A Quantitative Approach for Evaluating
Software Maintenance Services

Humberto Marques-Neto
Dept. of Computer Science
Pontifical Catholic University

of Minas Gerais (PUC Minas)

Belo Horizonte — Brazil
30.535-901
humberto@pucminas.br

Gladston J. Aparecido
Dept. of Computer Science
Pontifical Catholic University
of Minas Gerais (PUC Minas)
Belo Horizonte — Brazil
30.535-901
gladston.aparecido@

Marco Tulio Valente
Dept. of Computer Science
Universidade Federal de
Minas Gerais (UFMQG)
Belo Horizonte — Brazil
31.270-010
mtov@dcc.ufmg.br

sga.pucminas.br

ABSTRACT

The ever-increasing representativeness of software mainte-
nance in the daily effort of software team requires initiatives
for enhancing the activities accomplished to provide a good
service for users who request a software improvement. This
article presents a quantitative approach for evaluating soft-
ware maintenance services based on cluster analysis tech-
niques. The proposed approach provides a compact charac-
terization of the services delivered by a maintenance orga-
nization, including characteristics such as service, waiting,
and queue time. The ultimate goal is to help organizations
to better understand, manage, and improve their current
software maintenance process. We also report in this pa-
per the usage of the proposed approach in a medium-sized
organization throughout 2010. This case study shows that
72 software maintenance requests can be grouped in seven
distinct clusters containing requests with similar character-
istics. The in-depth analysis of the clusters found with our
approach can foster the understanding of the nature of the
requests and, consequently, it may improve the process fol-
lowed by the software maintenance team.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—complezity mea-
sures, performance measures; H.4 [Information Systems
Applications|: Miscellaneous

General Terms

Measurement

Keywords

Software Maintenance, Quantitative Software Evaluation,
Maintenance Management and Measurement, Maintenance
Planning, Maintenance Process

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’13 March 18-22, 2013, Coimbra, Portugal.

Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$10.00.

1. INTRODUCTION

Software maintenance is an important, costly, and com-
plex phase in the software lifecycle [10]. Some works [13, 17]
point out that software maintenance activities can represent
40-80% of all effort spent during this lifecycle. Thus, plan-
ning and managing software maintenance is a challenging
task for most software organizations because, while the ini-
tial phases of the software lifecycle target the development
of new products, software maintenance is better described
in terms of a service provided to the users of existing soft-
ware [2, 11].

According to this view, the users are customers that re-
quest changes to software systems, including both correc-
tions and enhancements. Such incoming requests are pro-
cessed by the supplier organization (i.e. the maintainer), typ-
ically using an adaptation of a software development process.
The ultimate goal is to deliver a new release of the target
system that implements the changes requested by users.

Once maintenance is viewed as a service, we can lever-
age from the vast theory proposed to study queue systems
in order to model and evaluate software maintenance pro-
cesses. Particularly, in this article we present a quantitative
approach that adapts to software maintenance a method-
ology originally proposed to characterize the workload of
e-commerce services [9]. Our adaptation relies on concepts
such as waiting time and service time (i.e. the queue time)
to evaluate the quality of the services provided by software
maintenance organizations.

More precisely, our approach requires the representation
of each maintenance request as a state transition graph,
called Maintenance Model Graph (MMG). This graph mod-
els the workflow followed by the maintainer to process the
incoming change requests, including information about the
starting and finishing dates of each maintenance activity
(such as planning, design, implementation, testing etc). Fi-
nally, the proposed approach uses a clustering algorithm to
generate a representative model for the requests processed
by the maintainer in a given time frame. Therefore, instead
of having to analyze a full array of requests, software main-
tenance managers can rely on a compact representation in-
cluding only requests that are very similar in terms of some
characteristics, such as their waiting and service times.

In order to illustrate the usage of the proposed approach,
we present the results of a case study which shows its appli-
cation in a real dataset of software maintenance requests of a

medium-sized organization. We analyzed seven MMGs clus-
tered from a set of 72 software maintenance requests han-
dled by the Information Technology Division of an Brazilian
university in 2010. We show the similar characteristics of
requests which were grouped together, i.e the average hours
for the waiting time, service time, and queue time of each
cluster and we also present the difference among the found
clusters in order to help the software maintenance team to
understand the nature of the requests posted by their users.
The remainder of this paper is organized as follows. We
present the quantitative approach for evaluating software
maintenance services in Section 2. A case study of its usage
is discussed in Section 3. Related work is pointed out in
Section 4 and the final remarks are offered in Section 5.

2. THE PROPOSED APPROACH

The proposed approach for evaluating software mainte-
nance services has the following major steps: MMG Defini-
tion (Subsection 2.1), MMG Instantiation (Subsection 2.2),
and MMG Clusterization (Subsection 2.3).

2.1 Defining the Maintenance Model Graphs

To apply the proposed approach, the first task is to define
the Maintenance Model Graph (MMG). The MMG is a di-
rected graph representing the workflow followed to process
the requests of software maintenance. More specifically, the
nodes in a MMG represent the possible states of a request
and the edges represent the transitions between such states.
Usually, there are three types of states: (a) states associated
to the software engineering activities used to process a re-
quest (e.g. request under analysis/planning, request under
implementation, request under validation etc); (b) waiting
states (e.g. request waiting for analysis/planning, request
waiting for implementation etc); and (c) final states (e.g. re-
quest successfully deployed or request canceled).

Figure 1 presents a typical MMG for a maintenance or-
ganization where the following engineering activities are se-
quentially performed to process a request: planning, imple-
mentation, validation, and deployment. More specifically,
the MMG presented in this figure expresses that when a
client requests a maintenance, this request remains in a wait-
ing state (State 1). After the planning and analysis activities
have been performed (State 2), the request can be suspended
(State 3), canceled (State 4), or it can move to the imple-
mentation phase (State 5). After implementation and in
case of failures, the request can be suspended (State 6) or
canceled (State 4). Otherwise, it moves to validation (State
7). After validation, the request can return to the planning
state (State 2) or move to deployment (States 9 and 10).
Finally, the whole process finishes and the maintenance is
considered deployed (State 11).

2.2 Instantiating the Maintenance Model
Graphs

In the second step of our approach, a single MMG is
created for each request considered in the time frame of
the evaluation. The states of such MMG instances should
be decorated with the following information (normally ex-
tracted from an issue tracking system):

e Starting and ending timestamps, i.e. information about
the date and time the request has reached and exited
each state.

1 - Waiting
Planning

2 - Under
Planning

5 - Under 6 - Implementation
Implementation Suspended

8 - Validation
Suspended

3 - Planning
Suspended

4 - Canceled

:

9 - Waiting 7 - Under

Validation

11 - Deployed

Figure 1: MMG Example

Deployment

10 - Under
Deployment

e Number of times the state has been visited when pro-
cessing the request. As MMGs can have loops, this
number can be greater than one for some states.

Next, using the MMG instances, the following character-
istics are calculated for each request:

o QueueTime: time interval between the request regis-
tration in the issue tracking system and its correspond-
ing conclusion or cancellation.

o WaitingTime: time interval the request remained in
the issue tracking system, waiting for processing (for
example, in the case of the MMG in Figure 1 the time
spent in the states 1, 3, 6, 8, and 9).

e ServiceTime: time interval to process the request, in-
cluding the execution of all software engineering activ-
ities modeled in the MMG (for example, in Figure 1,
the time spent in the states 2, 5, 7, and 10).

For such characteristics, the following equation hold:

QueueTime = WaitingTime + ServiceTime

For the MMG presented in Figure 1, we also have the
following equation:

ServiceTime = PlanningTime +
ImplementationTime +
ValidationTime +
DeploymentTime

where (i) PlanningTime is the time interval demanded to
understand, to plan and to schedule a software maintenance
request, (ii) ImplementaionTime is the time interval to im-
plement and to code the request, (iii) Validation Time is the
time interval for testing and (iv) DeploymentTime is the

Cluster Representativeness Ratio (CRR)

og
7 clusters

Values of CRR

Figure 2: Cluster Representativeness Ratio (CRR)

time interval to deploy the request and to obtain the final
approval of the involved users.

When calculating the time intervals associated to these
characteristics and in case the organization follows well-
defined working hours, we can consider only the hours the
maintainers normally work (e.g. 9:00 AM to 5:00 PM) and
therefore to exclude non-business hours, weekends, holidays
etc. Anyway, it is important to note that the service time is
not a measure of effort (for example, in terms of man-hours),
but a measure of the number of hours required to process
the request.

2.3 Clustering the Maintenance Model Graph
Instances

In this step, for each MMG instance a vector is created
with the waiting and service times calculated in the previ-
ous step. These vectors — called feature vectors — are used
as the input of a clustering algorithm, which automatically
classifies the vectors in groups (called clusters) so that the
vectors in the same cluster are similar to each other. Fol-
lowing Menasce and Almeida [9], we recommend the use of
the k-means clustering algorithm for this purpose. This al-
gorithm partitions n data points into k£ clusters. In our par-
ticular case, k-means will provide as output the following
information for each cluster:

e A set with the maintenance requests assigned to the
cluster;

e The cluster’s mean, i.e. a feature vector that represents
the set of maintenance requests assigned to the cluster.
Basically, each element of this vector is the mean of
the correspondent elements in the feature vectors of
the requests assigned to the cluster.

Defining the number of clusters: A critical decision
when applying k-means is to set the number of clusters k,
which is an input of the algorithm. Basically, to define this
parameter it is important to have in mind the following
goals: (a) the distance among the elements of the generated
clusters — called intracluster distance — must be minimized,
in order to provide homogeneous clusters; (b) the distance
among the generated clusters — called intercluster distance
— must be maximized, in order to ensure that there are clear
differences among them [9]. In order to meet these goals, the
following Cluster Representativeness Ratio (CRR) is usually
employed:

1 - Waiting
Planning

2 - Under

3 - Planning

o
N
oy

4 -Canceled [<-------

Planning Suspended
i 0.89
e
Implementation | ..__ Suspended
0.13 1

8 - Validation
Suspended

9 - Waiting 7 - Under

Validation

1 11 - Deployed

Figure 3: MMG representing a cluster

Deployment

1

10 - Under
Deployment

betweenss
k
betweenss + Z withinss|[i]

i=1

CRR =

where betweenss and withinss are, respectively, measures
for intercluster and intracluster distances. Such measures
are automatically provided by most statistical packages that
implement a k-means function. Therefore, detailed informa-
tion on how to calculate such distances will not be reported
in this paper and can be found elsewhere [16].

In general, the near CRR is to 1, the better is the represen-
tativeness of the generated clusters. However, maximizing
CRR must not be pursued at all costs. For example, if k
is defined as the size of the sample, each sample’s element
will be a cluster, and the intracluster distances will be zero.
As a result, CRR is 1, but with trivial clusters. Therefore,
we must maximize CRR, but without generating too many
clusters. Based on this recommendation, a simple rule of
thumb to determine the value of k is the following: (a) run
the clustering algorithm with several values of k; (b) plot the
respective CRR values, which will result in a monotonically
increasing function towards the value 1; (c) supposing the
last “significant rise” in this graph happens from k — 1 to k,
the recommended value for the number of clusters is k. In
other words, after this value, increasing k will not result in
significant gains in terms of CRR [16]. For example, in the
example of Figure 2, the recommendation is to set k = 7
(because after this value the curve has a smoother growth).

Creating a MMG for the clusters: Finally, we must
create a MMG representing the MMGs of each cluster. The
edges in this MMG are decorated with a real value in the
range [0, 1] that denotes the probability of using the path
represented by the edge. Suppose a cluster with requests
req[1], req[2], req[3], req[4], req[5], . .., req[n]. Suppose also
that reg[r].edge[S;, Sj].visits denotes the number of times
the edge connecting states S; and S; in the MMG associ-
ated to a given request r has been visited. Similarly, sup-
pose that req[r].state[S;].visits denotes the number of times
state S; in the MMG associated to the request r» has been
visited. Using such definitions, the probability of taking an

Table 1: Clusters representing the considered maintenance requests

WaitingTime ServiceTime QueueTime

Clusters # Requests | Mean cv % Mean cv % Mean cv
(hours) (hours) (hours)

Cluster #1 22 25.44 1.03 | 17.37 | 121.01 | 0.33 | 82.63 | 146.45 | 0.34
Cluster #2 22 29.96 1.06 | 11.08 | 240.46 | 0.17 | 88.92 270.42 0.16
Cluster #3 13 42.40 0.87 | 9.37 410.33 | 0.13 | 90.63 | 452.73 | 0.12
Cluster #4 7 84.86 1.21 | 12.67 | 585.05 | 0.07 | 87.33 | 669.91 | 0.16
Cluster #5 4 12.66 0.62 | 1.33 937.07 | 0.11 | 98.67 | 949.73 | 0.11
Cluster #6 3 271.42 | 0.39 | 61.58 | 169.33 | 0.46 | 38.42 | 440.75 | 0.39
Cluster #7 1 933.20 | 0.00 | 80.60 | 224.57 | 0.00 | 19.40 | 1,157.77 | 0.00

edge [S;, ;] is defined as:

Z req[r].edge[Ss, S;j].visits
edge[S;, Sj).prob = T:L
Z req[r].state[S;].visits

r=1

Figure 3 shows an example of a MMG representing a clus-
ter. This MMG reveals that the probability of canceling a
request during planning is zero (the dashed edge connecting
states 2 and 4 denotes a transition with probability zero).
On the other hand, the probability to suspend a request un-
der planning is 0.11 (as represented in the edge connecting
states 2 and 3).

3. CASE STUDY

In order to evaluate the applicability of the proposed ap-
proach, we accomplished a case study using a real dataset
of software maintenance requests, which were clustered and
analyzed using the approach described in Section 2.

3.1 Dataset Overview

We analyzed 72 software maintenance requests handled by
the Information Technology Division of an university. This
division acquires, develops, and maintains all academic and
administrative systems used by the university. Nowadays, it
provides maintenance services to almost 40 systems, totaling
more than four million lines of code in different program-
ming languages (Java, Delphi, PHP etc). The division relies
on a lightweighted process — called PASM (Process for Ar-
ranging Software Maintenance Requests) [1] — for handling
maintenance as software projects [3, 15]. Therefore, the re-
quests evaluated in our study are in fact software projects
created by the software maintenance managers at I'T Divi-
sion to handle modifications in the systems of the university,
as demanded by the users of those systems. The requests
considered in the study have been opened and closed in 2010
(January to December). This period covers two semesters,
i.e. a complete annual cycle of the university activities.

3.2 Methodology

We have initially defined a MMG expressing the workflow
followed by this IT Division to provide maintenance services
(which in fact is the MMG already presented in Figure 1,
Section 2). An instance of this MMG has been created to
provide information for each maintenance request consid-
ered in the study. The information about the starting and
ending timestamps of each state has been retrieved from the
issue tracking system used by this organization. Next, we

have generated a feature vector for each request, including
the following characteristics: service time and waiting time.
Finally, we clustered the 72 MMGs using the k-means algo-
rithm (as implemented by the R statistical and data analysis
platform, http://www.r-project.org). We executed the algo-
rithm 10 times, with & (the number of clusters) ranging from
1 to 10. For each execution, we calculated the Cluster Rep-
resentativeness Ratio (CRR). Figure 2 — already presented
in Section 2 — shows the CRRs achieved by each number
of clusters we have tested. As mentioned before, this figure
suggests that we should set k£ = 7.

3.3 Results and Discussion

Table 1 shows information on the seven clusters represent-
ing the maintenance requests considered in our study. The
table presents the number of requests and the average values
(in hours) for the waiting time, service time, and queue time
of the requests in each cluster. Besides the cluster’s mean,
the table also provides an information on the variability of
the requests in each cluster, represented by column CV (co-
efficient of variation), which shows the ratio between the
standard deviation and the mean. Finally, for the waiting
and service times, the table shows the percentage of the
mean regarding the total queue time.

We briefly discuss our main finding after analyzing the
generated clusters:

e Cluster #1 and Cluster #2 grouped together more
than 60% of the considered requests (44 out of 72 re-
quests). However, the maintainers spent almost twice
as long to perform the software engineering activities
(i-e. service time) in Cluster #2 , compared with Clus-
ter #1. Therefore, these clusters reveal what we can
classify as the typical and simple maintenance requests
(Cluster #1, with a service time around 3 weeks) and
the typical and medium-complexity requests (Cluster
#2, with a service time around 6 weeks).

e Cluster #3 reveals what can be classified as the typical
complex request (with a service time superior to 410
hours). This cluster accounts for around 18% of the
considered requests.

e The remaining four clusters have captured requests
with an outlier behavior (less than 21% of the re-
quests). This behavior can be explained by high or
extremely high service times (Cluster #4 and #5, re-
spectively), or to high or extremely high waiting times
(Clusters #6 and #7).

Besides evaluating the results at the cluster level, it is also
possible to analyze the sub-components of the service time,

Table 2: Service time subcomponents

Plannin Implementation Validation Deployment . .
Clusters Mean % MeI;n % Mean % Megn ot % ServiceTime
Cluster #1 19.06 15.75 28.02 23.16 38.65 31.94 35.28 29.15 121.01
Cluster #2 | 40.83 | 16.98 | 75.06 31.21 80.88 | 33.64 | 43.69 | 18.17 240.46
Cluster #3 59.71 14.55 | 127.20 31.00 143.96 | 35.08 79.46 19.37 410.33
Cluster #4 | 90.57 | 15.48 | 101.96 17.43 310.86 | 53.13 | 81.66 | 13.96 585.05
Cluster #5 | 178.04 | 19.00 | 140.56 15.00 543.50 | 58.00 | 74.97 8.00 937.07
Cluster #6 | 12.80 7.56 38.39 22.67 79.26 | 46.81 | 38.88 | 22.96 169.33
Cluster #7 | 71.15 | 31.68 | 147.72 65.78 5.67 2.52 0.03 0.02 224.57

i.e. the amount of the service time allocated to each software el

engineering activity. For each cluster, Table 2 presents the
values of such sub-components. Among the typical clusters
(Clusters #1, #2, and #3), we can observe for example
that there are small variations in the percentage of time
allocated to each activity. For example, the planning time
accounts around 16%, 17%, and 15% of the service time
for these clusters, respectively. This reinforces our initial
claim that the differences among such clusters are due to
the inherent complexity of the associated maintenance tasks.
Moreover, the table also sheds light on the clusters with an
outlier behavior due to their service times. For example, we
can discover that the outlier behavior attributed to Clusters
#4 and #5 was due to the number of hours allocated to
validation (which has been superior to 50% of the service
time of both clusters).

Finally, we can also evaluate the MMGs associated to each
cluster in order to check the probabilities associated to the
state transitions. Figure 4 shows the MMG for Clusters #1
and #2. We can observe that the only difference between
such graphs are in the Under Planning state. In the Cluster
#1, requests under planning have a small probability to be
suspended (0.04). On the other hand, for Cluster #2, the
requests under planning presented a small probability not to
be suspended, but to be canceled (also 0.04). This difference
is in line with our previous characterization of Cluster #1 as
a cluster representing the simple maintenance requests (e.g.
that may eventually be suspended to handle a more urgent
task). Furthermore, we classified Cluster #2 as including
complex requests (that eventually may be canceled).

4. RELATED WORK

Banker and Slaughter have evaluated 129 software en-
hancement projects from a large financial organization [4].
Their empirical evaluation has been conducted using a non-
parametric method commonly used to measure productivity,
called Data Envelopment Analysis (DEA). They conclude
that a cost reduction of up to 36% could have been achieved
by clustering the evaluated requests.

The work of Kanellopoulos et al. [8] presents a model
for depicting the software structure in conjunction with a
set of metrics for assessing the maintainability of this soft-
ware. The authors use the k-means algorithm over the
source code for understanding the software structure. An
empirical study presented by Robillard et al. [12] analyzes
4,200 software maintenance requests of seven different sys-
tems and shows a synthetic representation of software struc-
ture also created with clustering techniques. Understanding
the software structure can help software maintainer when
perform programming activities. Nevertheless, they do not
investigate how a deep understanding of the requests’ nature

1
4-Canceled pe-------{ 2-Under 1 l
Planning
| 0.04
| lo.gs
(5 - Under)%E- ImplementatiorD
H i
E 10.96

1 N
9 - Waiting 7 - Under = | 8 -Val|dat|on]
Doptey 0.96 J 0.04 "
ll

10 - Under 1
[Depleyment]—)[11 - Deployed]

(a) Cluster 1

3 - Planning
Suspended

2 - Under 1<"""]/3 - Planning
Planning [.__.._._; Suspended
0.96
(5-Under]Zi_“)ﬁ-lmplemematiorﬁ
1
10.96
. 1
9 - Waiting 7 - Under ’\
Deployment /=954 | \ 0.04
ll
10 - Under 1
[DeploymentH1 . Dep'““}

(b) Cluster 2

0.04
4 - Canceled

[

‘/8 - Validation]

Figure 4: MMG for Clusters #1 and #2

can contribute to improve the maintenance process.

A model to help the managers of a software team in the
task of setting a timetable for handling maintenance requests
is proposed by Tan and Mookerjee [15]. This model includes
not only decisions about maintenance, but also decisions
about replacement of a system. However, their mathemati-
cal model has not been validated in real-world software de-
velopment organizations. In addition, it depends on several
complex parameters such as entropy degree of the system
(i.e. system degradation due to maintenance) and cost re-
duction due to reuse and due to the incorporation of new
technologies.

Assuming that maintenance requests arrive in accordance
to a Poisson distribution, Feng, Mookerjee and Sethi present
a model that aim to help software teams to optimize the
long-run total discounted cost of the system (i.e. the waiting
cost of each pending maintenance requests plus maintenance
costs) [5]. In their work, the authors assume that the wait-

ing cost per time unit of each outstanding request is known.
They also assumed that the cost of maintenance consists of
a fixed cost and a correction cost per request, which in gen-
eral does not apply to maintenance process that foster the
treatment of maintenance requests as software projects [1].

In a recent work, Gethers et al. [6] combine different tech-
niques for predicting the impacts of a software change. These
techniques make up a framework which uses information,
such as (i) the register of the change request, (ii) the his-
toric of software versions, and (iii) the dynamic analysis of
the system behavior. A similar work have used Formal Con-
cept Analysis (FCA) for identifying the impacts of software
changes [14]. The authors also present a framework which
obtain metrics based on elements of software structure in or-
der to better estimate these impacts. However, these works
do not consider the workflow followed for performing the
maintenance requests.

Aparecido et al. present a software maintenance pro-
cess named PASM (Process for Arranging Software Mainte-
nance Requests) [1]. This process has three phases: regis-
tering, grouping, and processing. In order to evaluate the
PASM the authors used a set of clustering techniques for an-
alyzing the software maintenance requests. We believe that
this approach can be used in any kind of process with focus
on planning and managing activities for improving software
maintenance.

5. FINAL REMARKS

We have presented a quantitative approach for evaluat-
ing maintenance services, based on cluster analysis tech-
niques. As showed in our case study, the proposed approach
can reveal quantitative data on the typical maintenance ser-
vices provided by the organization (e.g. simple, medium-
complexity, and complex requests) and also on the requests
with an outlier behavior. First of all, this data provides
a better understanding of the current status of the main-
tenance activities in a given organization. After that, it
can be used to better manage and improve the maintenance
process followed by the software team [7]. For example, pro-
gramming teams with different skills and experience can be
allocated to the different types of requests. Furthermore, it
is possible to anticipate the costs, required resources, and
processing times of upcoming requests. Finally, a detailed
study of the requests with an outlier behavior may help to
identify problems in the current maintenance process and
therefore help the organization to improve and fix them.

Acknowledgments

This research has been supported by grants from FAPEMIG
and CNPq.

6. REFERENCES

[1] Gladston Junio Aparecido, Marcelo Malta, Humberto
Mossri, Humberto Marques-Neto, and Marco Tulio
Valente. On the benefits of planning and grouping
software maintenance requests. In 15th European
Conference on Software Maintenance and
Reengineering (CSMR), pages 55-64, March 2011.

[2] Alain April, Jane Huffman Hayes, Alain Abran, and
Reiner Dumke. Software maintenance maturity model
(SMM2M): the software maintenance process model.

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

Journal of Software Maintenance and FEvolution:
Research and Practice, 17(3):197-223, May 2005.
Rajiv D. Banker and Chris F. Kemerer. Scale
economies in new software development. I[EEE
Transactions on Software Engineering,
15(10):1199-1205, October 1989.

Rajiv D. Banker and Sandra A. Slaughter. A field
study of scale economies in software maintenance.
Management Science, 43(12):1709-1725, December
1997.

Qi Feng, Vijay S. Mookerjee, and Suresh. P. Sethi.
Optimal policies for the sizing and timing of software
maintenance projects. Furopean Journal of
Operational Research, 173(3):1047-1066, September
2006.

Malcom Gethers, Bogdan Dit, Huzefa Kagdi, and
Denys Poshyvanyk. Integrated impact analysis for
managing software changes. In 3/th IEEE
International Conference on Software Engineering
(ICSE), pages 430-440, June 2012.

Watts S. Humphrey. Characterizing the software
process: A maturity framework. IEEE Software,
5:73-79, March 1988.

Yiannis Kanellopoulos, Thimios Dimopulos, Christos
Tjortjis, and Christos Makris. Mining source code
elements for comprehending object-oriented systems
and evaluating their maintainability. ACM SIGKDD
Ezplorations Newsletter, 8(1):33-40, June 2006.
Daniel Menasce and Virgilio Almeida. Scaling for
E-Business: Technologies, Models, Performance, and
Capacity Planning. Prentice Hall, 2000.

Radha Mookerjee. Maintaining enterprise software
applications. Communications of the ACM,
48(11):75-79, November 2005.

Frank Niessink and Hans van Vliet. Software
maintenance from a service perspective. Journal of
Software Maintenance and Evolution: Research and
Practice, 12(2):103-120, March 2000.

Martin P. Robillard and Barthélémy Dagenais.
Recommending change clusters to support software
investigation: an empirical study. Journal of Software
Maintenance and Evolution: Research and Practice,
22(3):143-164, April 2010.

Harry M. Sneed and Stefan Opferkuch. Training and
certifying software maintainers. In 12th IEEE
European Conference on Software Maintenance and
Reengineering (CSMR), pages 113-122, April 2008.
Xiaobing Sun and Bixin Li. Using formal concept
analysis to support change analysis. In 26th
International Conference on Automated Software
Engineering (ASE), pages 641-645, November 2011.
Yong Tan and Vijay S. Mookerjee. Comparing uniform
and flexible policies for software maintenance and
replacement. IEEE Transactions on Software
Engineering, 31(3):238-255, March 2005.

Stephane Tuffery. Data Mining and Statistics for
Decision Making. Wiley, 2011.

M. P. Ware, F. G. Wilkie, and M. Shapcott. The
application of product measures in directing software
maintenance activity. Journal of Software
Maintenance and Evolution: Research and Practice,
19(2):133-154, March 2007.

