
Object–Business Process Mapping Frameworks:
Abstractions, Architecture, and Implementation

Rogel Garcia and Marco Tulio Valente

Department of Computer Science, UFMG, Brazil
{rogel.garcia,mtov}@dcc.ufmg.br

Abstract—The integration between enterprise architectures
and Business Process Management Systems (BPMS) is currently
based on low-level programming interfaces that expose accidental
complexities typical of process implementations. This paper
describes an approach for integrating software architectures
and BPMSs, based on mapping frameworks. Our inspiration are
the Object-Relational Mapping (ORM) frameworks widely used
to shield information systems from low-level structures exposed
by relational database systems. The paper describes the central
abstractions that should be provided by Object–Business Process
Mapping Frameworks (OBPM). We also propose a reference
architecture for implementing OBPMs and a concrete OBPM
implementation, called NextFlow. We evaluated our approach
by comparing two implementations of the same system, one
using NextFlow and another using the native API supported
by jBPM, a popular BPMS. By using NextFlow, we achieved
a reduction of 30% in terms of lines of code, 35% in terms
of number of classes, and 90% in terms of import statements,
when implementing this system.

Index Terms—Business Process; Enterprise Architectures;
Mapping Frameworks; Object–Business Process Mapping Frame-
works; Business Process Management Systems

I. INTRODUCTION

Enterprise software development increasingly relies on frame-
works and architectures to promote reuse and increase produc-
tivity. Particularly, enterprise architectures are usually organized
in layers that confine the implementation of particular concerns.
For example, normally there is a layer that responds for user
interface concerns (presentation layer) and a layer responsible
for persistence (data source layer) [1, 2]. The business rules
are implemented by a layer called domain, which implements
concerns related to the core business workflows and rules.
On the other hand, with the constant pressure for optimized
processes, specialized software infrastructures—generically
called Business Process Management Systems (BPMS)—were
proposed to deal with business workflows [3, 4, 5]. A BPMS
supports the definition, execution, registration, and control of
business processes, just like a Database Management System
(DBMS) handles data services.

There are two alternatives when considering the use of
BPMSs in current software systems. The first one relies on
the BPMS to implement and deploy a complete application,
possibly using model-based or other (semi-)automatic code
generation techniques. However, using a BPMS as full-fledged
software infrastructure has important limitations [6]. It is not

possible to take benefit, for example, from modern and widely
employed frameworks, like GUI and MVC-based application
frameworks. Another problem concerns the implementation
of tasks, which typically requires the definition of code in
specific components of the business process definition, often
using property boxes. The second alternative relies on a BPMS
just to support the business workflow required by the domain
layer of the information system architecture. Therefore, this
second alternative requires an interface between BPMS and the
remaining components of the software architecture. However,
the integration between enterprise architecture components
and current BPMSs suffers from important drawbacks. For
example, it is harder to change the BPMS once one is
established. Moreover, current APIs for accessing BPMSs
expose several low-level abstractions, which can be seen as
accidental complexities [7]. For example, developers have to
manipulate elements like tasks and nodes, which are not part
of the business semantics.

To tackle the aforementioned problems, we propose a
software engineering solution for integrating enterprise ar-
chitectures and BPMSs, based on mapping frameworks. Our
inspiration for making this proposal are the Object-Relational
Mapping (ORM) frameworks widely used to shield information
systems from low-level data structures provided by Relational
Database Management Systems (RDBMS). Although RDBMS
and BPMS have different purposes, we argue that mapping
frameworks can bring to systems using BPMS the same benefits
that ORM frameworks provide to systems that use databases.

We make the following contributions in this paper:
• We propose a new type of mapping framework, called

Object–Business Process Mapping (OBPM) framework,
to integrate BPMSs with modern software architectures
(Section III). To decouple OBPMs from concrete business
process notations, we propose that OBPMs should rely on
an abstract business process model that includes only the
minimum elements for manipulating business processes
from information systems. We also define a set of mapping
rules to associate the elements proposed in this abstract
model to object-oriented elements. More specifically, we
propose that OBPMs should provide three key abstractions:
process interfaces (used by clients to trigger operations
in the BPMS), data classes (for sharing data between
information systems and BPMS), and callback classes
(for adding external semantics to business processes).



• We propose a reference architecture for implementing
OBPM frameworks (Section IV). This architecture is
centered on two layers. The first layer, called Workflow
Connectivity (WFC), provides means to connect the
abstract model to a concrete BPMS implementation. The
second layer, called Object-Workflow Mapping (OWM),
provides an API that represents, in terms of object-
oriented abstractions, the elements of a business process.
Comparing with database frameworks and drivers, the
WFC layer represents to business processes what JDBC
is for databases, and the OWM layer is analogous to an
ORM framework, like Hibernate.

• We provide a real implementation for an OBPM, called
NextFlow (Section V), which follows the proposed refer-
ence architecture.

• We report an experience on using NextFlow to integrate
an information system and a small but realistic business
process supported by a BPMS (Section VI). In this study,
we compare two possible integration scenarios: (a) using
OBPM abstractions, as supported by NextFlow; (b) using
the native API supported by jBPM, a well-known BPMS.

II. BACKGROUND AND RELATED WORK

We organized background and related work in two sub-
sections: business process notations, languages, and tools
(Section II-A) and object-relational mapping frameworks
(Section II-B).

A. Business Process Notations, Languages, and Tools

BPEL (Business Process Execution Language) is an XML-
based language that assumes that business processes have a Web
Service interface [8]. Therefore, BPEL guarantees interoperabil-
ity between systems implemented using different technologies.
However, this benefit comes at the cost of deploying every
working unit as a web service. BPMN (Business Process
Modeling Notation) aims to provide a standard language for
workflow modeling, while being comprehensive by business
participants [9]. However, BPMN does not define a reference
API, and therefore BPMN engines usually provide their own
proprietary APIs.

Micro-Workflow is an object-oriented framework to imple-
ment business processes [10]. Following traditional framework
principles, Micro-Workflow provides interfaces and components
that IS-developers should implement, extend or compose to
generate an application with support to BPMS services. There-
fore, Micro-WorkFlow applications can coexist with current
software architectures, frameworks, and libraries. On the other
hand, because the framework provides its own components
and interfaces to implement a business process engine, Micro-
WorkFlow is not compatible with current business process
languages, models, and systems.

The Workflow Client API (WAPI) is a specification from the
WfMC aiming to promote the interoperability among workflow
systems [11]. Considering the five interfaces defined by the
WAPI standard, two are directly related to this work. The
Workflow Client Applications API (Interface 2) defines a

standard API for clients that need to execute BPMS operations.
The Invoked Applications API (Interface 3) provides an API for
extending BPMS systems, by means of tool agents. However,
WAPI only includes a textual specification, which does not have
a reference implementation in a real programming language.
For this reason, BPMS developers have to implement their own
concrete API. As a consequence, there is no guarantee that these
concrete implementations will be compatible, at least at the
syntactical level. In fact, to the best of our knowledge, WAPI
is not supported by any of the major BPMS implementers.

Table I shows a comparison of the aforementioned solutions.

TABLE I
COMPARISON OF EXISTING BUSINESS PROCESS (BP) LANGUAGES,

FRAMEWORKS AND APIS

BPMN Micro-Workflow WAPI
Focus BP modeling BP implementation,

using framework
concepts

Interoperability
between workflow
systems

Pros Widely-used Compatibility with
current architectures

API standardiza-
tion effort

Cons Engines have pro-
prietary APIs

Incompatibility with
BP languages

No concrete imple-
mentation

B. Object-Relational Mapping Frameworks

Frameworks for mapping relational databases to object-
oriented elements, known as Object-Relational Mapping (ORM)
frameworks, are widely used nowadays when implementing
information systems in major object-oriented languages. Basi-
cally, an ORM maps database tables and columns to object-
oriented classes and fields. An ORM implementation provides
mechanisms to associate such elements and it controls at
runtime the synchronization of data between the object-oriented
system and the database. Therefore, by using ORM frameworks,
it is possible to query and persist complete objects. Otherwise,
developers would have to write code to query the database and
read the column values, create objects for each row, and set
the corresponding field values.

Listing 1 shows a method that retrieves a list of customers
from a database (lines 1–5) and stores them in a list of
Customer objects (lines 6–10), using native JBDC operations.

1 List<Customer> listCustomers(Connection conn) {
2 String query = "select * from customer";
3 ResultSet rs = conn.prepareStatement(query)
4 .executeQuery();
5 List<Customer> list = new ...;
6 while(rs.next()){
7 Customer c = new Customer();
8 c.setId(rs.getInt("id"));
9 c.setName(rs.getString("name"));

10 list.add(c);
11 }
12 return list;
13 }

Listing 1. Retrieving a list of customers using JDBC

Listing 2 shows the same method, but using Hibernate, a
popular ORM framework for Java.1

1http://www.hibernate.org



1 List<Customer> listCustomers(Session session) {
2 List<Customer> list = session
3 .createQuery("from Customer")
4 .list();
5 return list;
6 }

Listing 2. Retrieving a list of customers using Hibernate

By using Hibernate, it is only necessary to specify the class
mapped to the database (line 2). The association between the
values retrieved from the database and objects is managed by
the ORM framework. In this way, developers do not need to
handle columns or tables, which can be seen as accidental
complexities inherent to database systems. In fact, Hibernate
relies on JDBC for accessing the database, but this low-level
API is not directly exposed to ORM clients. In this paper,
we propose a mapping framework inspired by ORMs, but for
integration between information systems and BPMSs.

III. OBJECT-BUSINESS PROCESS MAPPING FRAMEWORKS

An Object–Business Process Mapping Framework (OBPM)—
whose proposal is the central contribution of this paper—
provides object-oriented elements to interact with business pro-
cess management systems. Figure 1 presents the main steps that
must be followed when using OBPMs in the implementation of
information systems. As usual in mapping frameworks, object-
oriented artifacts—such as classes, interfaces, and methods—
are initially created and mapped to business processes elements
(step 1). At runtime, the information system accesses the
mapped elements (step 2). More specifically, each call on
methods of these elements is intercepted by the OBPM and
translated to a specific BPMS operation (step 3). Finally, the
BPMS executes the corresponding elements in the business
process (step 4).

Fig. 1. Implementing information systems using Object-Business Process
Mapping Frameworks

A. Abstract Business Process Model

Different business process modeling notations are supported
by current BPMSs [12]. Therefore, an OBPM should not use
any of such notations, because it would couple the system to
that specific model. Instead, we claim that OBPMs should rely
on an abstract business process model for communication with
the concrete model provided by an underlying BPMS. This
abstract model should define only the minimum elements for

manipulating business processes as object-oriented abstractions.
For example, BPMN defines several types of tasks, including
normal tasks, loop tasks, multiple instance tasks, and compensa-
tion tasks [9]. However, the differences in the behavior of these
tasks are not important for their mapping to object-oriented
elements. Instead, we can rely on a generic task element to
represent all possible kinds of tasks.

The proposed Abstract Business Process Model (ABPM)
defines abstractions concerning both the design phase, i.e., how
the business process components are statically organized to
accomplish a desired objective and also the execution phase,
i.e., how the processes are executed by a given BPMS. In the
design phase, the business process is modeled as a directed
graph. The organization of the nodes and their relationship is a
Process Definition. Nodes in a process definition are called an
Activity Definition and they can be of the following types: start,
end, split, join, task, and external task. The start and end types
denote the start and the end of the process, respectively. Splits
are used for process parallelization, i.e., they divide the flow
in multiple paths. Joins are used for synchronization purposes,
i.e., multiple flow paths are joined in a single path. Tasks and
external tasks define the work to be done. Figure 2 presents
an example of a process definition in ABPM.

Fig. 2. Example of process definition

Concerning the execution phase, a running process is called
a Process Instance and the runtime counterpart of an activity
definition is an Activity Instance. An automatic task (or just
a task, for the sake of simplicity) is automatically executed
when the flow reaches the activity. On the other hand, an
external task is only executed when triggered by an external
system, possibly by the information system.

Rationale: The proposed abstract model is inspired by the
model assumed by the WAPI specification [11]. As an
example, a Process Instance in our abstract model has the
same semantics as the concept with the same name in WAPI.
Moreover, the task types proposed by ABPM are inspired by
a work of Aalst [13]. In this work, the author states that there
are four types of tasks: automatic, event, user, and timed. In
ABPM, automatic and user tasks are mapped to tasks and
external tasks, respectively. An event task is triggered by an
external system, therefore denoting an external task in our
model. A timed task is executed when a timer reaches a given
timeout. Therefore, if this timer is internal to the BPMS, it is
an ABPM task. If the timer is external, it is an external task.
In summary, the two types of tasks defined by ABPM are
generic enough to represent the variety of tasks provided by
current business process languages and tools. Join and split



definitions are also present in other works [14]. According to
Aalst [13], there are two types of join nodes: AND-JOIN and
XOR-JOIN. In ABPM, these two types of nodes are merged in
a generic join element. It is the underlying BPMS engine that
resolves if the node can be executed and the actual semantics
of its execution. The same happens with split elements.

Formal Definition: The ABPM is formally defined as a pair
(A,C) where A is a set of nodes, called Activity Definitions,
and C is a set of directed edges (or connectors). An Activity
Definition is a tuple (Type,Name), where Type ∈ {Start ,
End , Split , Join , AutomaticTask , ExternalTask}. The fol-
lowing constraints also apply to ABPMs:

1) There is only one Start Activity, which can have only
one outgoing connector.

2) There is only one End Activity, which can have only
one incoming connector.

3) Split Activities have only one incoming connector, but
can have multiple outgoing connectors.

4) Join Activities have multiple incoming connectors, but
must have only one outgoing connector.

5) Automatic and External Tasks must have only one
incoming and only one outgoing connector.

B. Mapping Rules and Abstractions

As illustrated in Figure 1, the first step when using an OBPM
is to map the elements defined in a business process model—
more specifically, the elements considered by the ABPM—to
object-oriented elements. To facilitate the presentation of this
step, we will rely on a trivial banking loan process. This process,
presented in Figure 3, has a single external task, called approve
transaction. Despite its minimal size, it is able to illustrate the
rules used by an OBPM to associate business process elements
to object-oriented abstractions.

Fig. 3. Loan Process Definition

OBPMs provide three key abstractions for handling business
processes:

• Process Interfaces, which provide means for information
systems to delegate the business logic to business process
engines. More specifically, process interfaces are used by
information systems to trigger the execution of external
tasks in the BPMS.

• Data Classes, which provide means for sharing data be-
tween information systems and business process engines.

• Callback classes, which provide means for business
process engines to notify information systems about
specific events or states. Callbacks are used mainly for
adding external semantics to the execution of business
processes (e.g., to validate credit cards in a process that
depends on this information to proceed).

In the following subsections, these abstractions are presented
in details, including the binding mechanisms provided by an
OBPM to associate them to business process elements.

C. Process Interfaces

The most basic service that information systems require
from a BPMS is the execution of external tasks. In a typical
scenario, the end-user provides some information in a form,
clicks submit, and generates an event that should be handled by
the information system. The information system then delegates
to the business process engine the execution of this external task,
with the parameters provided by the user. Particularly, when
using an OBPM, this delegation should rely on object-oriented
abstractions denoting business process elements. Therefore,
the first element that needs to be mapped is the process itself.
When using an OBPM, a business process is represented by
interfaces, called process interfaces, which define a contract
between the information system and the BPMS.

Figure 4 illustrates the mapping of our running
LoanProcess to a process interface. As showed in the figure,
the methods in the process interfaces are associated to the
process external tasks. Therefore, when the information system
calls for example the approveTransaction method, the
external task with the same name is executed by the BPMS.
Moreover, the class that implements a process interface is
provided at runtime by the OBPM, as discussed in Section IV.
In this way, by using an OBMP, information systems become
oblivious about the internal behavior of the BPMS.

Fig. 4. Process interface example

D. Data Classes

Typically, a business process needs to manipulate global data
[15, 16]. For example, in our running loan process, a possible
data is the client identification. We propose that OBPMs should
represent process data by key-value pairs. These pairs constitute
the process dataset, and each entry in this dataset is called a
process attribute. When a task is executed, it can access the
process dataset to read or to write information. To represent
the process dataset, a data class must be created, with fields
denoting the key-value pairs in the dataset, as illustrated in
Listing 3. In this example, the attribute clientID (line 2) is
linked to the key-value pair in the business process whose key
is "clientID". An OBPM should guarantee that changes in
the value of this attribute are reflected in the value maintained
by the business process and vice-versa.



1 class LoanData {
2 String clientID;
3 String getClientID(){return clientID;}
4 void setClientID(String id){clientID = id;}
5 }

Listing 3. Data class example

To retrieve an object of a data class, an accessor method
must be declared in the respective process interface. List-
ing 4 presents the LoanProcess interface with a method
getLoanData (line 2) for accessing the process data class.

1 interface LoanProcess {
2 LoanData getLoanData();
3 void approveTransaction();
4 }

Listing 4. Process interface with a getLoanData accessor method

Besides abstracting the process dataset, an OBPM should
provide means for representing the information handled by
external tasks. More specifically, external tasks have two
datasets: the parameters and the results. Parameters denote
data from external entities that should be passed to the BPMS
in order to execute particular tasks. Results are data produced by
the execution of tasks, which must be returned to the task caller.
To pass information to an external task, the method representing
the task must declare the respective parameters. An example
is presented in Listing 5, where the approve transaction task
has now a parameter that represents the amount of money
requested by the client.

1 interface LoanProcess {
2 LoanData getLoanData();
3 void approveTransaction(Number n);
4 }

Listing 5. Mapping task parameters to method parameters

External tasks can also return values to callers. Because
methods in object-oriented languages usually cannot have
multiple return values, a class should be created to repre-
sent the results. In our approve transaction task, a possible
result is the ID of the transaction. The class representing
the results—called TransactionInfo—and the updated
LoanProcess interface are presented in Listing 6. When
the approveTransaction method is executed, the result
stored by the BPMS in the key named transactionNumber is
automatically copied to the attribute transactionNumber
of the TransactionInfo class (line 2).

1 class TransactionInfo {
2 Number transactionNumber;
3 }
4 interface LoanProcess {
5 LoanData getLoanData();
6 TransactionInfo approveTransaction(Number n);
7 }

Listing 6. Mapping the values returned by a task to the results of a method

E. Callback Classes

When tasks are processed by a BPMS engine some extra
computation might be required. Usually, it is possible to
implement extra task semantics using the BPMS GUI, for

instance by writing code in property boxes. However, this
approach is not recommended because BPMS cannot compete
with contemporary IDEs, which provide features like code
completion, syntax highlight, automated refactorings, etc. A
preferred strategy is to allow the BPMS to callback services
implemented by the information system. For this purpose,
OBPMs provide support to callback classes, whose methods
are automatically called when the tasks with the same name
(not necessarily external tasks) are processed by the BPMS.
Listing 7 illustrates the definition of a callback class for our
loan process example.

1 class LoanProcessCallback {
2 TransactionInfo approveTransaction(Number v){
3 // extra semantics required to
4 // approve transactions
5 TransactionInfo info = ...;
6 return info;
7 }
8 }

Listing 7. Callback class example

It is important to highlight the differences between process
interfaces and callback classes. Interfaces are used by client
applications to execute business process external tasks. On
the other hand, callbacks provide external semantics to any
type of task. Someone may wonder why the client application
does not call the callback methods directly, instead of using
the process interface. Actually, the life cycle of a task may
include many rules implemented by the business process engine.
When a method from a process interface is called, the BPMS
engine handles the request by executing internal services to
accomplish the task. A possible internal service is to callback
the application. As an example, an application might request
the execution of a task that is not available. In this case, the
BPMS will not advance the process or trigger the callback.

IV. REFERENCE ARCHITECTURE

In this section, we propose a reference architecture to guide
the implementation of OBPM frameworks. As illustrated in
Figure 5, this architecture has two main layers. The first layer,
called Workflow Connectivity (WFC), provides an API to access
the Abstract Business Process Model (ABPM), i.e., an API for
handling process definitions, activities, etc. Moreover, this layer
also provides means to connect an OBMP implementation to
a concrete BPMS implementation. The second layer, called
Object-Workflow Mapping (OWM), provides an API that
represents, in terms of object-oriented abstractions, the elements
of a business process. Therefore, information systems rely on
abstractions provided by the OWM layer, which in turn access
the services implemented by the WFC layer. Finally, the WFC
communicates with a given BPMS implementation.

A. Workflow Connectivity Layer

The main objective of the Workflow Connectivity Layer is
to shield OBPM users from manipulating low-level BPMS
specific elements, therefore promoting independence of BPMS
implementation. Listing 8 shows a code that relies on types
exported by the WFC layer to perform the following actions:



Fig. 5. OBPM reference architecture

to connect to a BPMS engine (lines 1-2), to create a process
instance for the process named myProcess (lines 3-4), to start
this process (line 5), to retrieve an activity instance named
myTask (lines 6-7), and finally to execute this activity (line 8).

1 String url = "jwfc:bpmsX:res";
2 Session s = WorkflowManager.getSession(url);
3 ProcessInstance pi =
4 s.createProcessInstance("myProcess");
5 pi.start();
6 ActivityInstance ai =
7 pi.getActivityByName("myTask");
8 ai.complete();

Listing 8. WFC services to execute a process task

There are two types of relations with WFC interfaces. First,
there are systems that call methods on these interfaces (as in
Listing 8). Second, there are systems that implement the WFC
interfaces, and act therefore as driver implementers. A driver
should implement the abstract business process model defined
in Section III. For example, consider an hypothetical BPMS X
and its specific driver, called Driver X. In this case, the WFC
layer exposes implementation independent interfaces, but relies
on the driver classes to communicate with BPMS X.

Despite components to dispatch operations to a given BPMS,
the WFC layer provides application agents that are used by
the BPMS to call services from the information system. Such
agents act as listeners and receive events from the BPMS.
By intercepting these events, application agents can be used
for example to implement functionality that must be executed
when an activity is triggered (like callbacks).

B. Object-Workflow Mapping Layer

The Object-Workflow Mapping (OWM) layer enables the
association of business processes to process interfaces, by
implementing the mapping rules proposed in Section III-B. As
illustrated in Figure 6, given a process interface MyProcess,
the OWM layer is responsible for providing at runtime a class
MyProcessImpl that implements this interface. This class
relies on the WFC API, which in turn delegates the calls to a
given BPMS implementation.

The OWM layer is also responsible for managing the
application agents used to handle callbacks, as illustrated in

Fig. 6. OWM architecture

Figure 7. First, the information system developer creates a
callback class MyProcessCallback for a given process
(step 1). The OWM is responsible for registering in the WFC
layer an application agent to manage the callback methods in
this class (step 2) and to install the corresponding hooks to
execute this application agent (step 3). At runtime, the BPMS
send events to the installed hooks (step 4), that in turn invoke
the WFC layer (step 5). After that, the WFC calls the installed
application agents (step 6). Finally, such agents invoke the
corresponding method in the callback class (step 7).

Fig. 7. Callback architecture

V. NEXTFLOW: AN OBJECT-BUSINESS PROCESS MAPPING
FRAMEWORK

We implemented a real OBPM framework, called NextFlow,
that follows the architecture described in Section IV. NextFlow
was implemented in Java and makes use of many features
of this language, like reflection and metadata annotations.
Particularly, we used a convention based on names to map
tasks and parameters to Java abstractions. For example, a
task named doIt is mapped to the method doIt of the class
that represents the process definition. Moreover, classes and
interfaces are mapped to processes using annotations.

To implement process interfaces, NextFlow uses a Java API
called Proxy2. Basically, this API allows the user to provide
an interface and a listener object and it creates at runtime
a proxy for this interface. The implementation of the proxy
delegates its method calls to a listener provided by the API

2http://docs.oracle.com/javase/6/docs/api/java/lang/reflect/Proxy.html



client. Therefore, the implementation of process interfaces are
actually proxies that delegate their method calls to an specific
listener provided by our implementation. This listener uses
standard reflection features to read the metadata in the process
interfaces and to execute the correct tasks in the BPMS.

Because the Proxy API only allows the creation of new
classes based on interfaces, another mechanism was used
to extend existing classes. When a class is referenced in a
Java program, a component—called Class Loader [17]—is
responsible for providing a reference to the class. A typical
Class Loader searches the configured class path, and loads the
bytecode stored in a class file into the virtual machine. It is
possible to reference the Class Loader using objects of the type
ClassLoader, which provides several methods for loading
classes. One of them creates a new class from a parameter
that is a byte array with bytecode instructions. It is possible
to call this bytecode loading method explicitly, which is the
strategy followed by our implementation. Our implementation
generates the bytecodes representing the extended class and
load them in the virtual machine using the ClassLoader. To
generate bytecodes, we used a bytecode library called Cglib3.

Finally, the proposed implementation depends on a driver to
be fully operational. This driver is an implementation of the
adapter design pattern to support the connection to different
BPMSs. Currently, we implemented drivers for two BPMS,
jBPM and Bonita.4

VI. EVALUATION

To evaluate the OBPM framework concept proposed in this
paper, we compared two implementations of the same system:
(a) the first implementation relies on the native API provided by
jBPM; (b) the second implementation relies on the abstractions
proposed by NextFlow. In this comparison, we highlight the
main difficulties faced by developers when using a native
BPMS API and how NextFlow tackles such difficulties. The
evaluation is divided in two parts. First, we present and compare
the integration code required by both implementations. After
that, we present a quantitative analysis that reveals how much
effort can be saved by using an OBPM like NextFlow.

The evaluation relies on a system—named Charging System—
that provides a mechanism for transferring money using cell
phone messages. For example, consider two cell phone users,
John and Mary. Suppose also that John needs some money
from Mary. In this scenario, John can use his cell phone to send
a credit transfer request message to Mary. If Mary authorizes
the request, the charging system transfers the requested amount
of money from Mary to John. Figure 8 shows the business
process that describes the Charging System using jBPM process
definition language. We will rely on this process to compare
the implementations based on native jBPM access and using
NextFlow. It is worth to mention that this process definition uses
elements not available in the abstract business process model
presented in Section III-A. For example, it relies on different

3http://cglib.sourceforge.net
4http://www.bonitasoft.com.

types of splits. However, our OBPM framework proposal
assumes an abstract model, and such specific elements are
represented using the generic elements of this model.

A. OBPM Abstractions for Interfacing with the Charging
System

This section presents the three abstractions proposed by our
OBMP solution, which must be created for interfacing with
the business process in Figure 8. First, when using an OBPM
framework, a process interface must be created to represent the
business process. Listing 9 shows the ChargingProcess
interface that maps the charging business process and exposes
its external tasks.

1 @Process("org.nextflow.example.payment")
2 interface ChargingProcess {
3 void requestPayment(String from, String msg);
4 void cancelProcess();
5 void sendAuthorizationResponse(String msg);
6 ChargingProcessData getData();
7 }

Listing 9. Process interface with external tasks

In this interface, there are three methods representing the
external tasks requestPayment, cancelProcess, and
sendAuthorizationResponse (lines 3–5). The parame-
ters of the methods are declared as prescribed by the business
rules. For example, to request a payment, it is necessary
to inform who requested the payment and the message
that contains the request (line 3). The last method returns
an object that represents the data of the process (line 6).
The ChargingProcessData data class is automatically
recognized by NextFlow as the data structure of the process
(as it is returned by a method with the prefix get). Listing
10 shows this class, which consists of a traditional POJO
class, i.e., a class containing only attributes and their respective
getters and setters.

1 class ChargingProcessData {
2 String from;
3 String to;
4 Integer value;
5 Boolean validRequest;
6 Boolean enoughCredit;
7 Boolean authorized;
8 //getters and setters
9 }

Listing 10. Data Class that represents the process data in NextFlow

The third component that must be created in the NextFlow
implementation is the callback class, as presented in Listing
11. Basically, this class has a method for each task defined in
the business process.

1 @Process("org.nextflow.example.payment")
2 class ChargingCallback {
3

4 ChargingProcessData data;
5

6 public void requestPayment(String from,
7 String msg){
8 //provides the request payment behavior
9 }

10 public void checkCredit(){
11 //provides the check credit behavior



Fig. 8. Charging System

12 }
13 //other callback methods
14 }

Listing 11. Callback class for the Charging System using NextFlow

B. Comparison with jBPM Native API

In this section, we compare the implementations based on
NextFlow and based on jBPM native API for supporting the
following key actions when integrating our Charging System
with a BPMS: (a) create a connection; (b) start a new process;
(c) execute external tasks; (d) execute automatic tasks.

Creating a Connection: In order to send messages to a BPMS
engine a connection must be created. In jBPM, this connec-
tion is represented by a StatefulKnowledgeSession
interface, while in NextFlow it is represented by the
WorkflowObjectFactory interface. Listing 12 shows the
code that creates a jBPM StatefulKnowledgeSession
and Listing 13 shows the corresponding code to create a
NextFlow WorkflowObjectFactory.

1 StatefulKnowledgeSession kSession;
2 KnowledgeBuilder b = KnowledgeBuilderFactory
3 .newKnowledgeBuilder();
4 Resource r = ResourceFactory
5 .newClassPathResource("cs.bpmn");
6 b.add(r, ResourceType.BPMN2);
7 KnowledgeBase kBase = b.newKnowledgeBase();
8 kSession = kBase.newStatefulKnowledgeSession();

Listing 12. Creating a session using the jBPM API

1 WorkflowObjectFactory factory;
2 String url = "jwfc:jbpm:cs.bpmn";
3 Configuration c = new Configuration(url);
4 c.addCallbackClass(ChargingCallback.class);
5 factory = c.createFactory();

Listing 13. Creating a session using NextFlow

A drawback of the jBPM implementation is the fact
that it relies on a very specific BPMS API. In other
words, there is not a standard interface to interact with the
BPMS engine. Therefore, if someone needs to change the
BPMS engine, the code in Listing 12 must be completely
changed. On the other hand, this fact does not happen
with NextFlow implementation. In this case, a change in
the BPMS implies only in changing a URL (line 2, Listing 13).

Starting a New Process: The method that starts a new
process is called startNewChargingProcess, presented
in Listing 14 for the jBPM implementation. The created process
is represented by a ProcessInstance object (lines 4–5).
The startProcess method (line 5), besides the process id,
receives a map of parameters, which are used by the BPMS
to callback the information system.

1 ProcessInstance startNewChargingProcess() {
2 Map<String, Object> parameters = ...;
3 parameters.put("manager", ...);
4 ProcessInstance processInstance= ...;
5 return processInstance;
6 }

Listing 14. Starting a process using jBPM

To start a process in NextFlow, a start method is
used, as showed in Listing 15. The object returned by this
method provides access to business methods, as defined in the
ChargingProcess interface. Therefore, it is easier to call
tasks using this interface than using an specific BPMS API.

1 ChargingProcess startNewChargingProcess() {
2 return factory.start(ChargingProcess.class);
3 }

Listing 15. Starting a process using NextFlow

Executing External Tasks: Listing 16 shows the code that
executes the request payment task. It checks whether the values



are correct (lines 2–4), creates the task parameters (lines 7–11),
and then complete the work item (lines 12–13), which is an
object that represents a task to be executed by jBPM.

1 void executeTask(String from, String msg,
2 NodeInstance node){
3 Pattern p = Pattern.compile(...);
4 Matcher matcher = p.matcher(msg);
5 if(matcher.matches()){
6 String to = matcher.group(1);
7 String value = matcher.group(2);
8 Map<String, Object> res = new ...;
9 res.put("r_from", from);

10 res.put("r_to", to);
11 res.put("r_value", new Integer(value));
12 res.put("r_validRequest", true);
13 int wid = node.getWorkItemId();
14 kSession.getWorkItemManager()
15 .completeWorkItem(wid, res);
16 } else {
17 Map<String, Object> res = new ...;
18 res.put("r_from", from);
19 res.put("r_validRequest", false);
20 int wid = node.getWorkItemId();
21 kSession.getWorkItemManager()
22 .completeWorkItem(wid, res);
23 }
24 }

Listing 16. Executing an external task in jBPM

The equivalent code in the NextFlow-based implementation
is presented in Listings 17 and 18. In Listing 17, the process
interface is used to execute the task. Therefore, from the
perspective of a developer that just wants to execute a task,
this is the only code required.

1 void executeTask(String from, String msg,
2 ChargingProcess p) {
3 p.requestPayment(from, msg);
4 }

Listing 17. Executing an external task in NextFlow

The actual behavior of the task is implemented in a method
from a callback class, as presented in Listing 18. First, the code
checks whether the message pattern is correct (lines 3–5); if it is
correct, it sets the values in the corresponding process variables
(lines 8–10); otherwise, it configures the process with an invalid
request (line 12). Although in NextFlow the implementation is
divided in two classes, it is actually more modular. Basically,
there are two perspectives involved in this implementation: the
perspective of a developer that wants some task to be executed
(client) and the perspective of a developer that implements the
task behavior (provider). The first developer does not need to
know how the task is implemented, which is a requirement that
is not fulfilled by jBPM implementation. In fact, it is possible
to partition the jBPM code just like in NextFlow, but it would
add extra complexity to the design.

1 void requestPayment(String from, String msg){
2 data.setFrom(from);
3 Pattern pattern = Pattern.compile(...);
4 Matcher matcher = pattern.matcher(msg);
5 if(matcher.matches()){
6 String to = matcher.group(1);
7 String value = matcher.group(2);
8 data.setTo(to);
9 data.setValue(new Integer(value));

10 data.setValidRequest(true);
11 } else {
12 data.setValidRequest(false);
13 }
14 }

Listing 18. Callback associated to an external task in NextFlow

Another feature of the NextFlow implementation is the
support for static type checking. For example, instead of
writing results.put("r_to", to), NextFlow supports
a code like data.setTo(to).

Executing Automatic Tasks: The check credit task is an
automatic task, i.e., it is executed by the business process
engine. Therefore, there is no need to call this task explicitly.
Listing 19 shows the code of the callback that handles this
task in the jBPM implementation. Listing 20 shows the code
for the NextFlow implementation. In this implementation, the
checkCredit method is implemented in a callback class.

1 void executeScriptTask(NodeInstance node) {
2 WorkflowProcessInstance p =
3 node.getProcessInstance();
4 Integer val = (Integer)p.getVariable("value");
5 String to = (String) p.getVariable("to");
6 Integer credit =
7 chargingManager.getCreditFor(to);
8 boolean enoughCredit = credit >= val;
9 p.setVariable("enoughCredit", enoughCredit);

10 }

Listing 19. Callback associated to an automatic task in jBPM

1 void checkCredit(){
2 Integer credit = chargingManager
3 .getCreditFor(data.getTo());
4 data.setEnoughCredit(
5 credit >= data.getValue());
6 }

Listing 20. Callback associated to an automatic task in NextFlow

C. Quantitative Analysis

Table II summarizes the effort required to implement the
Charging System, in terms of lines of code (LOC), number of
characters, number of classes, and number of import statements,
regarding only API packages. The presented values were
collected using a small Java application we implemented.
We can observe that NextFlow implementation required 30%
less lines of code and 50% less characters. Finally, jBPM
implementation requires more classes (17 classes, against 11
classes when using NextFlow). This fact happened because
jBPM demands the implementation of auxiliary classes to
support most of the integration actions.

TABLE II
SIZE OF BOTH IMPLEMENTATIONS

Metrics jBPM NextFlow Delta
LOC 475 330 -30%
Char Count (Kb) 25 12 -50%
Classes 17 11 -35%
API Imports 63 6 -90%



This reduction in size and complexity is particularly impor-
tant in the implementation scenarios where the use of OBPMs
are recommended. Basically, OBPMs are useful when the
BPMS is one of the components of an enterprise software
architecture and therefore code is required to support its
integration with the remaining components in this architecture.

D. Threats to Validity

In this section, NextFlow was evaluated by means of a
comparison with an implementation based on direct BPMS
access. The comparison with just one BPMS potentially limits
the validity of our findings, as other BPMSs may have different
features and characteristics. Nevertheless, even if we regard
NextFlow as a solution specific to jBPM, our work at least
shows that it is possible to map business process elements
to high-level object-oriented abstractions, which is the main
contribution of this paper. Moreover, the problems appointed
in the jBPM implementation are also present in other BPMSs.
For example, in YAWL process variables are declared in a
similar way as in jBPM [18]. Another threat to validity is that
both the Charging System and the NextFlow framework were
implemented by us. Therefore, this fact might have favored
our evaluation, because one can argue that a business process
suitable for NextFlow was used. In our defense, we argue
that all process elements provided by jBPM are present in the
Charging Process.

VII. CONCLUSION

In this paper, we presented an approach to integrate business
process management systems (BPMS) and enterprise software
architectures, by means of what we called an Object–Business
Process Mapping (OBPM) framework. We claimed that OBPMs
can contribute to a broader adoption of BPMS, because they
do not represent a disruptive technology regarding current
enterprise software architectures, frameworks, and libraries.
We also proposed a reference architecture for implementing
OBPM frameworks and a concrete implementation of this
architecture, called NextFlow. We compared two implementa-
tions of an information system, using NextFlow and a native
BPMS API. We showed that the OBPM-based implementation
is structured around high-level object-oriented abstractions,
including process interfaces, data classes, and callback classes.

Currently, our prototype implementation is available only for
Java-based information systems. Moreover, we only provide
driver support to two BPMS (jBPM and Bonita). In the
near future, we plan to support new languages and BPMSs.
We also plan to work on a qualitative assessment with real
developers and on a model-driven extension of our current
solution. NextFlow is publicly available for download at:
http://nextflow.org.

Acknowledgments

This research is supported by grants from FAPEMIG and CNPq.

REFERENCES

[1] M. Fowler, Patterns of enterprise application architecture.
Addison-Wesley, 2003.

[2] R. Terra and M. T. Valente, “A dependency constraint lan-
guage to manage object-oriented software architectures,”
Software: Practice and Experience, vol. 32, no. 12, pp.
1073–1094, 2009.

[3] W. Aalst, “The application of Petri nets to workflow man-
agement,” Journal of Circuits, Systems, and Computers,
vol. 8, no. 1, pp. 21–66, 1998.

[4] P. Lawrence, Ed., Workflow handbook. John Wiley &
Sons, 1997.

[5] M. Dumas, M. Rosa, J. Mendling, and H. Reijers, Fun-
damentals of Business Process Management. Springer,
2012.

[6] P. Muth, J. Weibenfels, M. Gillmann, and G. Weikum,
“Integrating light-weight workflow management systems
within existing business environments,” in 15th Interna-
tional Conference on Data Engineering (ICDE), 1999,
pp. 286–293.

[7] F. P. Brooks, “No silver bullet – essence and accidents
of software engineering,” IEEE Computer, vol. 20, no. 4,
pp. 10–19, 1987.

[8] M. Havey, Essential business process modeling. O’Reilly,
2005.

[9] OMG, “BPMN - Business Process Model and Notation
Version 2.0,” 2011.

[10] D. Manolescu, “Micro-workflow: A workflow architec-
ture supporting compositional object-oriented software
development,” Ph.D. dissertation, Univ. of Illinois, 2001.

[11] WfMC, “Workflow Management Application Program-
ming Interface (Interface 2 & 3) Specification,” 1999.

[12] L. Borgonon, M. Barcelona, J.Garcia-Garcia, M. Alba,
and M. Escalona, “Software process modeling languages:
A systematic literature review,” Information and Software
Technology, vol. 56, no. 2, pp. 103 – 116, 2014.

[13] W. Aalst, “Three good reasons for using a petri-net-
based workflow management system,” in Information and
Process Integration in Enterprises, 1996, pp. 179–201.

[14] E. Borger, “Approaches to modeling business processes: a
critical analysis of BPMN, workflow patterns and YAWL,”
Software and Systems Modeling, pp. 1–14, 2011.

[15] W. Aalst and K. Lassen, Translating workflow nets to
BPEL. Research School for Operations Management
and Logistics, 2005.

[16] P. Reimann, H. Schwarz, and B. Mitschang, “Design,
implementation, and evaluation of a tight integration of
database and workflow engines,” Journal of Information
and Data Management, vol. 2, no. 3, pp. 353–368, 2011.

[17] K. Arnold, J. Gosling, and D. Holmes, The Java Pro-
gramming Language, 4th ed. Addison-Wesley, 2005.

[18] W. Aalst, L. Aldred, M. Dumas, and A. Hofstede, “Design
and implementation of the YAWL system,” in 16th Con-
ference on Advanced Information Systems Engineering
(CAiSE), vol. 3084, 2004, pp. 142–159.


