
Universidade Federal de Minas Gerais
Departamento de Ciência da Computação
Algoritmos e Estruturas de Dados III
2o Semestre de 2014

Trabalho Prático 0 - Matrizes Complexas

Esse trabalho prático tem como objetivo familiarizar o aluno com conceitos da linguagem C, do
ambiente de programação Unix, alocação dinâmica e o utilitário make .

Problema

Este trabalho consiste em implementar um programa para multiplicação de matrizes. As ma-
trizes possuem números complexos. Um número complexo é um número z que pode ser escrito na
forma z = x + iy, em que x e y são números reais (tipo double) e i denota a unidade imaginária. A
multiplicação de um número complexo (a+bi) por (c+di) = (ac-bd)+(bc+ad)i. As matrizes devem
ser alocadas e desalocadas dinâmicamente com as funções malloc() e free().

Entrada e Sáıda

O programa deverá solucionar múltiplas instâncias do problema em uma única execução. Será
passado na entrada de dados os tamanhos das matrizes em cada instância do problema. A sáıda
será a matriz resultante, uma para cada instância da entrada. A entrada será lida de um arquivo e
o resultado do programa deve ser impresso em outro arquivo de sáıda. Ambos arquivos devem ser
passados por parâmetro na chamada do executável:

./tp0 input.txt output.txt

O arquivo de entrada possui um inteiro N na primeira linha onde N é o número de instâncias
a serem computadas. Em seguida, as N instâncias são definidas da seguinte forma. A primeira
linha possui dois inteiros XY que indicam as 2 dimensões das matrizes. As linhas seguintes terão
X ∗Y números complexos indicando os valores das células da matriz. Os números complexos serão
sempre da forma a+bi mesmo que a ou b sejam 0.

Para cada instância, deve ser impresso no arquivo de sáıda, a matriz resultante. Entre cada
sáıda das instâncias, incluir uma linha em branco separando as sáıdas.

Exemplo

A seguir temos um exemplo de funcionamento do programa.

Entrada:

2

2 3

3+0i 4+0i 5+0i

6+0i 7+0i 8+0i

3 2

1



3+0i 4+0i

6+0i 7+0i

8+0i 9+0i

2 2

0+1i -1.5+0i

1+0i 0+0i

2 2

1+1i 2+0i

3+0i 4+1i

Sáıda:

73+0i 85+0i

124+0i 145+0i

-5.5+1i -6+0.5i

1+1i 2+0i

2



Entrega

• A data de entrega desse trabalho é 29 de Agosto.

• A penalização por atraso obedece à seguinte fórmula 2d−1/0.32%, onde d são os dias úteis
de atraso.

• Submeta apenas um arquivo chamado <numero matricula> <nome>.zip. Não utilize
espaços no nome do arquivo. Ao invés disso utilize o caractere ‘ ’.

• Não inclua arquivos compilados ou gerados por IDEs. Apenas os arquivos abaixo devem
estar presentes no arquivo zip.

– Makefile

– Arquivos fonte (*.c e *.h)

– Documentacao.pdf

• Não inclua nenhuma pasta. Coloque todos os arquivos na raiz do zip.

• Siga rigorosamente o formato do arquivo de saida descrito na especificação. Tome cuidado
com whitespaces e formatação dos dados de sáıda

• NÃO SERÁ NECESSÁRIO ENTREGAR DOCUMENTAÇÃO IMPRESSA!

• Será adotada média harmônica entre as notas da documentação e da execução, o que
implica que a nota final será 0 se uma das partes não for apresentada.

Documentação

A documentação não deve exceder 10 páginas e deve conter pelo menos os seguintes itens:

• Uma introdução do problema em questão.

• solução proposta Explique como representou as estruturas de dados.

• Análise de complexidade de tempo e espaço da solução implementada.

Código

• O código deve ser obrigatoriamente escrito na linguagem C. Ele deve compilar e executar
corretamente nas máquinas Linux dos laboratórios de graduação.

• O utilitário make deve ser utilizado para auxiliar a compilação, um arquivo Makefile deve
portanto ser inclúıdo no código submetido.

• As estruturas de dados devem ser alocadas dinamicamente e o código deve ser
modularizado (divisão em múltiplos arquivos fonte e uso de arquivos cabeçalho .h)

• Variáveis globais devem ser evitadas.

• Parte da correção poderá ser feita de forma automatizada, portanto siga rigorosamente
os padrões de sáıda especificados, caso contrário sua nota pode ser prejudicada.

• Legibilidade e boas práticas de programação serão avaliadas.

3


