Collaboration Strength Metrics and Analyses on GitHub
Authors

Natércia A. Batista
Michele A. Brandão
Gabriela B. Alves
Ana Paula C. Silva

Mirella M. Moro

Departamento de Ciência da Computação
Universidade Federal de Minas Gerais, Brazil
Introduction

Social Coding is a software development’s approach that allows the collaboration among developers.
Relevance

- Evaluating the strength of the developer's relationship can help to improve:
 - Recommendation algorithms of developers to work in a project
 - Productivity analysis of a development team
How to measure the strength of collaboration between developers on GitHub?
Related Work

▷ Casalnuovo et al. [2015] analyze the productivity of developers in projects
▷ Bartusiak et al. [2016] predict developers collaboration
▷ Tsay et al. [2014] investigate the acceptance of pull requests
Related Work

▷ Such studies measure the strength of interactions differently. However,
▷ none evaluates the best way to measure such strength and
▷ none investigates the correlation among such metrics
Goals

Analyze the strength of social collaboration measured by distinct metrics through different programming languages: insights on relationships’ patterns

1. GitSED - GitHub Socially Enhanced Dataset: curated (filtered on two programming languages), augmented (data not available on GHTorrent), and enriched (social network information).
2. Three new metrics for the strength of social coding collaboration: commits’ number of lines, potential of contribution, prior social interaction.
3. Evaluate all metrics over two social networks for JavaScript and Ruby.
Database

GHTorrent: database from September, 2015

- **Not** including: forked and deleted projects
- Two programming languages
 - JavaScript
 - Ruby
Database

Number of repositories and contributors

- JavaScript: 90,393 repositories, 88,586 contributors
- Ruby: 59,225 repositories, 51,475 contributors
Database

Number of connections

- JavaScript: 3,196,846
- Ruby: 4,620,128

Number of connections
Database

GitSED: GitHub Socially Enhanced Dataset

![Database Diagram]

- **PROGRAMMING LANGUAGE**
 - `programming_language_id`
 - `name`
 - `acronym`

- **REPOSITORY**
 - `repository_id`
 - `name`
 - `description`
 - `programming_language_id`
 - `url`
 - `create_date`
 - `end_date`
 - `duration_days`
 - `number_add_lines`
 - `number_del_lines`
 - `number_commits`
 - `number_committers`

- **DEVELOPERS SOCIAL NETWORK**
 - `repository_id`
 - `developer_id_1`
 - `developer_id_2`
 - `begin_contribution_date`
 - `end_contribution_date`
 - `contribution_days`
 - `number_add_lines`
 - `number_del_lines`
 - `number_commits`

- **USER**
 - `user_id`
 - `name`
 - `login`
 - `company`
 - `location`
 - `email`
 - `type`
 - `fake`
 - `deleted`

- **SOCIAL NETWORK METRIC**
 - `programming_language_id`
 - `developer_id_1`
 - `developer_id_2`
 - `NO`
 - `AA`
 - `PA`
 - `SR *`
 - `JCSR *`
 - `JCODSR *`
 - `JWCOSR *`
 - `PC *`
 - `GPC *`
Collaboration Network

▷ Links
 Two developers contribute to same repository

▷ Weights
 By topological and semantic metrics
Collaboration Network
Collaboration Network
Collaboration Network

Weight attributed from proposed metrics.
Topological Properties

▷ Clustering Coefficient is the tendency of the nodes to cluster
▷ Neighborhood Overlap computes the strength of the links
▷ Adamic-Adar more weight to low-degree common neighbors
▷ Preferential Attachment the rich get richer
▷ Resource Allocation how a node indirectly influences its pair’s neighborhoods
▷ Tieness combination of Neighborhood Overlap and weight
SR - Number of Shared Repositories

- Number of shared repositories between a pair of developers

5 repositories
JCSR - Jointly developers contribution to shared repositories

Contribution of a pair of developers relative to the others in a same repository

\[\frac{2}{2} = 1 \]

\[\frac{2}{3} = 0.66 \]
JCOSR - Jointly developers commits to shared repositories

▷ Number of commits of a pair of developers in shared repositories

\[\frac{15 + 3}{18} = 1 \]

\[\frac{20 + 40}{160} = 0.375 \]
JWCOSR - Jointly developers weighted commit to shared repositories

- Number of lines on commits of a pair of developers in shared repositories

\[
\frac{(|200 - 12| + |300 - 0|)}{|500 - 12|} = 1 \\
\frac{(|500 - 200| + |1.000 - 0|)}{|2.500 - 500|} = 0.65
\]
PC - Previous Collaboration

Collaborations in past repositories relative to the number of developers

\[
\frac{\frac{1}{3} + \frac{1}{2}}{2} = 0.416
\]
GPC - Global Potential Contributions

▷ Potential time of collaboration between a pair of developers in the network

(2 + 3 + 1 + 1 + 6) / 20* = 0.65

5 repositories:
R1: 2 months
R2: 3 months
R3: 1 month
R4: 1 month
R5: 6 months

* longer network collaboration time
Analysis and Results

▷ The average number of connections between developers varies according to the programming language.

▷ Few pairs of developers have interactions in more than one repository.
To define a computational model to measure the strength of collaboration, we must analyze which properties best classify such a strength.

- Combine semantic + topological metrics
 - More importance to strong relationships
 - \{Tieness, Resource Allocation\} + topological
Analysis and Results

- Just one metric should be considered between T_SR, T_JCOSR, T_JWCOSR, T_PC and T_GPC because they are strongly correlated.
Analysis and Results

▷ Just one metric should be considered between T_SR, T_JCOSR, T_JWCOSR, T_PC and T_GPC because they are strongly correlated

▷ Individually, T_JCSR should be considered
Analysis and Results

▷ Just one metric should be considered between JCOSR, JCSR and PC because they are strongly correlated
Analysis and Results

▶ Just one metric should be considered between AA and PA because they are strongly correlated.
Analysis and Results

- Just one metric should be considered between AA and PA because they are strongly correlated
- All metrics SR, GPC e JWCOSR should be considered
Example: Collaboration Ranking

Table 1: Top-10 pairs of developers ranked by T_JWCOSR followed by the other properties values.

<table>
<thead>
<tr>
<th>#</th>
<th>D_1</th>
<th>D_2</th>
<th>T_JWCOSR</th>
<th>T_PC</th>
<th>T_GPC</th>
<th>NO</th>
<th>AA</th>
<th>D_1</th>
<th>D_2</th>
<th>T_JWCOSR</th>
<th>T_PC</th>
<th>T_GPC</th>
<th>NO</th>
<th>AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>001</td>
<td>002</td>
<td>0.500</td>
<td>0.500</td>
<td>0.258</td>
<td>0.333</td>
<td>1.443</td>
<td>020</td>
<td>025</td>
<td>0.500</td>
<td>0.333</td>
<td>0.250</td>
<td>0.667</td>
<td>2.485</td>
</tr>
<tr>
<td>2</td>
<td>002</td>
<td>006</td>
<td>0.485</td>
<td>0.375</td>
<td>0.250</td>
<td>0.333</td>
<td>1.443</td>
<td>021</td>
<td>027</td>
<td>0.484</td>
<td>0.300</td>
<td>0.063</td>
<td>0.667</td>
<td>2.485</td>
</tr>
<tr>
<td>3</td>
<td>003</td>
<td>007</td>
<td>0.281</td>
<td>0.417</td>
<td>0.250</td>
<td>0.333</td>
<td>1.443</td>
<td>021</td>
<td>024</td>
<td>0.442</td>
<td>0.375</td>
<td>0.250</td>
<td>0.667</td>
<td>2.485</td>
</tr>
<tr>
<td>4</td>
<td>004</td>
<td>003</td>
<td>0.273</td>
<td>0.375</td>
<td>0.250</td>
<td>0.333</td>
<td>1.443</td>
<td>022</td>
<td>025</td>
<td>0.395</td>
<td>0.312</td>
<td>0.250</td>
<td>0.667</td>
<td>2.485</td>
</tr>
<tr>
<td>5</td>
<td>005</td>
<td>008</td>
<td>0.268</td>
<td>0.333</td>
<td>0.258</td>
<td>0.833</td>
<td>4.085</td>
<td>022</td>
<td>028</td>
<td>0.394</td>
<td>0.312</td>
<td>0.250</td>
<td>0.667</td>
<td>2.485</td>
</tr>
<tr>
<td>6</td>
<td>005</td>
<td>009</td>
<td>0.267</td>
<td>0.278</td>
<td>0.254</td>
<td>0.833</td>
<td>4.085</td>
<td>020</td>
<td>022</td>
<td>0.391</td>
<td>0.312</td>
<td>0.250</td>
<td>0.667</td>
<td>2.485</td>
</tr>
<tr>
<td>7</td>
<td>001</td>
<td>006</td>
<td>0.266</td>
<td>0.375</td>
<td>0.250</td>
<td>0.333</td>
<td>1.443</td>
<td>023</td>
<td>029</td>
<td>0.369</td>
<td>0.375</td>
<td>0.063</td>
<td>0.333</td>
<td>1.443</td>
</tr>
<tr>
<td>8</td>
<td>005</td>
<td>010</td>
<td>0.266</td>
<td>0.273</td>
<td>0.254</td>
<td>0.833</td>
<td>4.085</td>
<td>024</td>
<td>027</td>
<td>0.353</td>
<td>0.300</td>
<td>0.063</td>
<td>0.667</td>
<td>2.485</td>
</tr>
<tr>
<td>9</td>
<td>005</td>
<td>011</td>
<td>0.266</td>
<td>0.292</td>
<td>0.258</td>
<td>0.833</td>
<td>4.085</td>
<td>025</td>
<td>024</td>
<td>0.346</td>
<td>0.333</td>
<td>0.250</td>
<td>0.667</td>
<td>2.485</td>
</tr>
<tr>
<td>10</td>
<td>005</td>
<td>012</td>
<td>0.266</td>
<td>0.275</td>
<td>0.254</td>
<td>0.833</td>
<td>4.085</td>
<td>026</td>
<td>030</td>
<td>0.345</td>
<td>0.500</td>
<td>0.251</td>
<td>0.333</td>
<td>1.443</td>
</tr>
</tbody>
</table>

Tieness +Jointly developers Weighted Commit to Shared Repositories
Example: Collaboration Ranking

Table 1: Top-10 pairs of developers ranked by T_JWCOSR followed by the other properties values.

<table>
<thead>
<tr>
<th>#</th>
<th>D.1</th>
<th>D.2</th>
<th>JavaScript</th>
<th>T_JWCOSR</th>
<th>T_PC</th>
<th>T_GPC</th>
<th>NO</th>
<th>AA</th>
<th>Ruby</th>
<th>T_JWCOSR</th>
<th>T_PC</th>
<th>T_GPC</th>
<th>NO</th>
<th>AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>001</td>
<td>002</td>
<td>0.500</td>
<td>0.500</td>
<td>0.258</td>
<td></td>
<td>0.333</td>
<td>1.443</td>
<td></td>
<td>0.500</td>
<td>0.333</td>
<td>0.250</td>
<td>0.667</td>
<td>2.485</td>
</tr>
<tr>
<td>2</td>
<td>002</td>
<td>006</td>
<td>0.485</td>
<td>0.375</td>
<td>0.250</td>
<td></td>
<td>0.333</td>
<td>1.443</td>
<td></td>
<td>0.484</td>
<td>0.300</td>
<td>0.250</td>
<td>0.667</td>
<td>2.485</td>
</tr>
<tr>
<td>3</td>
<td>003</td>
<td>007</td>
<td>0.281</td>
<td>0.417</td>
<td>0.250</td>
<td></td>
<td>0.333</td>
<td>1.443</td>
<td></td>
<td>0.442</td>
<td>0.375</td>
<td>0.250</td>
<td>0.667</td>
<td>2.485</td>
</tr>
<tr>
<td>4</td>
<td>004</td>
<td>003</td>
<td>0.273</td>
<td>0.375</td>
<td>0.250</td>
<td></td>
<td>0.333</td>
<td>1.443</td>
<td></td>
<td>0.395</td>
<td>0.312</td>
<td>0.250</td>
<td>0.667</td>
<td>2.485</td>
</tr>
<tr>
<td>5</td>
<td>005</td>
<td>008</td>
<td>0.268</td>
<td>0.333</td>
<td>0.258</td>
<td></td>
<td>0.833</td>
<td>4.085</td>
<td></td>
<td>0.394</td>
<td>0.312</td>
<td>0.250</td>
<td>0.667</td>
<td>2.485</td>
</tr>
<tr>
<td>6</td>
<td>005</td>
<td>009</td>
<td>0.267</td>
<td>0.278</td>
<td>0.254</td>
<td></td>
<td>0.833</td>
<td>4.085</td>
<td></td>
<td>0.391</td>
<td>0.312</td>
<td>0.250</td>
<td>0.667</td>
<td>2.485</td>
</tr>
<tr>
<td>7</td>
<td>001</td>
<td>006</td>
<td>0.266</td>
<td>0.375</td>
<td>0.250</td>
<td></td>
<td>0.333</td>
<td>1.443</td>
<td></td>
<td>0.369</td>
<td>0.375</td>
<td>0.250</td>
<td>0.667</td>
<td>2.485</td>
</tr>
<tr>
<td>8</td>
<td>005</td>
<td>010</td>
<td>0.266</td>
<td>0.273</td>
<td>0.254</td>
<td></td>
<td>0.833</td>
<td>4.085</td>
<td></td>
<td>0.353</td>
<td>0.300</td>
<td>0.250</td>
<td>0.667</td>
<td>2.485</td>
</tr>
<tr>
<td>9</td>
<td>005</td>
<td>011</td>
<td>0.266</td>
<td>0.292</td>
<td>0.258</td>
<td></td>
<td>0.833</td>
<td>4.085</td>
<td></td>
<td>0.346</td>
<td>0.333</td>
<td>0.250</td>
<td>0.667</td>
<td>2.485</td>
</tr>
<tr>
<td>10</td>
<td>005</td>
<td>012</td>
<td>0.266</td>
<td>0.275</td>
<td>0.254</td>
<td></td>
<td>0.833</td>
<td>4.085</td>
<td></td>
<td>0.345</td>
<td>0.500</td>
<td>0.251</td>
<td>0.333</td>
<td>1.443</td>
</tr>
</tbody>
</table>
In general, a computational model to measure the strength of collaboration should consider:
- Metrics T_JCSR, SR, GPC and JWCOSR
- Just one metric between T_SR, T_JCOSR, T_JWCOSR, T_PC and T_GPC
- Just one metric between AA and PA
- Just one metric between JCOSR, JCSR and PC
Future Work

- More programming languages + forks
- Build full computational model to measure collaboration strength
Thank you!

Mirella M. Moro
mirella@dcc.ufmg.br