(Q, u)

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 217

Algoritmo de ordenação topológica

Ü Os vértices topologicamente ordenados aparecem na ordem inversa de seus
tempos de término.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 218

Ordenação topológica: Análise de complexidade

• A busca em profundidade é Θ(V + E) e leva tempo O(1) para inserir cada
um dos n vértices à frente da lista encadeada.

• Logo, a ordenação topológica tem complexidade de tempo de Θ(V + E).

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 219

Componentes fortemente conexos

• Um grafo orientado é fortemente conexo se cada um de dois vértices quais-
quer é acessível a partir do outro.

• Um componente fortemente conexo de um grafo orientado G = (V,E) é um
conjunto máximo de vértices C ⊆ V tal que, para todo par de vértices u e v
em C, temos que os vértices u e v são acessíveis um a partir do outro.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 220

Componentes fortemente conexos

• A busca em profundidade pode ser utilizada também para realizar a decom-
posição de um grafo orientado em seus componentes fortemente conexos.
– Vários algoritmos que trabalham com grafos dirigidos começam por essa

decomposição.

– Uma vez feita essa decomposição, o algoritmo é executado sobre cada
componente.

– As soluções são combinadas de acordo com a estrutura das conexões en-
tre os componentes.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 221

Componentes fortemente conexos

• Dado um um grafo G = (V,E), o seu grafo transposto GT = (V,ET) con-
siste das arestas de G com seus sentidos invertidos (ET).

G GT

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 222

Componentes fortemente conexos: Algoritmo

O algoritmo abaixo calcula os componentes fortemente conexos de um grafo
orientado G = (V,E) fazendo duas pesquisas em profundidade, a primeira
sobre G e a segunda sobre GT .

STRONGLY-CONNECTED-COMPONENTS(G)

1 DFS(G) � Faz a pesquisa em profundidade e calcula o tempo de finalização f [u]
para cada vértice u.

2 Gere GT � Gera o grafo transposto GT do grafo G.
3 DFS(GT) � Faz a pesquisa em profundidade para o grafo GT , mas no laço prin-

cipal de DFS, considere os vértices em ordem decrescente de f [u]
(como computado na linha 1).

4 Liste os vértices de cada árvore na floresta DFS formada na linha 3 como um componente
fortemente conexo..

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 223

Componentes fortemente conexos: Análise

• Busca em profundidade sobre G : Θ(V + E).

• Cálculo de GT : Θ(V + E).

• Busca em profundidade sobre GT : Θ(V + E).

• Assim, a complexidade de tempo é Θ(V + E).

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 224

Componentes fortemente conexos: Exemplo
Passo 1

Seja o grafo G abaixo

Um possível resultado para o cálculo de DFS do grafo G é:

Para a pesquisa resultante, temos os seguintes tempos de finalização f [u] em ordem decres-
cente:

u b e a c d g h f
f [u] 16 15 14 10 9 7 6 4

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 225

Componentes fortemente conexos: Exemplo
Passo 2

Dado o grafo G:

O grafo transposto GT do grafo G é:

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 226

Componentes fortemente conexos: Exemplo
Passo 3

Pesquisa em profundidade o grafo GT , sendo que no laço principal do DFS os vértices são
considerados em ordem decrescente de f [u] (como computado no passo 1).

u b e a c d g h f
f [u] 16 15 14 10 9 7 6 4

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 227

Componentes fortemente conexos: Exemplo
Passo 4

Os vértices de cada árvore na floresta DFS formada no passo 3 são listados como um compo-
nente fortemente conexo do grafo original.

Grafo GT com a floresta DFT:

Grafo G com os componentes conexos:

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 228

Componentes fortemente conexos e o grafo GSCC
O grafo G pode ser representado por um grafo de componentes

GSCC = (V SCC, ESCC)

definido da seguinte forma:
– Suponha que G tenha componentes fortemente conexos C1, C2, . . . , Ck.
– V SCC = {v1, v2, . . . , vk}, onde vi representa o componente fortemente conexo Ci de G.
– ∃(vi, vj) ∈ ESCC, se G contém a aresta dirigida (x, y)|x ∈ Ci, y ∈ Cj.

No grafo GSCC, cada vértice representa um componente e cada aresta representa a conectivi-
dade entre componentes.

Grafo G com os componentes conexos Grafo GSCC

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 229

Conectividade entre componentes fortemente
conexos

Lema: Sejam C e C′ dois componentes fortemente conexos distintos do grafo
G. Sejam os vértices u, v ∈ C e u′, v′ ∈ C′. Suponha que exista um caminho
u ; u′ ∈ G. Então não pode haver um caminho v′ ; v ∈ G.

Prova. Suponha que exista um caminho v′ ; v ∈ G. Devem existir, então,
caminhos u ; u′ ; v′ e v′ ; v ; u ∈ G. Assim, u, que pertence ao
componente fortemente conexoC, é alcançável por um caminho que passa pelo
componente fortemente conexo C′, o que implica que os componentes conexos
C e C′ deveriam ser um único componente. Isso contradiz a suposição que eles
são distintos e, assim, não pode haver o caminho v′ ; v ∈ G.

UFMG/ICEx/DCC PAA · Grafos: Conceitos e Algoritmos 230

