Tie Strength Persistence and Transformation

Michele A. Brandão, Pedro O. S. Vaz de Melo & Mirella M. Moro
Universidade Federal de Minas Gerais - UFMG, Brazil

WIC@2017
Introduction

Context

- Social networks → interactions among individuals
- Their models and patterns allow to solve different problems
- **Time**: fundamental aspect
• Social ties: the strength of ties

• Tie strength persistence and transformation → time
Relevance

- Relevant knowledge
- Different applications
- Academic context
 - Ranking
 - Productivity analysis
Example
Dengue @ Brazil

Mining over Twitter data
Outbreaks detection
Predict future outbreaks
Plan properly
1. How to measure tie strength?
"Tie strength may be measured by a combination of the amount of time, the cooperation intensity and the reciprocal services that characterize the tie."

[Granovetter, 1973]
2. How to analyze tie strength?
Goals

1. Formalize tie strength + new algorithm (called fast-RECAST) to measure it in large SN in acceptable run-time

2. Tie strength dynamism analyses over co-authorship networks of different areas
 a. **Link persistence** analyses: most co-authorships are symbiotic
 b. **Link transformation** analyses: in a long period of time, most ties tend to disappear
Background

Static aggregated graph

Dynamic graph
Background
Tie Strength

- What is a weak tie?
- A strong tie?
Measuring Tie Strength

RECAST

Random rElationship CIASsifier sTrategy

- Random graphs
- Two features
 - Neighborhood overlap
 - Edge persistence
- Small networks
RECAST
Random rElationship CIASSifer sTrategy

Four classes
- Friends (strong)
- Acquaintances (weak)
- Bridges
- Random
fast-RECAST

- Build more than one random graph at a time
- Compute edge persistence and topological overlap in parallel
- Optimize memory use

Algorithm 1 Multiprocessing RECAST (fast-RECAST): a parallelized code to classify edges of G_t as random or social – strong, weak or bridge.

Require: $p_{rnd} \geq 0$

1. return $\text{class}(i, j) \; \forall (i, j) \in U_t E_t$
2. Construct G_t^R and set $\text{RND}(G_1), ..., \text{RND}(G_t)$ using T-RND with different processes for each $\text{RND}(G_k)$ (pool.map.async)
3. Get $\overline{F}_{to}(x)$ and $\overline{F}_{per}(x)$ from G_t^R using a two-dimensional size mutable data structure (pandas dataframe)
4. Get $\overline{x}_{to} \big| \overline{F}_{to}(\overline{x}_{to})$ and $\overline{x}_{per} \big| \overline{F}_{per}(\overline{x}_{per}) = p_{rnd}$ with a process for each network feature (pool.apply.async)
5. for all edges $(i, j) \in E_t$ do
6. if $\text{per}(i, j) > \overline{x}_{per}$ and $\text{to}(i, j) > \overline{x}_{to}$ then
7. $\text{class}(i, j) \leftarrow \text{Strong}$
8. else if $\text{per}(i, j) > \overline{x}_{per}$ and $\text{to}(i, j) \leq \overline{x}_{to}$ then
9. $\text{class}(i, j) \leftarrow \text{Bridges}$
10. else if $\text{per}(i, j) \leq \overline{x}_{per}$ and $\text{to}(i, j) > \overline{x}_{to}$ then
11. $\text{class}(i, j) \leftarrow \text{Weak}$
12. else
13. $\text{class}(i, j) \leftarrow \text{Random}$
fast-RECAST

For PubMed dataset
Experiments and Results

Datasets
Co-authorship Networks

<table>
<thead>
<tr>
<th>Dataset</th>
<th>#nodes</th>
<th>#edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBLP Articles</td>
<td>837,583</td>
<td>2,935,590</td>
</tr>
<tr>
<td>DBLP Inproceedings</td>
<td>945,297</td>
<td>3,760,247</td>
</tr>
<tr>
<td>PubMed</td>
<td>443,784</td>
<td>5,550,294</td>
</tr>
<tr>
<td>APS</td>
<td>180,718</td>
<td>821,870</td>
</tr>
</tbody>
</table>
fast-RECAST

Relationship classes: quantity per class

PubMed

APS

DBLP Articles

DBLP Inproceedings

“non-journal”
Tie Persistence

- Two time windows: 80%-20% & 70%-30%
- Strong ties and bridges persist more than weak and random ones
Tie Strength

Varying over Time

Tie transformation

○ Two time windows of 50% of the timestamp
○ Most ties tend to disappear
Main Conclusion

Fast-RECAST can be applied to

- Automatically detect relationship classes
- Differentiate random from social relationships
Future Work

● Investigate the discovered patterns
● Add other social network features to fast-RECAST
● Expand the study to other collaboration social networks
Tie Strength Persistence and Transformation

Michele A. Brandão, Pedro O. S. Vaz de Melo & Mirella M. Moro
{micheleabrandao, olmo, mirella}@dcc.ufmg.br

Research funded by