UFMG/ICEx/DCC PROJETO E ANALISE DE ALGORITMOS

LisTA DE EXERCICIOS 2

P6s-GRADUAGAO EM CIENCIA DA COMPUTAGAO 12 SEMESTRE DE 2011

Observagoes:
1. Comece a fazer esta lista imediatamente. Vocé nunca tera tanto tempo para resolvé-lo quanto agora!

2. Data de Entrega: até 2 de maio, as 9:30 horas, ou antes. Ap0s essa data e hora haverd uma penalizagao
por atraso: 2%, onde d é o nimero de dias de atraso.

3. Envie qualquer material referente a esta lista de exercicios para o endereco eletronico
esub.para.loureiro@gmail.com | tendo como assunto ’ [PAA 2011/1 LE2: "seu nome completo"]|e

como anexo um arquivo zip, descrito abaixo, com o nome ’LEQ,"SeuNomeCompleto" .zip | onde o string

"SeuNomeCompleto" é o seu nome completo sem espagos em branco.

Exemplo para o aluno Zoroastro Felizardo e Sortudo:

e Assunto: [PAA 2011/1 LE2: Zoroastro Felizardo e Sortudo]

e Arquivo zip: LE2_ZoroastroFelizardoESortudo.zip

4. O seu programa deve ser executado em alguma méquina do ambiente computacional do Departamento de
Ciéncia da Computacao da UFMG, onde os monitores irao avalid-lo. No arquivo leiame.txt, a ser incluido
no arquivo zip, vocé deve dizer qual é o ambiente computacional para executar o seu TP bem como todas
as instrugoes necessarias.

5. Linguagem do exercicio de programagao: C, C++ ou Java.
6. As questdes, a seguir, tratam do projeto de algoritmos. CLSR é a referéncia do exercicio no livro-texto.

7. Das primeiras 16 questoes, escolha sete para resolver, faga a questao 17 e o exercicio de programagao.

Questao 1 [CLRS, Ex 15.2-4, pg 338]

Let R(%,j) be the number of times that table entry m][i, j] is referenced while computing other table entries in a
call of MATRIX-CHAIN-ORDER. Show that the total number of references for the entire table is:

i=1j=1

(Hint: You may find equation (A.3) useful.)

Questao 2 [CLRS, Ex 15.3-1, pg 349]

Which is a more efficient way to determine the optimal number of multiplications in a matrix-chain multiplication
problem: enumerating all the ways of parenthesizing the product and computing the number of multiplications
for each, or running RECURSIVE-MATRIX-CHAIN? Justify your answer.

PAA *2011/1 LisTA DE EXERCiCIOS 2 1

Questao 3 [CLRS, Ex 15.3-2, pg 349]

Draw the recursion tree for the MERGE-SORT procedure from Section 2.3.1 on an array of 16 elements. Explain
why memoization is ineffective in speeding up a good divide-and-conquer algorithm such as MERGE-SORT.

Na Wikipedia (versdo em inglés), o termo memoization tem a seguinte entrada (http://en.wikipedia.org/wiki/
Memoization):

The term “memoization” was coined by Donald Michie in 1968 and is derived from the Latin word memorandum
(to be remembered), and thus carries the meaning of turning [the results of] a function into something to be
remembered. While memoization might be confused with memorization (because of the shared cognate),
memoization has a specialized meaning in computing.

A memoized function “remembers” the results corresponding to some set of specific inputs. Subsequent calls
with remembered inputs return the remembered result rather than recalculating it, thus moving the primary
cost of a call with given parameters to the first call made to the function with those parameters. The set of
remembered associations may be a fixed-size set controlled by a replacement algorithm or a fixed set, depending
on the nature of the function and its use. A function can only be memoized if it is referentially transparent;
that is, only if calling the function has the exact same effect as replacing that function call with its return value.
(Special case exceptions to this restriction exist, however.) While related to lookup tables, since memoization
often uses such tables in its implementation, memoization differs from pure table lookup in that the tables
which memoization might use are populated transparently on an as-needed basis.

Memoization is a means of lowering a function’s time cost in exchange for space cost; that is, memoized
functions become optimized for speed in exchange for a higher use of computer memory space. The time/space
“cost” of algorithms has a specific name in computing: computational complexity. All functions have a
computational complexity in time (i.e. they take time to execute) and in space.

Questao 4 [CLRS, Ex 15.3-5, pg 350]

As stated, in dynamic programming we first solve the subproblems and then choose which of them to use in an
optimal solution to the problem. Professor Capulet claims that it is not always necessary to solve all the subprob-
lems in order to find an optimal solution. She suggests that an optimal solution to the matrix-chain multiplication
problem can be found by always choosing the matrix Ay, at which to split the subproduct A;4;41 ... A; (by select-
ing k to minimize the quantity p;_1pkp,) before solving the subproblems. Find an instance of the matrix-chain
multiplication problem for which this greedy approach yields a suboptimal solution.

Questao 5 [CLRS, Prob 15-1, pg 364]

The euclidean traveling-salesman problem is the problem of determining the shortest closed tour that con-
nects a given set of n points in the plane. Figure 15.9(a) shows the solution to a 7-point problem. The general
problem is NP-complete, and its solution is therefore believed to require more than polynomial time (see Chapter
34).

J. L. Bentley has suggested that we simplify the problem by restricting our attention to bitonic tours, that
is, tours that start at the leftmost point, go strictly left to right to the rightmost point, and then go strictly right
to left back to the starting point. Figure 15.9(b) shows the shortest bitonic tour of the same 7 points. In this
case, a polynomial-time algorithm is possible.

Describe an O(n?)-time algorithm for determining an optimal bitonic tour. You may assume that no two
points have the same x-coordinate. (Hint: Scan left to right, maintaining optimal possibilities for the two parts
of the tour.)

Questao 6 [CLRS, Prob 15-3, pg 364]

In order to transform one source string of text z[l...m] to a target string y[l...n], we can perform various
transformation operations. Our goal is, given x and y, to produce a series of transformations that change = to y.
We use an array z—assumed to be large enough to hold all the characters it will need—to hold the intermediate
results. Initially, z is empty, and at termination, we should have z[j] = y[j] for j = 1,2,...,n. We maintain
current indices ¢ into x and j into 2z, and the operations are allowed to alter z and these indices. Initially, 1 = 5 = 1.
We are required to examine every character in x during the transformation, which means that at the end of the
sequence of transformation operations, we must have i = m + 1.
There are six transformation operations:

PAA +2011/1 LisTA DE EXERCiCIOS 2 2

Copy a character from z to z by setting z[j] « x[¢] and then incrementing both 7 and j. This operation examines

Replace a character from x by another character ¢, by setting z[j] < ¢, and then incrementing both ¢ and j.
This operation examines x[i].

Delete a character from x by incrementing i but leaving j alone. This operation examines x[i].

Insert the character ¢ into z by setting z[j] < ¢ and then incrementing j, but leaving 4 alone. This operation
examines no characters of x.

Twiddle (i.e., exchange) the next two characters by copying them from z to z but in the opposite order; we do
so by setting z[j] <« z[i + 1] and z[j + 1] < z[i] and then setting i <+ i+ 2 and j <« j + 2. This operation
examines x[i] and z[i + 1].

Kill the remainder of x by setting ¢ «<— m + 1. This operation examines all characters in = that have not yet been
examined. If this operation is performed, it must be the final operation.

As an example, one way to transform the source string algorithm to the target string altruistic is to use
the following sequence of operations, where the underlined characters are z[i] and z[j] after the operation:

Operation x z

initial strings algorithm

copy algorithm a

copy aigorithm al

replace by t algorithm alt

delete algorithm alt

copy algo;ithm altr

insert u algorzthm altru
insert i algorzthm altrui
insert s algorIthm altruis
twiddle algorithm altruisti
insert c algoritﬂm altruistic
kill algorithm altruistic

Note that there are several other sequences of transformation operations that transform algorithm to altruistic.

Each of the transformation operations has an associated cost. The cost of an operation depends on the specific
application, but we assume that each operation’s cost is a constant that is known to us. We also assume that
the individual costs of the copy and replace operations are less than the combined costs of the delete and insert
operations; otherwise, the copy and replace operations would not be used. The cost of a given sequence of
transformation operations is the sum of the costs of the individual operations in the sequence. For the sequence
above, the cost of transforming algorithm to altruistic is

(3 - cost(copy)) + cost(replace) + cost(delete) 4+ (4 - cost(insert)) + cost(twiddle) + cost(kill).

(a) Given two sequences x[l...m] and y[l...n] and set of transformation-operation costs, the edit distance
from x to y is the cost of the least expensive operation sequence that transforms z to y. Describe a
dynamic-programming algorithm that finds the edit distance from x[1...m] to y[l...n] and prints an
optimal operation sequence. Analyze the running time and space requirements of your algorithm.

The edit-distance problem is a generalization of the problem of aligning two DNA sequences (see, for example,
Setubal and Meidanis [272, Section 3.2]). There are several methods for measuring the similarity of two DNA
sequences by aligning them. One such method to align two sequences = and y consists of inserting spaces at
arbitrary locations in the two sequences (including at either end) so that the resulting sequences z’ and 3y’ have
the same length but do not have a space in the same position (i.e., for no position j are both 2’[j] and y'[j] a
space.) Then we assign a “score” to each position. Position j receives a score as follows:

e +1if 2'[j] = y/[j] and neither is a space,
o —1if 2'[j] # v'[j] and neither is a space,

e —2 if either 2'[j] or y'[j] is a space.

PAA *2011/1 LisTA DE EXERCiCIOS 2 3

The score for the alignment is the sum of the scores of the individual positions. For example, given the
sequences z = GATCGGCAT and y = CAATGTGAATC, one alignment is

G ATCG GCAT
CAAT GTGAATC
—k++k+k+—++k

A + under a position indicates a score of +1 for that position, a — indicates a score of —1, and a * indicates a
score of —2, so that this alignment has a total score of 6-1—2-1—-4-2= —4.

(b) Explain how to cast the problem of finding an optimal alignment as an edit distance problem using a subset
of the transformation operations copy, replace, delete, insert, twiddle, and kill.

Questao 7 [CLRS, Ex 16.1-1, pg 378]

Give a dynamic-programming algorithm for the activity-selection problem, based on the recurrence (16.3). Have
your algorithm compute the sizes c[i, j] as defined above and also produce the maximum-size subset A of activities.
Assume that the inputs have been sorted as in equation (16.1). Compare the running time of your solution to
the running time of GREEDY-ACTIVITY-SELECTOR.

Questao 8 [CLRS, Ex 16.1-2, pg 378]

Suppose that instead of always selecting the first activity to finish, we instead select the last activity to start that
is compatible with all previously selected activities. Describe how this approach is a greedy algorithm, and prove
that it yields an optimal solution.

Questao 9 [CLRS, Ex 16.1-3, pg 379]

Suppose that we have a set of activities to schedule among a large number of lecture halls. We wish to schedule
all the activities using as few lecture halls as possible. Give an efficient greedy algorithm to determine which
activity should use which lecture hall.

(This is also known as the interval-graph coloring problem. We can create an interval graph whose vertices
are the given activities and whose edges connect incompatible activities. The smallest number of colors required
to color every vertex so that no two adjacent vertices are given the same color corresponds to finding the fewest
lecture halls needed to schedule all of the given activities.)

Questao 10 [CLRS, Ex 16.2-1, pg 384]

Prove that the fractional knapsack problem has the greedy-choice property.

Questao 11 [CLRS, Ex 16.2-2, pg 384]

Give a dynamic-programming solution to the 0—1 knapsack problem that runs in O(nW) time, where n is number
of items and W is the maximum weight of items that the thief can put in his knapsack.

Questao 12 [CLRS, Ex 16.2-4, pg 384]

Professor Midas drives an automobile from Newark to Reno along Interstate 80. His car’s gas tank, when full,
holds enough gas to travel n miles, and his map gives the distances between gas stations on his route. The
professor wishes to make as few gas stops as possible along the way. Give an efficient method by which Professor
Midas can determine at which gas stations he should stop, and prove that your strategy yields an optimal solution.

Questao 13 [CLRS, Ex 16.2-6, pg 384]

Show how to solve the fractional knapsack problem in O(n) time.

Questao 14 [CLRS, Ex 16.3-1, pg 392]

Prove that a binary tree that is not full cannot correspond to an optimal prefix code.

PAA *2011/1 LisTA DE EXERCiCIOS 2 4

Questao 15 [CLRS, Ex 16.3-2, pg 392]

What is an optimal Huffman code for the following set of frequencies, based on the first 8 Fibonacci numbers?
a:1 b:1 ¢c:2 d:3 e:5 £:8 g:13 h:21

Can you generalize your answer to find the optimal code when the frequencies are the first n Fibonacci numbers?

Questao 16 [CLRS, Ex 16.3-4, pg 392]

Prove that if we order the characters in an alphabet so that their frequencies are monotonically decreasing, then
there exists an optimal code whose codeword lengths are monotonically increasing.

Questao 17

Para cada um dos seguintes paradigmas de projeto de algoritmos, formule cinco questoes que tenham como
resultado “verdadeiro” ou “falso” (similar &s questdes da primeira prova) e apresente as solugdes justificadas.
Procure incluir questoes que também tenham um trecho de cédigo, preferencialmente no formato apresentado no
livro “Introduction to Algorithms”.

Inducao

Recursividade

Tentativa e erro

Divisao e conquista
Balanceamento
Programacao dinamica
Algoritmos gulosos
Algoritmos aproximados

50 o Ao T

N N~~~
NG AN AN NG AN AN

Para o problema abaixo, escreva o algoritmo, faca a implementacao, testes e apresente o custo de complexidade
identificando a operacgao considerada relevante. No caso de apresentar uma solucao recursiva, discuta também e
apresente a complexidade para o crescimento da pilha.

Exercicio de Programacao: Tangram

O Tangram ¢é um jogo composto de sete pegas planas, chamadas “tans”, que sao colocadas juntas para formar
diversas figuras. O objetivo do jogo é formar uma figura especifica, dada apenas sua silhueta, utilizando as sete
pegas, que nao podem se sobrepor, conforme mostrado na figura 1

Figura 1: As sete pecas do Tangram.

Os tamanhos das pecas sao dados em relagao a um quadrado grande contendo todas elas, com altura, largura
e area iguais a uma unidade:

PAA *2011/1 LisTA DE EXERCiCIOS 2 5

e 5 triangulos:
— 2 pequenos (cada um com hipotenusa de % e lados de ﬁ e drea de %6);
— 1 médio (hipotenusa de %, lados de 3 e drea de 3);

— 2 grandes (hipotenusa de 1, lados de % e drea de 1);

e 1 quadrado (lado de ﬁ e 4rea de %);

e 1 paralelogramo (lados de § e de —=, angulos de 45° e 135° e drea de §).

Este jogo pode ser resolvido computacionalmente e existem varias heuristicas para resolvé-lo. Ou seja, existem
diferentes estratégias de projeto de algoritmos para resolver esse problema.

Neste exercicio de programacao, vocé deve identificar uma técnica de projeto de algoritmos usada para resolver
o tangram e discutir essa solugao. Preferencialmente, essa discussao deve fazer referéncias a outras técnicas de
projeto para resolver este exercicio de programagao.

Os formatos de entrada e saida a serem usados neste exercicio de programagdo estdo descritos a seguir.

Entrada: A silhueta a ser identificada deve ter a seguinte entrada:

e Primeira linha: unidade da escala usada para fazer referéncia aos pontos da figura. As posicoes de todos os
pontos de entrada e de saida serao dados nessa escala. Esse valor deve ser maior ou igual a 1. A sugestao é
usar um valor que gere o menor erro possivel na identificacao da silhueta e da saida. Essa escala pode ser
um ndmero inteiro ou real.

e Préximas linhas: A silhueta da figura. Serdo dadas as coordenadas cartesianas (x,y) dos pontos extremos
da silhueta da figura na escala previamente definida. Sendo assim, os segmentos de reta que ligam esses
pontos consecutivamente e o ultimo ponto ao primeiro definem a silhueta da figura a ser investigada.

Saida: Composta de duas partes: arquivo texto e um arquivo que exibe a entrada (apenas a silhueta) e a saida
(posigao de cada pega) em algum formato como postscript ou pdf.

O arquivo texto de safda deve possuir as posicoes (x,y) de cada ponto de cada uma das sete pegas dentro da
silhueta dada, isto é, o arquivo de saida deve conter sete linhas, cada uma delas com as coordenadas cartesianas
da peca em questao de acordo com a seguinte ordem:

1. triangulo pequeno;
triangulo pequeno;
triangulo médio;
triangulo grande;
triangulo grande;
quadrado;
paralelogramo.

NSOt N

Exemplo: Considere a figura 1. Nos arquivos abaixo, os comentarios sdo usados para explicar cada linha e nao
fazem parte do arquivo.

Um exemplo de entrada é:

100 % Escala
0 0 % lo. ponto
100 0 % 20. ponto
100 100 % 30. ponto
0 100 % 4o. ponto

Note que as coordenadas estao apresentadas no sentido anti-horario.

Um arquivo exemplo de saida é:

PAA *2011/1 LisTA DE EXERCicIOS 2 6

25 25 75 25 50 5O % Triangulo menor

100 50 100 100 75 75 % Triangulo menor
50 0 100 0 100 50 % Tridngulo médio
0 0 50 50 0 100 % Tridngulo grande
50 50 100 100 0 100 % Triangulo grande
75 25 100 50 75 75 BO 5O % Quadrado
0 0 50 0 75 25 25 25 % Paralelogramo

Para cada peca, as coordenadas estao apresentadas no sentido anti-horario.

Arquivos: Os nomes dos arquivos devem seguir a seguinte regra:
1. Arquivo de entrada: tangram[n] .in;
2. Arquivos de saida:

e tangram[n].out;

e tangram[n].{ps|pdf};

onde [n] é um nimero inteiro positivo que identifica a configuracao do tangram e {ps|pdf} identifica a saida
gerada no formato postscript ou pdf, respectivamente.
Tomando novamente o exemplo da figura 1, terfamos os seguintes arquivos:

tangraml.in

100
0 0
100 0
100 100
0 100

tangraml.out

26 26 75 256 50 50O

100 50 100 100 75 75

50 0 100 0 100 50
0 0 50 50 0 100

50 50 100 100 0 100

75 26 100 50 75 75 50 50
0 0 50 0O 75 25 25 25

tangraml.pdf

PAA *2011/1 LisTA DE EXERCicIOS 2 7

