PROBLEM SET

Robustness / Capacity (Chapters 06 / 07)

Necessary reading for this assignment:

- *The Science of Quantitative Information Flow* (Alvim, Chatzikokolakis, McIver, Morgan, Palamidessi, and Smith):
 - Chapter 6: Robustness
 - * Chapter 6.1: The need for robustness
 - * Chapter 6.2: Approaches to robustness
 - Chapter 7: Capacity
 - * Chapter 7.1: Multiplicative Bayes capacity
 - * Chapter 7.2: Additive Bayes capacity
 - * Chapter 7.3: General capacities
 - * Chapter 7.4: Multiplicative capacities
 - * Chapter 7.5: Additive capacities
 - * Chapter 7.6: Obtaining bounds on leakage

Review questions.

- 1. Briefly explain in your own words why *robustness* is a concern in QIF.
- 2. Explain what is the concept of *capacity*.

Exercises.

3. Consider the channel C realized by the matrix C below, the gain function g realized by the matrix G also below, and the prior $\pi = (0.2, 0.3, 0.0, 0.5)$.

С	y_1	y_2	y_3	y_4
x_1	0.8	0.0	0.0	0.2
x_2	0.2	0.4	0.1	0.3
x_3	0.1	0.5	0.3	0.1
x_4	0.2	0.0	0.1	0.7

Use the results we have seen to either compute <u>efficiently</u> the following capacities or to explain why you couldn't.

(a)	$\mathcal{ML}_g^{ imes}(\mathbb{D},C)$	(d) $\mathcal{ML}_g^+(\mathbb{D}, C)$
(b)	$\mathcal{ML}^{ imes}_{\mathbb{G}^+}(\pi,C)$	(e) $\mathcal{ML}^+_{\mathbb{G}^{\ddagger}}(\pi, C)$

(c) $\mathcal{ML}^{\times}_{\mathbb{G}^+}(\mathbb{D}, C)$ (f) $\mathcal{ML}^+_{\mathbb{G}^+}(\mathbb{D}, C)$

- 4. (Exercise 6.1) Recall the dice channels C and D from Section 1.1., whose input is the value (r, w) resulting from throwing a red die and a white die and defined by C(r, w) := r + w and $D(r, w) := r \cdot w$. Recall that with *fair* dice, C's multiplicative Bayes leakage is 11, while D's is 18. Show that with *biased* dice, it is possible to make C's multiplicative Bayes leakage *exceed* D's.
- 5. (Exercise 7.1) Let C be a channel matrix from \mathcal{X} to \mathcal{Y} . Show that for any $g: \mathbb{G}^+ \mathcal{X}$ and any prior, its multiplicative g-leakage is bounded by both $|\mathcal{X}|$ and $|\mathcal{Y}|$. Does the result necessarily hold if g is not in $\mathbb{G}^+ \mathcal{X}$?
- 6. (Exercise 7.4) Suppose that C is a deterministic channel matrix, meaning that all its entries are either 0 or 1. Show that $\mathcal{ML}^+_{\mathbb{G}^{\ddagger}}(\mathbb{D}, \mathsf{C})$, that is C's additive capacity over 1-bounded gain functions and all priors, has only *two* possible values.