
LISTA DE EXERCÍCIOS 3

UFMG/ICEx/DCC Projeto e Análise de Algoritmos

Pós-Graduação em Ciência da Computação 1o Semestre de 2011

Observações:

1. Comece a fazer esta lista imediatamente. Você nunca terá tanto tempo para resolvê-lo quanto agora!

2. Data de Entrega: até 10 de junho, às 9:30 horas, ou antes. Após essa data e hora haverá uma penalização
por atraso: 2d, onde d é o número de dias de atraso.

3. Envie qualquer material referente a esta lista de exerćıcios para o endereço eletrônico
esub.para.loureiro@gmail.com tendo como assunto [PAA 2011/1 LE3: "seu nome completo"] e

como anexo um arquivo zip, descrito abaixo, com o nome LE3 "SeuNomeCompleto".zip onde o string
"SeuNomeCompleto" é o seu nome completo sem espaços em branco.

Exemplo para o aluno Zoroastro Felizardo e Sortudo:

• Assunto: [PAA 2011/1 LE3: Zoroastro Felizardo e Sortudo]

• Arquivo zip: LE3 ZoroastroFelizardoESortudo.zip

4. O seu programa deve ser executado em alguma máquina do ambiente computacional do Departamento de
Ciência da Computação da UFMG, onde os monitores irão avaliá-lo. No arquivo leiame.txt, a ser inclúıdo
no arquivo zip, você deve dizer qual é o ambiente computacional para executar o seu TP bem como todas
as instruções necessárias.

5. Linguagem do exerćıcio de programação: C, C++ ou Java.

6. As questões, a seguir, tratam do projeto de algoritmos. CLSR é a referência do exerćıcio no livro-texto.

Observação: As questões, a seguir, tratam do projeto de algoritmos. CLSR é a referência do exerćıcio no
livro-texto, segunda edição. As questões estão em inglês por terem sido copiadas da versão original.

Questão 1 [CLRS, Ex 22.1-8, pg 531]

Suppose that instead of a linked list, each array entry Adj [u] is a hash table containing the vertices v for which
(u, v) ∈ E. If all edge lookups are equally likely, what is the expected time to determine whether an edge is in the
graph? What disadvantages does this scheme have? Suggest an alternate data structure for each edge list that
solves these problems. Does your alternative have disadvantages compared to the hash table?

Questão 2 [CLRS, Ex 22.2-7, pg 539]

The diameter of a tree T = (V,E) is given by

max
u,v∈V

δ(u, v),

that is, the diameter is the largest of all shortest-path distances in the tree. Give an efficient algorithm to compute
the diameter of a tree, and analyze the running time of your algorithm.

Questão 3 [CLRS, Ex 22.3-12, pg 549]

A directed graph G = (V,E) is singly connected if u ; v implies that there is at most one simple path from u
to v for all vertices u, v ∈ V . Give an efficient algorithm to determine whether or not a directed graph is singly
connected.

PAA © 2011/1 Lista de Exerćıcios 3 1



Questão 4 [CLRS, Ex 22.5-1, pg 557]

How can the number of strongly connected components of a graph change if a new edge is added?

Questão 5 [CLRS, Ex 22.5-3, pg 557]

Professor Deaver claims that the algorithm for strongly connected components can be simplified by using the
original (instead of the transpose) graph in the second depth-first search and scanning the vertices in order of
increasing finishing times. Is the professor correct?

Questão 6 [CLRS, Ex 22.5-7, pg 557]

A directed graph G = (V, E) is said to be semiconnected if, for all pairs of vertices u, v ∈ V , we have u ; v or
v ; u. Give an efficient algorithm to determine whether or not G is semiconnected. Prove that your algorithm
is correct, and analyze its running time.

Para o problema abaixo, escreva o algoritmo, faça a implementação, testes e apresente o custo de complexidade
identificando a operação considerada relevante. Lembre-se que a linguagem de programação é C/C++. No caso
de apresentar uma solução recursiva, discuta também e apresente a complexidade para o crescimento da pilha.

Exerćıcio de Programação 1: Estados globais de uma execução

De todos os “objetos” matemáticos usados em Ciência da Computação, o grafo tem um papel de fundamental
importância. É posśıvel modelar vários dos problemas usando esse objeto.

Este exerćıcio de programação é motivado por um cenário t́ıpico que ocorre em uma computação (execução)
em um único elemento computacional ou em um conjunto de elementos computacionais. Sejam n computações
(execuções) representadas por n threads em um único elemento computacional ou por n processos, cada um
executado em um elemento computacional distinto. Essas n threads ou n processos serão identificados apenas
pela letra pi, sendo 1 ≤ i ≤ n. Essas n tarefas podem trocar dados entre si através de “mensagens”, ou seja, não
existe uma memória compartilhada entre as diferentes execuções.

Uma atividade t́ıpica após a execução das n tarefas é saber se uma determinada propriedade foi satisfeita ou
não. Para isso, é posśıvel construir um grafo de execução das n atividades, percorrer esse grafo e avaliar em cada
“estado” do sistema a propriedade de interesse.

Seja, por exemplo, uma computação envolvendo p1 e p2 como mostrado na figura 1. Nessa computação,
os “momentos” (eventos) de interesse são representados por ek

i , onde o subscrito i representa o processo i e o
superscrito k representa o k-ésimo evento de interesse em pi. Um evento ocorre por uma mudança no estado da
computação que é importante do ponto de vista de todo o sistema e, do ponto deste exerćıcio, não é importante
saber o que ocorreu efetivamente.

1
1

p
e1

2 e2

e1e5

p
e4

1e3
1

2

e

2 e

6e1

2

2
1

e

1

2 2
3 4 5e

Figura 1: Computação envolvendo p1 e p2.

A questão passa a ser quais são as combinações de estados válidos que podem ter ocorrido na computação
envolvendo p1 e p2. Para isso, podemos gerar um grafo que representa os posśıveis estados válidos como mostrado
na figura 2. Nessa figura, os vértices têm dois algarismos, sendo que o primeiro diz respeito ao número do evento
do processo p1 e o segundo ao número do evento do processo p2. Assim, o vértice 00 quer dizer que é posśıvel ter
o nosso sistema de interesse em um determinado momento com p1 em e01 e p2 em e02, que são os eventos iniciais e
não estão explicitados na figura. A partir desse estado, a computação pode ir tanto para 10 ou 01. No primeiro
caso, temos p1 em e11 e p2 em e02. Note que não é posśıvel ter um vértice que representa a computação 20. Isso

PAA © 2011/1 Lista de Exerćıcios 3 2



implicaria que teŕıamos p1 em e21 e p2 em e02, ou seja, p1 teria alcançado e21 enquanto p2 ainda estaria em e02. Mas
isso não é posśıvel já que a ocorrência de e21 depende da ocorrência de e12 que ocorre depois de e02.

Note que esse grafo é dirigido mas neste caso estamos usando uma representação especial que se chama
reticulado (lattice). O reticulado é a transformação de um grafo dirigido em um grafo não-dirigido. Para isso,
representa-se o grafo dirigido com todas as arestas desenhadas de baixo para cima. O vértice inicial ou de entrada
desse grafo é o vértice mais embaixo (neste caso, o vértice 00). Assim, todo caminhamento sempre ocorre “para
cima”. O grafo não-dirigido é obtido eliminando-se o sentido das arestas e o caminhando continua sendo feito
“para cima”.

Na figura 3, a linha mais grossa mostra uma posśıvel computação desse sistema envolvendo p1 e p2, começando
no vértice 00 e terminando no vértice 65. De forma mais precisa, o caminhamento que representa essa computação
pode ser expresso como a sequência de vértices 00, 01, 11, 21, 31, 32, 42, 43, 44, 54, 64, 65.

00

10 01

11 02

21 12 03

31 22 13 04

41 32 23 14

42 33 24

43

53 44 35

63 54 45

64 55

65

34

Figura 2: Grafo da computação envolvendo p1 e p2.

10

02

21 12 03

22 13 04

41 23 14

42 33 24

43 33

53 35

63 54 45

55

00

01

11

31

32

44

64

65

Figura 3: Posśıvel execução do grafo da com-
putação envolvendo p1 e p2.

Pede-se: gerar o grafo (reticulado) das posśıveis computações de n atividades, sendo 2 ≤ n ≤ 4, e avaliar
propriedades de interesse nesse grafo. No caso da propriedade ser satisfeita, deve-se dizer se a propriedade ocorreu
com certeza ou se pode ter ocorrido. A propriedade deve ser expressa como uma expressão proposicional. Uma
expressão proposicional, ou condição, é uma expressão que possui variáveis que se transforma numa proposição,
i.e., possui um valor lógico verdadeiro ou falso, quando se substituem essas variáveis por valores.

Suposições: para resolver este trabalho, faça as seguintes suposições:

1. A expressão proposicional é formada por variáveis apenas do tipo inteiro;

2. O evento ek
i em pi será identificado no arquivo de entrada pelo número inteiro k;

3. A variável vk
i em pi será identificada no arquivo de entrada pelo número inteiro k;

4. Uma expressão proposicional pode ter os seguintes operadores (representados entre colchetes pelo śımbolo
a ser fornecido no arquivo de entrada):

PAA © 2011/1 Lista de Exerćıcios 3 3



• Operadores lógicos: ¬ (negação) [~]; ∧ (disjunção) [|]; ∨ (conjunção) [.]; → (condicional) [I]; ↔
(bi-condicional) [B];

• Operadores aritméticos: adição [+]; subtração [-]; multiplicação [*]; divisão [/];

• Operadores relacionais: “maior que” [>]; “menor que” [<] e “igualdade” [=].

5. Expressões podem ter parênteses e a prioridade é a mesma de uma expressão proposicional;

6. Como foi explicado acima, existem eventos em diferentes atividades que estão relacionados entre si. Por
exemplo, na figura 2, os eventos e12 e e21 estão relacionados entre si, sendo que a ocorrência do primeiro implica
na ocorrência do segundo. No arquivo de entrada, na linha de descrição do evento, isso será codificado com
uma referência da seguinte forma: 〈ek

i [O|D]Ppj〉, onde ek
i indica o número do k-ésimo evento em pi (este é um

número sequencial que começa em 0), 0 caso seja um evento que está relacionado com outro que tem origem
em pj e D caso seja um evento que está relacionado com outro que tem destino em pj . Essa codificação pode
ser usada a partir da terceira linha do arquivo de entrada como discutido abaixo;

7. Uma variável vk
i em pi será identificada em uma expressão proposicional como 〈Vvk

i Ppi〉, onde vk
i indica o

número da k-ésima variável em pi.

Entrada: o formato de cada linha do arquivo de entrada está descrito abaixo:

Formato de cada linha do arquivo de entrada Exemplo
No de atividades 2
No de variáveis associadas a p1 . . . pn 2 3
Processo pi, evento ek

i , valores das variáveis v1
i . . . 1 0 0 0

1 1 2 0
1 2D2P2 3 1
1 3O5P2 5 4
1 4 7 9
1 5D3P2 11 16
1 6 13 25
2 0 0 0 0
2 1O1P1 1 -1 3
2 2 2 3 5
2 3O5P1 3 -5 7
2 4 4 7 9
2 5D3P1 5 -9 11

〈Id do predicado〉: 〈predicado〉 P1: V1P1 > V3P2

PAA © 2011/1 Lista de Exerćıcios 3 4


