
Non-invasive and Non-scattered Annotations for More Robust Pointcuts

Leonardo Silva, Samuel Domingues, Marco Tulio Valente
Institute of Informatics, PUC Minas, Brazil

{ leonardosilva,mtov}@pucminas.br, samueldro@gmail.com

Abstract

Annotations are often mentioned as a potential alternative
to tackle the fragile nature of AspectJ pointcuts. However,
annotations themselves can be considered crosscutting
elements because they are normally pervasive and tangled
with business-specific functionality. In this paper, we
propose a solution to the fragile pointcut problem in
aspect-oriented programming that relies on non-invasive
and non-scattered annotations. The central components of
the proposed solution are so-called annotator aspects, that
superimpose annotations to the base code in a non-invasive
way. Moreover, annotator aspects are generated semi-
automatically, from a declarative annotation definition
language. The paper presents examples of using the
proposed solution in pointcut descriptors of two real-world
aspect-oriented systems. We also describe a case study that
evaluates the robustness of the proposed solution in face of
possible changes to the classical Figure Editor system.

1 Introduction

Aspect-oriented programming (AOP) extends traditional
programming paradigms with powerful abstractions target-
ing the modularization of crosscutting concerns. AspectJ is
considered nowadays one of the most stable aspect-oriented
languages. AspectJ extends Java with new modularization
abstractions, including join points, pointcuts, advices, and
aspects. In AspectJ, an aspect defines a set of pointcut de-
scriptors that matches well-defined points in program exe-
cution (called join points). Advices are anonymous meth-
ods that are implicitly invoked before, after or around join
points captured by pointcuts. Aspects are supposed to
promote reusability, maintainability and comprehensibility,
since the implementation of the otherwise spread and tan-
gled code related to crosscutting concerns is modularized in
a single component.

Surprisingly for a paradigm with sophisticated modu-
larization abstractions, aspects as implemented by AspectJ

can hamper program evolution, leading to what has already
been called the AOSD-Evolution Paradox [17]. The origin
of this paradox is that pointcuts rely on names and wild-
cards to capture join points over programs written by obliv-
ious programmers (i.e. programmers that do not know the
existence of aspects). As a result, changes in the struc-
ture or in the naming conventions of the base program can
silently trigger the execution of unwanted advices or pre-
vent the execution of required ones. In other words, the cur-
rent pointcut model employed by AspectJ implies in a tight
coupling between pointcut descriptors and the structure of
the base program, although such coupling is not explicitly
documented and checked by the compiler or weaver. This
problem has been studied by other researchers, usually un-
der the name of fragile pointcut problem [15, 13, 7].

In this paper, we rely on previous research that proposes
the use of annotations to design more robust pointcuts [10,
3, 6]. Particularly, we cope with the following problems that
are typical when combining aspects and annotations:

• Annotations are crosscutting concerns. Java annota-
tions present a crosscutting behavior because they are
normally pervasive and tangled with business-specific
functionality. In order to tackle this problem, we pro-
pose the use of so-called annotator aspects, that super-
impose annotations to the base code in a non-invasive
way. Moreover, we propose that annotator aspects
should be generated semi-automatically, from a declar-
ative language.

• Annotation-based pointcuts are fragile. Traditional
annotation-based pointcuts presume that maintainers
have annotated the base program correctly. Particu-
larly, missing annotations or annotations that do not
follow implicit naming conventions can silently dis-
able join points that should have been captured by
annotation-based pointcuts. In order to cope with this
problem, our solution explicitly requires maintainers
to inform whether each target element in the lexical
range of an annotation should be annotated or not.
From this information, the system generates the anno-
tator aspects.

978-1-4244-2614-0/08/$25.00 © 2008 IEEE ICSM 200867

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on August 09,2010 at 15:11:15 UTC from IEEE Xplore.  Restrictions apply. 



• Annotations hamper obliviousness. Although usually
considered as a distinguished property of AOP, the
idea of obliviousness has been the subject of earlier
revision. For example, Sullivan et. al have demon-
strated that obliviousness in its purest form leads to
pointcuts that are hard to develop, understand and
evolve [4, 16]. For this reason, they recommend that
developers should first prepare base programs to as-
pects. Particularly, in the solution proposed in this
paper, developers are forced to decide whether base
program elements should be annotated with previously
declared annotations. Thus, annotations can be consid-
ered as contracts (or design rules) between aspects and
base programs.

The remaining of the paper is organized as follows.
Section 2 motivates the need for more robust pointcut de-
scriptors using the classical Figure Editor system common
in AOP papers. Section 3 presents the solution proposed
in this paper and its main components, including a anno-
tation declaration language (used to declare annotations),
annotation-aware interfaces (used to document which an-
notation applies to which member of the classes of the base
program), and annotator aspects (used to annotate base pro-
gram elements in a non-invasive way). Section 4 presents
examples of using the proposed solution in pointcut de-
scriptors of real-world aspect-oriented systems. Section 5
describes a case study that evaluates the robustness of the
proposed solution in face of possible changes to the Figure
Editor system. Section 6 presents a discussion about the
proposed solution, outlining its strengths and limitations.
Section 7 discusses related work, and Section 8 concludes.

2 Fragile Pointcut Problem

The fragile pointcut problem is analogous to the fragile
base class problem in object-oriented programming [11]. In
OO development, developers cannot determine whether a
base class change is safe simply by examining its meth-
ods in isolation. Instead, they also need to examine the
methods of the subclasses as well. Translating the problem
to aspects, in order to determine whether a base program
change is safe developers must examine possible impacts in
the join point shadows captured by the pointcuts declared
in the program. Particularly, a pointcut is considered fragile
(or not robust) when even trivial modifications in the base
program can silently lead to one of the following situations:
unintended capture of join points or accidental join point
misses [7].

The classical Figure Editor system presented in Figure
1 is used to illustrate both situations. For this system,
suppose an advice that refreshes the display whenever fig-
ures change (Figure 2a). Furthermore, suppose alternative

implementations for the change pointcut based on regular
expressions, enumerations, and annotations (Figure 2b to
2d). We show next that such implementations are fragile
with respect to evolutions in the base program.

Figure 1. Motivating Program

(a) after() returning: change() {

Display.refresh();

}

(b) pointcut change():

execution(void Figure+.set*(..));

(c) pointcut change():

execution(void Point.setX(..)) ||

execution(void Point.setY(..)) ||

execution(void Line.setP1(..)) ||

execution(void Line.setP2(..));

(d) pointcut change():

execution(void @DisplayStateChange *.*(..))

Figure 2. Refresh display advice and three
alternative implementations for its change
pointcut

Regular expression based pointcuts: Regular expressions
are subjected both to unintended capture of join points
or to accidental join point misses. For example, suppose
a change that requires adding a date field to the class
Point (representing the last time the figure was saved
on persistent store) and an associated setDate method.
In this case, executions of setDate will be captured by
the change pointcut, which constitutes an unintended
capture of join point. On the other hand, suppose that base
program developers decide to rename method setX to
changeX. In this case, executions of the renamed method
will no longer be captured by the change pointcut and the

68

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on August 09,2010 at 15:11:15 UTC from IEEE Xplore.  Restrictions apply. 



affected Point object will not be refreshed in the display.
Thus, this last change constitutes an accidental join point
miss.

Enumeration-based pointcuts: Enumeration-based point-
cuts are particularly fragile to join point misses. For
example, extending the previous enumeration is needed
whenever new methods that change the display state are
included in the base program.

Annotation-based pointcuts: Such pointcuts presume that
base program developers and maintainers have correctly an-
notated the methods that change the display. However, this
assumption can be easily violated by oblivious developers
during the evolution of the program, leading to join point
misses. Furthermore, as described in Section 1, annotations
usually present a crosscutting behavior.

3 Proposed Solution

Figure 3 describes the main components of the proposed
system. First, developers must declare the annotations em-
ployed in the pointcuts of an aspect-oriented system using
an annotation declaration language. The solution also in-
cludes a tool that queries users whether particular program
elements should be annotated or not. This tool, called an-
notator, is executed before the weaver. The annotator is
responsible for the creation of two other key components
of the system: annotator aspects and annotation-aware in-
terfaces. These components are described in details in the
remaining of this section.

3.1 Annotation Declaration Language

The proposed solution supposes that annotations are de-
clared using an Annotation Declaration Language. Pro-
grams in such language consist of entries according to the
grammar described in Figure 4. In this grammar, non-
terminal symbols start with capital letters; terminals start
with non-capital letters; {A} denotes zero or more repeti-
tions of A; and [A] denotes that A is optional.

The declaration of an annotation includes the following
information:

• The name of the annotation (entry name).

• The target of an annotation (entry target). Annota-
tions can be associated to fields, methods, and classes.
In case of methods, developers can restrict the anno-
tation to methods that are getters (i.e. methods
that just return a field), methods that are setters
(i.e. methods that just set fields), methods whose body
contain a call to a defined method, methods that

Figure 3. Components of the proposed sys-
tem

AnnotationDeclarationFile ::=

{ annotation AnnotationSection end }

AnnotationSection ::=

name = String

target = fields

| methods [&& MethQualifier]

| classes [&& ClassQualifier]

scope = Type | Package

question = String

MethQualifier ::= getters | setters

call(Method) |

declare(Type) |

catch(Type)

ClassQualifier ::=

usedAs(field|param|return|exception) |

field(Type)

Figure 4. Annotation Declaration Language

declare local variables or formal parameters of a
given type, and methods that contain a catch for ex-
ceptions of a given type. In case of annotations as-
sociated to classes, developers can restrict the anno-
tation to classes that are used to declare fields, return
types, method parameters or exceptions. Annotations
can also be restricted to classes that include a field
of a given type.

• The lexical scope of an annotation is the enclosing pro-
gram unit to consider when looking for possible targets
of an annotation. The scope of an annotation can be
a class (and its subclasses), classes that implement a
given interface or classes declared in a given package.

• The question that should be presented to developers so
that they can decide whether a candidate target element
should be annotated or not (entry question).

69

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on August 09,2010 at 15:11:15 UTC from IEEE Xplore.  Restrictions apply. 



The proposed solution explicitly requires developers to
declare annotations, providing information about their tar-
get elements and scope. When defining the target of an an-
notation, developers can also provide structural information
about such elements, in order to reduce the number of con-
sidered targets. Based on this information, the annotator
component monitors the codebase after each compilation,
searching for program elements that match the declared an-
notations. After detecting a potential target, the annotator
prompts the developer to confirm if it should be annotated
or not. In case of an affirmative answer, the annotator gen-
erates code to introduce the annotation. This code is gen-
erated in a so called annotator aspect, thus avoiding anno-
tation scattering and tangling. Moreover, by reminding de-
velopers to decide whether a matched target element should
be annotated or not, it handles the join point miss problem
that is common when using standard Java annotations.

The following entry illustrates the specification of the
DisplayStateChange annotation (as required by the
change pointcut of Figure 2d):

annotation

name= @DisplayStateChange

question= Does method %target change the state of

the display

target= methods && (!getters)

scope= Figure

end

This entry defines that potential targets of
DisplayStateChange are methods that are not
getters and that are defined in classes that implement
the Figure interface1. The annotator relies on this
information to search for methods in such classes matching
the defined annotations. The question entry in the
declaration of an annotation specifies the question used by
the annotator to inquiry developers about a new identified
target element (Figure 5). In other words, the system
detects methods that can potentially change the state of a
Figure and delegates to developers the decision whether
such change should require refreshing the display or not.

Figure 5. Prompting developers about a new
program element

It is important to mention that the system constantly ob-
serves the base program for possible annotation targets. For

1For the sake of clarity, we have omitted from the previous grammar
the fact that qualifiers (such as getters) can be used in boolean expressions.

example, maybe a method m1 does not attend the declara-
tion of an annotation ann when it is first implemented (for
example, because ann only applies to methods that call an-
other method m2). Afterwards, changes in m1 may insert a
call to m2 to its implementation, thus turning it into a can-
didate to the annotation ann.

3.2 Annotation-Aware Interfaces

Annotation-aware interfaces extend traditional interfaces
with information about their annotated elements. Essen-
tially, each class of the base program has an annotation-
aware interface, which is generated automatically by the an-
notator tool. Such interfaces list fields and methods of the
associated class that have been annotated. The annotation-
aware interfaces associated to the classes of the motivating
program are the following:

class Point {

@DisplayStateChange void setY(int);

@DisplayStateChange void setX(int);

}

class Line {

@DisplayStateChange void setP1(Point);

@DisplayStateChange void setP2(Point);

}

Annotation-aware interfaces are a variant of aspect-
aware interfaces (AAI), as proposed by Kiczales and
Mezini to support modular reasoning in aspect-oriented sys-
tems [9]. An AAI lists the fields and methods of a class and
the advices that are implicitly called when the listed ele-
ments are accessed. Instead of providing information about
advices, the proposed annotation-aware interfaces exhibit
the annotations associated to base program elements. Ex-
hibiting annotations helps modular reasoning because main-
tainers can avoid changes in the base program that invali-
date semantic properties related to annotations. Moreover,
maintainers can directly edit annotation-aware interfaces to
remove or to add annotations. For example, this may be
necessary when they realize that have answered wrongly the
question to attach an annotation to a given program element.
By editing annotation-aware interfaces they can remove an
incorrect annotation associated to a given target element or
add an annotation to a given program element.

3.3 Annotator Aspects

Each declared annotation has a corresponding annotator
aspect, that superimposes the annotation to the base pro-
gram in a non-invasive way. This aspect is generated (and
updated) semi-automatically by the annotator tool whenever
a new target element is identified in the lexical scope of an
annotation, and the developer confirms that it should be an-
notated. Moreover, annotator aspects are also updated when

70

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on August 09,2010 at 15:11:15 UTC from IEEE Xplore.  Restrictions apply. 



developers edit the annotations listed in the annotation-
aware interfaces of the system.

The following annotator aspect illustrates the superim-
position of the DisplayStateChange annotation in our
motivating example:

aspect DisplayStateChange {

declare @method:

public void Point.setX(int): @DisplayStateChange;

declare @method:

public void Point.setY(int): @DisplayStateChange;

declare @method:

public void Line.setP1(Point): @DisplayStateChange;

declare @method:

public void Line.setP2(Point): @DisplayStateChange;

}

4 Examples

4.1 JAccounting

JAccounting2 is a Web-based business accounting sys-
tem that relies on the well-known Hibernate framework for
persistence and transaction services. Binkley et. al have
refactored the original JAccounting implementation in order
to use aspects to modularize transaction management [1].
For example, the refactored system uses the following as-
pect to modularize the code in charge of starting a transac-
tion:

aspect Transaction {

Transaction tx;

pointcut p_0():

call(Session SessionFactory.openSession() &&

(( withincode(String ProductsPage.perform2())

|| withincode(String InvoicePage.perform2())

|| withincode(String RecurrencePage.perform2())

|| withincode(String PaymentPage.perform2())

|| withincode(String CustomerDetails.perform2())

|| withincode(String CustomerForm.perform2()

|| withincode(Account createInternalAccount(

Session, Integer, int));

after() returning (Session sess)

throws HibernateException: p_0() {

tx= sess.beginTransaction();

}

}

Pointcut p 0 defines the join points that require starting
a transaction context. Such points correspond to calls to
the openSession method occurring in the lexical scope
of the methods enumerated in the pointcut descriptor. This
type of pointcut implementation can easily lead to failures
in starting a transaction, when maintainers do not update
p 0 with new methods requiring transaction handling.

Alternatively, using the solution proposed in this paper, a
Transactional annotation is declared in the following
way:

2https://jaccounting.dev.java.net.

annotation

name= @Transactional

question= Is method %target transactional

target= methods && call(Session.save)

end

The target of this annotation are methods whose im-
plementations statically include calls to the method save
from class Session, which represents the session with
the database. Clearly, only such methods are candidates
to transaction handling in Hibernate-based systems. As
described, the annotator will ask developers to confirm
if such methods actually demand transaction handling or
not. In fact, JAccounting has eleven methods that call
Session.save. From those, seven methods require
starting a transaction (as enumerated in pointcut p 0).
Thus, for the remaining methods, developers must answer
negatively to the question formulated by the annotator. Al-
though they update the database, such methods do not re-
quire transaction handling for various reasons, including for
example the fact that they share the session object with an-
other transactional method.

Using the declared annotation, developers in charge of
implementing transaction handling can rely on the follow-
ing pointcut descriptor:

pointcut p_0():

call(Session SessionFactory.openSession()) &&

(withincode(@Transactional * *(..));

In case JAccounting evolves and new transaction meth-
ods are implemented, this pointcut remains valid. In such
scenarios, developers must only confirm that the new de-
tected methods (i.e. methods that save data in persistent
store) demand transaction handling code.

4.2 HealthWatcher

HealthWatcher is a Web-based information system
used by citizens to register complaints about the sanitary
conditions of restaurants and food shops. A first experience
of using AspectJ to modularize distribution and persistence
concerns of HealthWatcher has been conducted by Soares,
Borba and Laureano [14]. At least, two aspects of the
system can benefit from the solution described in this
paper: persistence and transactional control.

Persistence: In the aspect-oriented version of the system,
the following pointcut is used to match calls to methods that
require synchronizing the target object with the database:

pointcut remoteUpdate(PersistentObject o):

this(HttpServlet) && target(o) && call(* set*(..));

The tag interface PersistentObject is used to
identify classes whose objects must be updated after being
changed. Such classes are marked by intertype declarations
as the following one:

71

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on August 09,2010 at 15:11:15 UTC from IEEE Xplore.  Restrictions apply. 



declare parents: Complaint implements PersistentObject;

Similar intertype declarations are defined for other
classes that demand data synchronization, such as
Employee and HealthUnit. In case HealthWatcher
evolves and new persistent classes are implemented, de-
velopers must update the mentioned intertype declarations.
Alternatively, using the solution proposed in this paper, a
Persistent annotation is declared in the following way:

annotation

name= @Persistent

question= Is class %target persistent

target= classes && usedAs(param)

scope= HealthWatcherFacade

end

The target of this annotation are classes used as pa-
rameter types in methods of the system facade class
(HealthWatcherFacade). Such types are natural can-
didates to persistence, since the system architecture defines
that the facade is the unique entry point of the system, used
by different clients to access and update HealthWatcher
business collections objects. As usual, in order to avoid
false positives, the annotator will ask developers to confirm
whether the matched classes actually demand persistence or
not. In fact, there are three types used as parameters in the
methods of HealthWatcherFacade. All of them rep-
resent persistent objects.

Using the declared annotation, data state synchronization
aspects can rely on the following intertype declaration:

declare parents:

(@Persistent *) implements PersistentObject;

This declaration prescribes that any class an-
notated as Persistent must implement the
PersistentObject interface. When the system
evolves and new persistent classes are implemented, main-
tainers do not need to update manually the list of intertype
declarations anymore.

Transactional Control: In the AO version of
HealthWatcher, transactional methods should
be explicitly declared in an interface named
ITransactionalMethods. This interface is used
by the following pointcut to capture the execution of
methods that require transactional control:

pointcut transactionalMethods():

execution(* ITransactionalMethods.*(..));

The main drawback of this solution is that developers
and maintainers are oblivious to the existence of the in-
terface ITransactionalMethods. Thus, new transac-
tional methods will be added to the system without updating
this interface, leading to join point misses. In order to tackle
this problem, the following Transaction annotation can
be employed:

annotation

name= @Transactional

question= Is method %target transactional

target= methods

scope= HealthWatcherFacade

end

The declaration of this annotation requires developers to
classify methods in the facade of the system – including
methods added in future versions – according to their trans-
actional behavior. It is worth to mention that HealthWatcher
architecture prescribes that only such methods are subject
to transactional control. Currently, the system facade has
15 methods, from which five are transactional.

Using the declared annotation, the following pointcut
can be employed to capture the execution of methods that
require transactional control:
pointcut transactionalMethods():

execution(@Transactional * * (..));

This pointcut is fully decoupled from the abstract syntax
of the base program. Moreover, the proposed solution au-
tomatically reminds developers about new methods added
to the system facade. Developers should then decide if they
want to execute such methods in a transactional context or
not.

5 Robustness Study

In order to evaluate the robustness of the pointcuts en-
gendered by our solution, this section relies on an adap-
tation of the change scenarios proposed by Ostermann,
Mezini and Bockisch to the classical Figure Editor sys-
tem [13]. We have evaluated the impact of the proposed
change scenarios regarding four alternative implementa-
tions for the change pointcut: using regular expressions
(e.g. Figure+.set*(..)), using enumerations (e.g.
Point.setX(..)||Point.setY(..)), using anno-
tations explicitly applied to the base code, and using anno-
tations as proposed by the solution described in this paper.

Table 5 describes each of the change scenarios. The first
scenario (Ch1) prescribes adding a new color field to the
class Point and a corresponding setter method. Point-
cut definitions based on regular expressions require that this
method starts with set. Although this represents a naming
convention, it is usually satisfied by setter methods. For this
reason, the solution based on regular expressions was clas-
sified as robust (+). The solution based on enumerations
is not robust (-), because the declared enumeration must be
updated with the new setter method. Similarly, the solu-
tion based on scattered annotations is not robust, since it re-
quires (but not enforces) developers to annotate the new set-
ter methods. Finally, the Annotator solution was classified
as robust, since it will detect that a new method has been in-
serted into the class and it will ask developers whether this
method affects the display or not.

72

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on August 09,2010 at 15:11:15 UTC from IEEE Xplore.  Restrictions apply. 



Change RE Enum Ann Annotator
Ch1 (Class definition change) Inserting a new color field to the class

Point and a correspondent setter method.
+ - - +

Ch2 (Class definition change) Inserting a new date field to the class
Point and a correspondent setter method.

- + + +

Ch3 (Class definition change) Renaming method setX from class Point
to changeX.

- - + +

Ch4 (Class hierarchy change) Inserting a new class into the Figure hier-
archy (such as Circle).

+/- - - +

Ch5 (Class hierarchy change) Renaming interface Figure to
FigureElements.

- - + -

Ch6 (Object graph change) Use an object of type Pair to store the coor-
dinates of a Point and a correspondent setter method.

+/- - - +/-

Ch7 (Control flow change) Inserting a new enable field to the class
Point to control if an object should be exhibited on the display or
not.

- - - -

Table 1. Robustness of pointcuts based on regular expression (RE), enumerations (Enum), Java
annotations (Ann) and annotations superimposed by the annotator tool, considering seven possible
changes to the Figure Editor System.

In the second scenario (Ch2), a field that does not mod-
ify the display state is inserted in the class Point. In this
case, the solution based on regular expressions is not robust,
since it will capture the execution of the setter method of
this field (assuming as usual that its name starts with set).
The solution based on enumerations is robust, because the
declared enumeration does not need to be updated in this
case. Implementations based on explicit annotations and on
the annotator tool are also robust.

In the third scenario (Ch3), method setX from class
Point is renamed to changeX. This generates an acci-
dental join point miss, supposing pointcut descriptors based
on regular expressions and enumerations. On the other
hand, it does not impact the robustness of annotation-based
pointcuts, because the already defined annotations remain
valid after the change. It also does not have impact on point-
cuts based on annotations applied by the annotator tool,
since developers will inform that the execution of the re-
named method continues to affect the state of the display.

In the fourth change scenario (Ch4), a new type
(Circle) is inserted into the Figure hierarchy. In such
scenario, regular expressions are partially robust (+/-), be-
cause they require that setter methods of visual fields must
start with set and that non-visual setter methods do not
start with this prefix. The solution based on enumera-
tions is not robust, because the declared enumeration must
be updated with the methods of the new class. Conven-
tional annotation-based pointcuts are also not robust, be-
cause they do not enforce developers to annotate the meth-
ods of the new class. Finally, the annotator-based solution

is robust, because it prompts developers about the nature of
each method of the new class, regarding their display state
characteristics.

In scenario Ch5, interface Figure is renamed to
FigureElements. This change does not have impact
on annotation-based pointcuts (because the existent annota-
tions remain valid). On the other hand, it breaks implemen-
tations based on regular expressions, because such expres-
sions rely on the Figure type. Also, the solution based on
enumerations is not robust, because the declared enumera-
tion must be updated with the new type name. Change Ch5
also breaks pointcuts defined with the help of the annota-
tor tool, because the scope of @DisplayStateChange
is declared using the Figure type (Section 3).

In scenario Ch6, a field of type Pair is used to store the
coordinates of a Point, instead of using two int fields (x
and y). Regarding this scenario, RE-based pointcuts are
partially robust, because they will capture the new setter
method of the Point class (i.e. the setCoordinates
method that replaces the previous setX and setY meth-
ods). However, it will not capture anymore calls to meth-
ods of the class Pair, such as setX and setY. The same
happens with pointcuts defined with the help of the anno-
tator tool. The implementation based on enumerations is
not robust, because the declared enumeration must be up-
dated with the methods of the new Pair class. Conven-
tional annotation-based pointcuts are also not robust, be-
cause they require (but not enforce) developers to annotate
the setter methods of the new type.

In scenario Ch7, a new boolean field controls if a fig-

73

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on August 09,2010 at 15:11:15 UTC from IEEE Xplore.  Restrictions apply. 



ure is enabled or not. Only enabled figures are drawn on
the display. Thus, this scenario requires modification in the
change pointcut signature (in order to expose the target
of the call) and also in the Figure interface (in order to
define a new isEnabled method). As a result, neither of
the four evaluated implementations of change are robust
to Ch7.

Table 2 summarizes the robustness of the evaluated im-
plementations of the change pointcut, regarding the pre-
vious change scenarios. The implementation based on enu-
meration has presented the lowest degree of robustness. In
fact, it was robust to only one of the seven considered sce-
narios. On the other hand, the solution based on the pro-
posed annotator tool was robust to four changes and par-
tially robust to one change.

Pointcut + +/- -
Regular Expressions 1 2 4
Enumerations 1 0 6
Annotations 3 0 4
Annotator 4 1 2

Table 2. Summary of the results for the seven
evaluated change scenarios

6 Discussion

It is well-known that annotations decouple pointcut de-
scriptors from the abstract syntax tree of the base program,
which is a key property to handle several problems inher-
ent to the evolution of aspect-oriented systems. However,
annotations as currently used in AspectJ also present two
important problems: they usually lead to crosscutting code
and they are fragile. For example, the following pointcut is
decoupled from the abstract syntax of the base program, but
it also requires developers to annotate correctly all methods
that change the state of the display:
pointcut change():

execution(void @DisplayStateChange *.*(..))

The solution proposed in this paper contributes exactly to
reduce the fragility and to eliminate the crosscutting behav-
ior inherent to the use of annotations when defining pointcut
descriptors. In order to reduce fragility, the solution relies
on a simple annotation declaration language to remind de-
velopers about program elements subjected to annotations.
In order to avoid annotation scattering and tangling, the so-
lution generates annotator aspects that superimpose annota-
tions to the base program in a non-invasive way. Annotator
aspects are generated (or updated) whenever developers ac-
cept the annotation remind provided by the tool and agree
that a candidate program element should be annotated.

The solution is particularly recommended when one
of the following two situations happen. First, when it
is possible to correlate annotations with structural (and
robust) properties that characterize their target elements.
For example, in JAccounting only methods that call
Session.save are candidates to transaction handling.
When this first situation happens, the preliminary selection
presented by the tool is usually fairly precise (thus avoid-
ing false positives) and also robust to evolutions in the base
program (thus avoiding false negatives). Second, we also
recommend using the solution when it is possible to restrict
the scope of an annotation, as is the case of the Figure Ed-
itor and HealthWatcher systems. For example, in Health-
Watcher persistent classes always appear as parameter in
methods of a single class of the system (the facade class).
When this second situation happens, developers are not con-
stantly interrupted by questions asking whether a matched
target element is really a valid join point in the system.

The solution also presumes that stable names are used
to define the target and scope of annotations. For instance,
in JAccounting the method Session.save is one of the
most important methods provided by the underlying persis-
tence framework. Thus, changing the name of this method
is very unlikely. The same happens with the name of the
facade class in HealthWatcher. When stable names are not
employed, they can compromise the declaration of annota-
tions, as demonstrated by chance scenario Ch5 in the case
study of Section 5.

In certain way, our solution is in line with recent trends
in software engineering that recognize that current program-
ming languages and tools are inflexible to handle most real-
world abstractions (since such abstractions are usually tran-
sient, partial, evolving etc) [8]. Thus, instead of design-
ing a new pointcut language, with sophisticated, formal and
context-specific abstractions, we decided to follow an ap-
proach that recognizes the limitation of formal languages
to handle complex abstractions such as pointcuts and join
points. Moreover, the proposed solution is lightweighted
and flexible, mainly because its semantics depends on feed-
back given by developers. Nevertheless, we do not claim
that our solution solves all the possible instances of the frag-
ile pointcut problem. As described earlier, its effectiveness
depends basically on the capability to define the target and
scope of annotations in a precise way.

7 Related Work

Annotation-based pointcuts: Explicit annotations are often
mentioned as an alternative to design more robust pointcuts.
Kiczales and Mezini recommend using annotations when:
(i) it is difficult to write a stable regular expression or
enumeration-based pointcut; (ii) the name of the annotation
is unlikely to change; (iii) the annotation denotes a well-

74

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on August 09,2010 at 15:11:15 UTC from IEEE Xplore.  Restrictions apply. 



defined semantic property (and not properties that are only
true in some configurations of the system) [10]. Eaddy and
Aho propose using annotations at the statement level for
exposing join points needed by heterogeneous concerns
and for enabling fine-grained advising [3]. However, their
proposal can lead to a widespread use of annotation and
thus can increase the code scattering and tangling phe-
nomenon usually associated to Java annotations. Havinga
et al. have described an expressive pointcut language that
supports the superimposition of annotations on selected
program elements (in order to avoid annotation scattering
and tangling) [6]. Different from the introduction of
annotations in AspectJ, their language supports derivation
of annotations, i.e. it is possible to introduce an annotation
to a program element if another element has a certain
annotation. However, their work does not directly tackle
the fragile pointcut problem (e.g. forgetting to superimpose
an annotation can lead to join point misses).

Logic-based pointcut languages: A common approach
to cope with the fragile pointcut problem devises the
definition of more expressive pointcut languages. For
example, CARMA is a Prolog-like language in which
predicates are provided to capture both static and dynamic
join point properties [5]. Particularly, CARMA includes
predicates to reason about message reception, message
send and lexical properties of Smalltalk programs. Alpha
is another logic-based pointcut language that supports
reasoning about different models of program semantics,
including execution traces and heap state [13]. Clearly,
expressive pointcut languages contribute to the definition
of more robust pointcuts, including for example pointcuts
that express structural and behavioral properties of the base
program (instead of just capturing join points by source
code syntax). On the other hand, expressive pointcut
languages usually lead to complex pointcut descriptors,
that are difficult to understand and to implement efficiently.
More important, such languages do not completely solve
the fragile pointcut problem, since pointcuts continue to
depend on base program elements [7].

Model-based pointcut languages: Such languages propose
that pointcuts should be defined in terms of conceptual mod-
els of the base program, instead of directly accessing the
program abstract syntax tree. The rationale behind such ap-
proaches is that models are more robust to evolution, be-
cause they represent only abstract and consolidated con-
cepts about the program domain. Kellens et. al advocate the
use of intensional views to capture model-based concepts of
interest when defining pointcut descriptors [7]. Moreover,
a set of constraints on and between views are proposed to
synchronize model abstractions with the base program. Mo-
torola Weavr is a tool that supports weaving at the level of

UML models represented by statecharts that include action
semantics [2]. As usual in model-based approaches, the tool
proposes that pointcut designators should be expressed in
terms of stable model elements rather than implementation
elements.

Model-based pointcuts share many similarities with the
use of annotations to classify source-code elements accord-
ing to semantic (or model-based) properties, as proposed in
this paper. However, we have deliberately left to developers
the final decision about keeping annotations synchro-
nized with the base code, instead of requiring developers
to express synchronization constraints in a formal language.

Crosscutting interfaces (XPIs): XPIs are explicit, abstract
interfaces that decouple aspects from details of advised
code [4, 16]. The idea is to support information hiding and
parallel development in aspect-oriented systems. XPIs de-
fine contracts (or design rules) that base code developers
must observe. On the other hand, aspect developers must
rely on the syntactic part of XPIs to implement advices that
do not directly reference source code elements. Accord-
ing to Sullivan et. al, XPIs support feature obliviousness,
in the sense that classes can remain oblivious of possible
aspects. On the other hand, classes must be prepared to fa-
cilitate the definition of pointcuts. Pointcuts based on XPIs
are also more robust, since the base code must adhere to the
defined design rules even after changes. However, in its cur-
rent stage, design rules enforced by XPIs are implemented
in AspectJ, which probably is not the best language in terms
of expressiveness for design rule definition and checking.

The solution proposed in this paper differs from XPIs
in the sense that it does not try to define strict design
rules that the base code must conform to. On the other
hand, it struggles to find indications that characterize
a crosscutting concern even after several changes are
applied to base code. As example, we can mention calling
Session.save in the implementation of transaction
handling in the JAccounting system and the existence of
methods in the HealthWatcher facade that expose business
(and persistent) objects to the different clients of the system.

Confirmed join points: In the confirmed join points ap-
proach, class owners need to confirm that matched join
points are acceptable [12]. For this purpose, they must
change the class code in order to insert confirmation state-
ments, which explicitly name the pointcuts that are allowed
to match the join point shadows provided by the class. Con-
firmed join points is similar to the annotator approach, be-
cause both delegate to class owners the final decision about
whether a pointcut can or not match join points. On the
other hand, our proposal is non-invasive, in the sense that
it does not require developers to modify the object-oriented
code by inserting confirm statements.

75

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on August 09,2010 at 15:11:15 UTC from IEEE Xplore.  Restrictions apply. 



8 Conclusions

The fragile pointcut problem is a serious limitation for
the widespread use of aspects in large-scale software sys-
tems. In this paper, we leverage previous solutions that pro-
pose the use of annotations to classify base code elements
according to their semantic properties. In our proposal, an-
notations are superimposed to the base program by anno-
tator aspects, in order to turn annotations in non-scattered
and non-invasive elements. Moreover, annotations are de-
fined in a declarative language. This language does not have
the purpose to strictly define the elements of the program
that should be annotated. Instead, its purpose is to express
code patterns that indicate that a given program element
may be annotated. The benefit of this approach is the fact
that such patterns are usually much less affected by system
evolutions. Thus, it is less probable that evolutions require
changes in the proposed annotation declaration files. On
the other hand, our approach requires developers support in
order to eliminate false positives.

The current version of the annotation definition language
was able to successfully capture potential annotation targets
in two medium-sized AOP systems and in the classical Fig-
ure Editor application, with a reduced number of false pos-
itives. Moreover, we have also demonstrated that the pro-
posed solution was more robust to changes in the Figure
Editor System than traditional pointcuts based on regular
expressions, enumerations, and invasive annotations.

We have plans to investigate the use of the proposed
solution in other pointcuts of the systems considered in
the paper and also in other AOP systems. The objective
is twofold: to determine new patterns that can be useful
to define the target and the scope of annotations and
also to better establish the limitations and the type of
crosscutting concerns where using the proposed solution is
not recommended.

Acknowledgment: This research was supported by a grant
from FAPEMIG.

References

[1] D. Binkley, M. Ceccato, M. Harman, F. Ricca, and
P. Tonella. Tool-supported refactoring of existing object-
oriented code into aspects. IEEE Transactions Software En-
gineering, 32(9):698–717, 2006.

[2] T. Cottenier, A. van den Berg, and T. Elrad. Joinpoint
inference from behavioral specification to implementation.
In 21st European Conference on Object-Oriented Program-
ming (ECOOP), volume 4609 of Lecture Notes in Computer
Science, pages 476–500. Springer, 2007.

[3] M. Eaddy and A. V. Aho. Statement annotations for fine-
grained advising. In ECOOP Workshop on Reflection, AOP,
and Meta-Data for Software Evolution, pages 89–99, 2006.

[4] W. G. Griswold, K. J. Sullivan, Y. Song, M. Shonle,
N. Tewari, Y. Cai, and H. Rajan. Modular software design
with crosscutting interfaces. IEEE Software, 23(1):51–60,
2006.

[5] K. Gybels and J. Brichau. Arranging language features
for more robust pattern-based crosscuts. In 2nd Interna-
tional Conference on Aspect-Oriented Software Develop-
ment (AOSD), pages 60–69, 2003.

[6] W. Havinga, I. Nagy, L. Bergmans, and M. Aksit. De-
tecting and resolving ambiguities caused by inter-dependent
introductions. In 5th International Conference on Aspect-
Oriented Software Development (AOSD), pages 214–225,
2006.

[7] A. Kellens, K. Mens, J. Brichau, and K. Gybels. Managing
the evolution of aspect-oriented software with model-based
pointcuts. In 20th European Conference on Object-Oriented
Programming (ECOOP), volume 4067 of Lecture Notes in
Computer Science, pages 501–525. Springer Verlag, 2006.

[8] G. Kiczales. Effectiveness sans formality. In Keynote talk at
OOPSLA, 2007.

[9] G. Kiczales and M. Mezini. Aspect-oriented programming
and modular reasoning. In 27th International Conference on
Software Engineering (ICSE), pages 49–58, 2005.

[10] G. Kiczales and M. Mezini. Separation of concerns with
procedures, annotations, advice and pointcuts. In 19th
European Conference on Object-Oriented Programming
(ECOOP), volume 3586 of Lecture Notes in Computer Sci-
ence, pages 195–213. Springer, 2005.

[11] L. Mikhajlov and E. Sekerinski. A study of the fragile base
class problem. In 12th European Conference on Object-
Oriented Programming (ECOOP), volume 1445 of Lecture
Notes in Computer Science, pages 355–382. Springer, 1998.

[12] H. Ossher. Confirmed join points. In AOSD Workshop on
Software Engineering Properties of Languages and Aspect
Technologies (SPLAT), pages 1–6, 2006.

[13] K. Ostermann, M. Mezini, and C. Bockisch. Expressive
pointcuts for increased modularity. In 19th European Con-
ference on Object-Oriented Programming (ECOOP), vol-
ume 3586 of Lecture Notes in Computer Science, pages 214–
240. Springer-Verlag, 2005.

[14] S. Soares, E. Laureano, and P. Borba. Implementing dis-
tribution and persistence aspects with AspectJ. In 17th
ACM Conference on Object-Oriented programming systems,
languages, and applications, pages 174–190. ACM Press,
2002.

[15] M. Störzer and J. Graf. Using pointcut delta analysis to sup-
port evolution of aspect-oriented software. In 21st IEEE In-
ternational Conference on Software Maintenance (ICSM),
pages 653–656, 2005.

[16] K. J. Sullivan, W. G. Griswold, Y. Song, Y. Cai, M. Shonle,
N. Tewari, and H. Rajan. Information hiding interfaces for
aspect-oriented design. In 13th International Symposium
on Foundations of Software Engineering (FSE), pages 166–
175, 2005.

[17] T. Tourwé, J. Brichau, and K. Gybels. On the existence
of the AOSD-evolution paradox. In AOSD Workshop on
Software-Engineering Properties of Languages, 2003.

76

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE MINAS GERAIS. Downloaded on August 09,2010 at 15:11:15 UTC from IEEE Xplore.  Restrictions apply. 


