
The Journal of Systems and Software 109 (2015) 192–204

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Automatic detection of system-specific conventions unknown to

developers

André Hora a,b,∗, Nicolas Anquetil b, Anne Etien b, Stéphane Ducasse b, Marco Túlio Valente a

a Department of Computer Science, UFMG, Belo Horizonte, Brazil
b RMoD Team, Inria, Lille, France

a r t i c l e i n f o

Article history:

Received 4 March 2015

Revised 3 August 2015

Accepted 7 August 2015

Available online 14 August 2015

Keywords:

Automatic coding convention detection

Mining software repositories

Software evolution

a b s t r a c t

In Apache Ant, a convention to improve maintenance was introduced in 2004 stating a new way to close files

instead of the Java generic InputStream.close(). Yet, six years after its introduction, this convention was still

not generally known to the developers. Two existing solutions could help in these cases. First, one can depre-

cate entities, but, in our example, one can hardly deprecate Java’s method. Second, one can create a system-

specific rule to be automatically enforced. In a preceding publication, we showed that system-specific rules

are more likely to be noticed by developers than generic ones. However, in practice, developers rarely create

specific rules. We therefore propose to free the developers from the need to create rules by automatically

detecting such conventions from source code repositories. This is done by mining the change history of the

system to discover similar changes being applied over several revisions. The proposed approach is applied

to a real-world system, and the extracted rules are validated with the help of experts. The results show that

many rules are in fact relevant for the experts.

© 2015 Elsevier Inc. All rights reserved.

a

d

c

c

w

a

s

P

c

t

e

s

b

w

t

c

l

T

1. Introduction

During its life, a software system is subject to changes in program-

ming conventions. These changes may have different purposes, but

generally enhance code quality and ease maintenance. For example,

by deciding that the constructor Double(double) in Java should be

replaced by Double.valueOf(double), the system’s performance is

improved. The knowledge of these change conventions may take time

to spread in the developer community. Developers rarely make use

of deprecation annotations to explicitly mark the calls to be avoided

(Robbes et al., 2012), or it may be impossible to use deprecation (in

the example above the Double(double) is not deprecated), or older

languages may lack the ability to deprecate anything.

Because such conventions are not linked to compilation or execu-

tion errors they can remain unnoticed. They are not used uniformly

over the system and occurrences of the old form will still be found

and even introduced years after the first decision was taken (Hora

et al., 2013). In this case, the benefits of the new convention, which

are often to free the maintainers from unneeded cognitive burden,
∗ Corresponding author at: Departamento de Ciência da Computação, Av.

Antônio Carlos, 6627 - Pampulha CEP: 31270-010, UFMG, Belo Horizonte, Brazil.

Tel.: +55 31 3409-5865.

E-mail addresses: andrehoraa@gmail.com, hora@dcc.ufmg.br (A. Hora), nicolas.

anquetil@inria.fr (N. Anquetil), anne.etien@inria.fr (A. Etien), stephane.ducasse@

inria.fr (S. Ducasse), mtov@dcc.ufmg.br (M.T. Valente).

m

i

t

l

http://dx.doi.org/10.1016/j.jss.2015.08.007

0164-1212/© 2015 Elsevier Inc. All rights reserved.
re lost over a large part of the system. It will increase maintenance

ifficulty as the unaware maintainers are left wondering why in some

ases one convention is used whether in other cases it is another

onvention. On the other hand, we give example (in Section 5.1)

here the fact that a change in convention is not uniformly applied is

ctually very meaningful because it points to different usage scenario.

One proposed solution to help in this case is to use static analy-

is tools, such as PMD (Copeland, 2005), FindBugs (Hovemeyer and

ugh, 2004), or SmallLint (Roberts et al., 1997) with rules that will

heck and highlight the occurrences of the old convention. These

ools come with a set of generic rules, such as the Double(double)

xample above (taken from FindBugs rules1), but they cannot an-

wer to system-specific needs, which are more likely to be noticed

y developers (Hora et al., 2012; Renggli et al., 2010). In Section 2,

e will give examples of conventions that are specific to a given sys-

em, for example, the Apache Ant convention stating a new way to

lose files. Such system-specific rules are neither linked to compi-

ation/execution errors nor hinder correct execution of the system.

his raises the problem of how these rules can be defined which

ay be a non-trivial task. Some solutions were proposed to automat-

cally extract system-specific rules from a system’s code history, but

hey present limitations that make them ill-fitted to tackle this prob-

em. For example, some of these existing solutions will rely on the
1 http://goo.gl/JK3aDi.

http://dx.doi.org/10.1016/j.jss.2015.08.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2015.08.007&domain=pdf
mailto:andrehoraa@gmail.com
mailto:hora@dcc.ufmg.br
mailto:nicolas.anquetil@inria.fr
mailto:anne.etien@inria.fr
mailto:stephane.ducasse@inria.fr
mailto:mtov@dcc.ufmg.br
http://goo.gl/JK3aDi
http://dx.doi.org/10.1016/j.jss.2015.08.007


A. Hora et al. / The Journal of Systems and Software 109 (2015) 192–204 193

h

s

b

t

t

m

a

w

s

c

t

a

o

n

t

r

P

e

s

a

c

i

r

a

s

s

F

i

S

p

i

w

r

h

l

t

f

l

(

2

r

o

s

v

T

s

o

fi

F

m

i

i

s

A

c

f

o

c

f

c

d

e

b

s

c

c

i

R

P

w

o

b

o

f

f

a

c

s

c

ypothesis that a method has been removed and its call should be

ubstituted by new method calls (Meng et al., 2012; Wu et al., 2010),

ut this does not apply to the scenario we are considering here where

he old convention does not prevent correct compilation and execu-

ion. Other solutions will rely specifically on bug fix changes to auto-

atically correct future occurrences of these bugs or prevent their

pparition (Kim et al., 2006). Again, this does not fit our scenario

here the old convention does not hinder correct execution of the

ystem but is judged less efficient.

In this paper, we propose to automatically detect system-specific

onventions unknown to some developers of the system. Our goal is

o provide rules that will detect occurrences of the old convention

nd thus will reduce the time it takes to apply the new convention

ver the entire system.

Our approach is presented in Section 3. To lower the amount of

oise in the candidate rules generated, we use patterns that constrain

he rules to meaningful ones. We also set restriction over the occur-

ences of the new convention in various revisions.

We validate our approach (Section 4) on two open-source systems,

haro2 (Bergel et al., 2013; Black et al., 2009) and Moose3 (Ducasse

t al., 2011; Nierstrasz et al., 2005), with the help of experts of these

ystems. The results (presented in Section 5) show that many rules

re in fact relevant and can be used to ensure faster adoption of new

oding conventions.

In addition, in Section 6, we discuss specific details of implement-

ng our approach such as whether it is better to extract rules from

evisions or releases, thresholds to decide when a rule should be cre-

ted, how to create new patterns, and we also compare the system-

pecific extracted rules with generic rules provided by a static analy-

is tool.

This work is an extension of our previous study (Hora et al., 2013).

irst, it provides new patterns to produce rules concerning method

nvocation. These patterns are included in the new validation study.

econd, we extended the validation by asking the opinion of an ex-

ert (previous validation was only automatic). We also provide more

nformation on how to fine-tune the approach to a specific system

ith new results from our experiments with respect to the occur-

ence of the new convention over distinct revisions and by showing

ow new rule patterns might be created. Finally, we discuss the over-

ap between our rules and generic rules provided by static analysis

ools.

Thus, the main contributions of this paper can be summarized as

ollows:

• We provide an extension of our previous study (Hora et al.,

2013) with new patterns to extract system-specific rules.
• We provide a qualitative and quantitative (both with the help

of a system expert) evaluation of the extracted rules.
• We provide an analysis about the overlap between our rules

and rules provided by static analysis tools as well as about the

creation of rules.
• We discuss rule extraction at revision and release level.
• We discuss and illustrate how new patterns can be added to

create new rules.

We close this paper with a discussion of the threats to the va-

idity of our experiments (Section 7), a presentation of related work

Section 8), and the conclusion (Section 9).

. Motivating examples

This section presents concrete cases in which system-specific

ules extracted from source code history would be helpful to devel-
2 http://www.pharo.org.
3 http://www.moosetechnology.org.

l

pers, and the advantages of our approach. For this purpose, we con-

ider two examples extracted from real systems where change con-

entions have been performed by developers for different reasons.

hey illustrate two important change conventions characteristics: (i)

everal years later they are still occasionally applied by aware devel-

pers, and, (ii) they are very specific to each system.

First, in Apache Ant,4 a convention stating a new way to close

les, i.e., calls to InputStream.close() should be replaced by calls to

ileUtils.close(∗), was introduced in the system in 2004 to improve

aintenance centralizing the knowledge on closing files. In this case,

t is not possible to deprecate the old way of doing things correspond-

ng to the Java InputStream.close() method. After the addition, this

ystem-specific convention was only applied 37% of the time by

pache Ant developers aware of it (Hora et al., 2013). Whereas this

hange convention has been introduced to improve maintenance, it in

act degrades it since the developers have to know that the two pieces

f code can be used. Moreover, with time, the reasons of the change

onventions and the change conventions themselves may have been

orgotten. A new developer will not know which method to use, and,

onsequently, the invocations to the old one may increase instead of

isappearing.

Second, in Roassal (a visualization library that runs in sev-

ral platforms5), a convention was introduced to improve porta-

ility. The convention stated that calls to Collection.ifEmpty(∗)

hould be replaced by calls to Collection.isEmpty().ifTrue(∗) be-

ause Collection.ifEmpty(∗) is platform-specific. We detected such

onvention being occasionally applied in Roassal source code dur-

ng one year and half. Moreover, in Pharo, the language in which

oassal is written, the convention is the opposite. Thus, applying the

haro-specific rule to Roassal, or the Roassal-specific rule to Pharo

ould actually decrease their code quality.

In both cases, if these conventions were better known to devel-

pers, or if a recommendation rule existed, the changes would have

een applied in source code at once or in a shorter time frame and

nly in the adequate context, not in another system. It is laborious

or developers to create rules for each change convention they per-

ormed. Our idea is therefore to use the fact that change conventions

re parsimoniously applied to automatically detect them in source

ode history, and describe them as rules. These two examples have

ome characteristics in common:

• They can be described as change rules: as they are recurrent

and follow a specific format, they can be described as change

rules that can be automatically applied by static analysis tools.
• They are system-specific. This can be seen as a drawback as

defining such rules is typically a costly task that needs, here, to

be repeated for each system. However, previous research (Hora

et al., 2012; Renggli et al., 2010) showed that system-specific

rules are more relevant than generic ones, more likely to be

followed by developers and having better chances to remove

errors in the code.
• They are spread over different revisions: the changes occur in

different revisions (commits) of the systems, differently from

changes related to API evolution involving, for example, class

or method renaming, which cannot be spread over revisions.
• They are not “hard errors”, raising issues at compilation or ex-

ecution and which would get more chances to be rapidly no-

ticed. They are rather coding convention that can ease (if fol-

lowed) or hinder (if not followed) the maintenance by freeing

the maintainers from unneeded cognitive burden.

Previous researchers took advantage of the fact that similar source

ode changes are recurrent to support bug-discovering, or API evo-

ution. In the bug-discovering context, researchers restrict their
4 http://ant.apache.org.
5 http://objectprofile.com/ObjectProfile.html.

http://www.pharo.org
http://www.moosetechnology.org
http://ant.apache.org
http://objectprofile.com/ObjectProfile.html


194 A. Hora et al. / The Journal of Systems and Software 109 (2015) 192–204

Fig. 1. Overview of our approach.

Diff between revisions and of method foo()
− rpackage = RPackageOrganizer.default() ;
rpackage = RPackage.organizer() ;

Fig. 2. Replacement example of RPackageOrganizer.default() by RPack-

age.organizer() in Pharo.

Diff between revisions and of method bar()
− if (coll.at(3) ) { . . .
if (coll.third()) { . . .

Fig. 3. Replacement example of at(3) by third() in Pharo.

m

c

f

t

o

t

s

t

D

f

b

i

c

3

v

c

e

r

c

m

t

S

r

b

analysis to bug-fix changes (e.g., Kim et al., 2006; Livshits and Zim-

mermann, 2005; Nguyen et al., 2010b; Sun et al., 2012; Williams and

Hollingsworth, 2005). In the API evolution context, researchers nor-

mally restrict their analysis to detect how deleted methods are re-

placed (Meng et al., 2012; Wu et al., 2010) or are limited to produce

one-replaced-by-one rules (Dagenais and Robillard, 2008; Schäfer

et al., 2008). In both cases, they do not focus on the detection of

change conventions, and occurrences over different revisions are not

considered. In fact, the examples we presented are neither related to

bug-fix changes nor involved with deleted methods: they are system-

specific conventions incrementally applied by developers over differ-

ent revisions.

Our approach describes these changes as rules by (i) analyzing

all revisions in source code history, (ii) considering, in this process,

methods not removed from the system, and (iii) taking into account

their occurrence in different revisions to generate better rules. Our

final goal is to automatically produce system-specific rules.

3. Mining system-specific rules

In this section we present our approach, which extracts system-

specific rules by monitoring API changes found in source code his-

tory of the system. Our approach is divided in three steps, as shown

in Fig. 1. First, we extract replacement facts from the source code

history and store them in a database (Section 3.1). A replacement is

composed of an addition and a removal of some code. Here we will

exemplify it with method invocation replacements. Second, we look

for some pre-defined patterns in the database of replacements and

we generate candidate rules (Section 3.2). Finally, we discard some

candidate rules that have a high probability of being false positives

(Section 3.3). Each of these three steps of the approach is fully automated

and does not require the presence of experts.

Before detailing our approach, we present an overview about

it. Consider the examples shown in Figs. 2 and 3 that occurred

in the Pharo programming language. Fig. 2 shows a replacement

of the static method call RPackageOrganizer.default() by RPack-

age.organizer(). Fig. 3 shows a replacement to improve code legi-

bility, i.e., calls to Collection.at(3) are replaced by calls to Collec-

tion.third().

Notice that the replaced methods might still exist in the system.

In Fig. 2, the old method call, RPackageOrganizer.default() should

only be used in specific cases and by some classes.6 In Fig. 3, the new
6 As stated in http://goo.gl/ch8Ba2.

(

m

ethod call, someCollection.third(), is considered a rule to better

onvey code intention. These changes occurred several times in dif-

erent revisions, and they testify the efforts to use a better API.

This also means that these conventions are different from refac-

oring operations such as renaming a method, moving it elsewhere,

r changing its signature. In our approach there is no difference be-

ween renaming a method or “simply deciding” that another one

hould be invoked instead of it, as is the case when one recommends

o use Java Double.valueOf(Double) rather than the constructor

ouble(Double). In the first case, the renamed method “disappears”

rom the system, in the second case, the constructor is still available

ut the recommendation is to not use it. For us, both cases will result

n removal of the old invocations and addition of the new ones, i.e., a

ode replacement.

.1. Extracting deltas (Step 1)

The first step of our approach is to extract changes from the re-

isions. When comparing the differences between changed source

ode, one needs to define what should be analyzed in the code. For

xample, one can keep track of fine-grained changes (i.e., adding or

emoving conditional statements, modifying expressions), or more

oarse-grained changes (i.e., adding or removing classes, methods,

ethod invocations). While the first ones play an important role in

he context of bug discovering (Kim et al., 2006; Nguyen et al., 2010b;

un et al., 2012; Williams and Hollingsworth, 2005), they have a small

ole in discovering systematic changes, for which the second ones are

etter suited since they do not take into account low level changes

Kim and Notkin, 2009; Livshits and Zimmermann, 2005).

In this work, our approach extracts rules, for example, from

ethod call changes (e.g., invocation to method foo() is replaced by a

http://goo.gl/ch8Ba2


A. Hora et al. / The Journal of Systems and Software 109 (2015) 192–204 195

c

d

s

o

(

m

b

d

w

t

u

m

t

m

b

t

t

t

e

e

t

s

c

e

m

d

(

t

c

p

a

3

t

r

t

i

e

i

c

v

O

s

s

l

o

f

a

W

e

c

“

t

s

d

n

p

d

n

d

a

T

p

c

i

t

a

o

t

a

e

all to method bar()). In order to do so, we need to extract the correct

ata from the source code history of a system.

We iterate over all the revisions of the system under analysis,

tarting in the second revision. In each iteration, we detect pair

f methods that are present in both current and previous revision

i.e., methods that did not change their signature). For each pair of

ethod, we consider a delta to be the set of deleted and added calls

etween the method pair. We represent a delta with predicates that

escribe each deleted or added method call:

delta := [predicate]∗

predicate := deleted-call(args) or added-call(args)

args := [id, receiver, signature, static]

herethe predicate deleted-call(…) represents a deleted invoca-

ion; the predicate added-call(…) represents an added invocation; id

niquely identifies a change context (i.e., the full name of the changed

ethod7 and the revision); receiver is the receiver of the invoca-

ion; signature is the signature of the invoked method (for the argu-

ents, the value is represented if they are primitive types such as int,

oolean or null, otherwise the type is represented; this is done to ob-

ain more precise rules); and static8 is a keyword isStatic or notStatic

hat states if the invocation is static. There is a balance that we need

o strike into account when fixing the delta size: larger deltas will

xtract more rules but with less precision while smaller deltas will

xtract less rules but with more precision. High precision is impor-

ant as developers will stop trusting a tool with low precision. Thus,

mall deltas between revisions are preferable to avoid the noise that

an be found in large ones (Livshits and Zimmermann, 2005; Mileva

t al., 2011). To avoid the problem of large diff size between methods,

aking it difficult to extract relevant information, we always select

eltas involving less than five deleted or added calls.

Discovering other type of rules may imply extracting other data

e.g., inheritance), which is not in the scope of this work. Notice that

he approach is independent from the programming language be-

ause the facts (here invocations) are represented in a language inde-

endent model (the added-call and deleted-call predicates). In Figs. 4

nd 5, we present the deltas generated by the changes in Figs. 2 and 3.

.2. Mining rules (Step 2)

The second step of our approach is to mine rules from the ex-

racted deltas. To add new relevant rules, we define patterns that the

ules must follow. These patterns will limit the search space, and,

hus, the extraction of noisy rules. In particular, such patterns were

nspired by existing change rules found in static analysis tools. For

xample, Table 1 presents some real-world rules and patterns that

nspired us in this study.

Our solution automatically creates new rules related to method

all replacement. A classical change rule in SmallLint states that in-

ocations to Object.equals(nil) should be replaced by invocations to

bject.isNil(). Assume that this rule has been applied in source code;

o for each replacement, our approach generates a delta similar to9:

deleted-call(“mtd()-revX”, “obj”, “equals(nil)”, “notStatic”)

added-call(“mtd()-revX’, “obj”, “isNil()”, “notStatic”)

The deltas are used as a database in which we want to find in-

tances of predefined patterns. For example, the previous change fol-

ows the pattern where the receiver (and id) remains the same (i.e.,

bj) while the method call changes (i.e., from equals(nil) to isNil()).
7 The full name consists of module name, class name and method name.
8 In our previous study (Hora et al., 2013) we did not use the “static” variable because

or Java we could resolve the type of the receiver while for Pharo we only took into

ccount changes related to static calls (then, again, we have the type of the receiver).
9 Each with their respective id.
e could query our database to search instances of such pattern. For

xample, a SQL-like query would be:

select deleted-call.signature, added-call.signature

from deleted-call, added-call

where deleted-call.id = added-call.id and deleted-

all.receiver = added-call.receiver

anddeleted-call.static = “notStatic”andadded-call.static =
notStatic”

As shorthand notation, we use the following pattern to represent

he previous query:

examplePattern(deletedSignature, addedSignature) =
deleted-call(id, receiver, deletedSignature, “notStatic”) and

added-call(id, receiver, addedSignature, “notStatic”)

The variables within the predicates are used to ensure the con-

traints of the pattern. In this paper, we use the same variable in both

eleted and added predicates to ensure the same id, receiver or sig-

ature (e.g., in the example above id and receiver are the same in both

redicates). We use different variables in both predicates to ensure

ifferent id, receiver or signature (e.g., deletedSignature and addedSig-

ature, such that deletedSignature �= addedSignature). The predicates

eleted-call(…) and added-call(…) are used with the logical operator

nd, thus two or more predicates can be grouped to form a pattern.

he part before the equals represents the name and the output of the

attern, which is formed by a subset of variables used in the predi-

ates. For example, the example above is named examplePattern and

t outputs rules in the format: deletedSignature → addedSigna-

ure, where the left hand side (LHS) presents what should be deleted

nd the right hand side (RHS) presents what should be added. The

utput for the previous delta is equals(nil) → isNil().

The following list of patterns has been defined in order to de-

ect system-specific rules. This list is not exhaustive and a discussion

bout additional patterns is proposed in Section 6.3. Next, we present

ach pattern.

Pattern 1: Change receiver and invocation, static

pattern1(deletedReceiver, deletedSignature, addedReceiver, addedSignature) =
deleted-call(id, deletedReceiver, deletedSignature, “isStatic”) and

added-call(id, addedReceiver, addedSignature, “isStatic”)

Example

FileDirectory.default() → FileSystem.workingDirectory()

Pattern 2: Change invocation, same receiver, static

pattern2(receiver, deletedSignature, addedSignature) =
deleted-call(id, receiver, deletedSignature, “isStatic”) and

added-call(id, receiver, addedSignature, “isStatic”)

Example

SystemNavigation.default() → SystemNavigation.new()

Pattern 3: Change receiver, same invocation, static

pattern3(deletedReceiver, addedReceiver, signature) =
deleted-call(id, deletedReceiver, signature, “isStatic”) and

added-call(id, addedReceiver, signature, “isStatic”)

Example

SystemChangeNotifier.uniqueInstance() → SystemAnnouncer.uniqueInstance()

Pattern 4: Change invocation, same receiver, non-static

pattern4(deletedSignature, addedSignature) =
deleted-call(id, receiver, deletedSignature, “notStatic”) and

added-call(id, receiver, addedSignature, “notStatic”)

Example

obj.noMoreNotificationsFor() → obj.unsubscribe()

Pattern 5: Change double invocation, same receiver, non-static

pattern5(deletedSignature1, deletedSignature2, addedSignature1,

addedSignature2)=
deleted-call(id, receiver, deletedSignature1, “notStatic”) and

deleted-call(id, deletedSignature1, deletedSignature2, “notStatic”) and

added-call(id, receiver, addedSignature1, “notStatic”) and

added-call(id, addedSignature1, addedSignature2, “notStatic”)

Example

obj.vm().getSystemAttribute(1001) → obj.platform().name()



196 A. Hora et al. / The Journal of Systems and Software 109 (2015) 192–204

Deltas between revisions and of method foo()
deleted-call(“foo()-rev2”, “RPackageOrganizer”, “default()”, “isStatic”)
added-call(“foo()-rev2”, “RPackage”, “organizer()”, “isStatic")

Fig. 4. Deltas generated for the changes in Fig. 2.

Deltas between revisions and of method bar()
deleted-call(“bar()-rev4”, “coll”, “at(3)”, “notStatic”)
added-call(“bar()-rev4”, “coll”, “third()”, “notStatic”)

Fig. 5. Deltas generated for the changes in Fig. 3.

Table 1

Example of change rules found in FindBugs and SmallLint static analysis tools.

Tool Rule description Rule Pattern

FindBugs Use the nextInt of Random rather than nextDouble to

generate a random integer

Random.nextDouble() →
Random.nextInt()

Change invocation, same receiver, static

SmallLint Consider using isNil when testing null objects to improve

legibility

obj.equals(nil) → obj.isNil() Change invocation, same receiver, non-static

SmallLint Consider using isEmpty when testing empty collections

to improve legibility

list.size(0) → list.isEmpty() Change invocation, same receiver, non-static

(with fixed int argument)

4

m

q

i

(

4

t

w

o

c

t

b

q

R

A

p

R

r

v

r

a

o

a

R

4

c

p

o

e

e

s

Patterns 1, 2 and 3 represent the cases where a static invocation is

replaced by another. Patterns 4 and 5 cover the replacement of non-

static invocations. These patterns were kept because they produced

little noisy rules. In Section 6.3 we discuss the creation of additional

patterns.

We recall that the patterns should be applied in small deltas in or-

der to avoid noisy rules. In this work, we apply Patterns 1–4 in deltas

with up to three deleted or added calls, and Pattern 5 in deltas with

four deleted or added calls. This is done to avoid false positives in

many-to-many replacements since Pattern 4 can be considered a sub-

pattern of Pattern 5.

From the delta shown in Fig. 4, we find a rule based on Pattern 1:

RPackageOrganizer.default() → RPackage.organizer(), and from

the delta in Fig. 5, we find a rule based on Pattern 4: at(3) → third().

3.3. Selecting relevant rules (Step 3)

In the source code history of real systems many rules may be

found. Our goal is to provide rules which are likely to be system-

specific and relevant. The usage of patterns ensures a certain quality

since they enforce a structure on the rules, i.e., an old and a new call.

However, even with such precautions and even if the added rules are

clearly system-specific, they may not all be relevant. The relevance

of the rules can be stated by experts. Nevertheless, the idea of the

approach is to automatically detect relevant rules corresponding to

change conventions without using experts but only relying on code

history analysis. If it is difficult to state that a rule is relevant, it is

safer to say that it is not or that currently we have not enough infor-

mation to decide. Indeed, changes that occur in only one revision are

likely to simply capture method or class renaming done, for example,

with the support of refactoring tools provided by current IDEs or to

capture a localized change or refactoring. These changes are not in

the scope of our work. In contrast, we tackle change modifications for

which there exist no other tools to automatically and largely apply

them.

Thus, we consider rules as relevant if they occur in two or more

revisions. We decided to use at least two revisions to limit false posi-

tives (noisy rules). For this purpose, we compute the number of revi-

sions in which the changes expressed in the rule occurred and keep

the rules corresponding to changes occurring in two or more revi-

sions. Obviously, the more revisions there are in which the changes

occur, the more relevant the corresponding rule is. Additional discus-

sion on this point is given in Section 6.2.
. Validation experiment

In this section we detail our research questions and the experi-

ents that test them. We first present the proposed main research

uestions (Section 4.1). Then, we present the context of our exper-

ments detailing the case studies and the evaluated change rules

Sections 4.2 and 4.3). Finally, in Sections 4.4 and 4.5, we formalize

the experiment’s design used to answer the main research questions.

Complementary research questions will be treated in Section 6.

.1. Research questions

We propose research questions to assess the rules generated by

he proposed approach. We assess the change rules correctness and

hether they are likely to find violations in source code that devel-

pers would fix.

Assessing rules correctness. We evaluate whether the rules are

orrect according to the opinion of an expert (it has to be noticed

hat the expert presence is required only for the scientific evaluation

ut not during the concrete use). Thus we propose a first research

uestion:

Q1 Are the rules correct to the system expert?

ssessing rule violations. The rules may be classified as correct but

roduce no violation when applied to source code. To complement

Q1, we also evaluate whether violations identified by the change

ules are likely to be fixed, as suggested by the rule. This will also be

alidated with the help of an expert. For example, a violation for the

ule at(3) → third() is a piece of source code that still contains a call

t(3) instead of the call third(); if the expert decides that this piece

f code should be fixed, he will replace by third(). Thus, we propose

nother research question:

Q2 Are the violations “real” ones (i.e., that the experts want to fix)?

.2. Case studies

The context of the experiment is real systems for which source

ode history is available. We need real systems to ensure that our ex-

eriment is meaningful, and we need source code history to extract

ur change rules. Moreover, it is fundamental to have access to the

xperts of the systems to receive relevant assessment.

In this work, we selected two open-source systems, Pharo (Bergel

t al., 2013; Black et al., 2009) and Moose (Ducasse et al., 2011; Nier-

trasz et al., 2005) to perform our empirical studies. They have the



A. Hora et al. / The Journal of Systems and Software 109 (2015) 192–204 197

a

n

t

l

i

o

w

a

3

a

m

a

m

p

r

p

i

i

M

2

s

v

a

f

v

d

t

1

r

t

m

i

s

s

r

s

t

t

4

m

d

f

2

i

(

t

S

g

c

e

n

t

p

Table 2

Rules obtained from Pharo.

Pattern 1 2 3 4 5 Total

All Rules 25 31 49 304 17 426

Rules ≥ 2 revisions 14 11 3 13 4 45

a

S

t

t

n

p

g

4

R

c

i

v

4

W

4

R

H

H

4

r

p

e

r

e

n

v

(

4

f

w

o

fi

s

u

i

i

s

t

d

s

w

dvantage of being large and non-trivial systems, with a consolidated

umber of developers as well as relevant source code history. Also,

hey have different missions working in different domains.

Pharo is an open-source Smalltalk-inspired dynamically typed

anguage and environment. It can be compared to the Java SDK and

ncludes the implementation of all features inherent to an object-

riented language (collections, exceptions, primitive types, etc.) as

ell as an IDE and several tools. It is currently used in many industrial

nd research projects.10 The latest analyzed version has 374 KLOC,

246 classes, and is supported by 37 developers.

Moose is an open-source academic platform for software and data

nalysis written in Pharo. It is composed of several tools to deal with

eta-modeling; frameworks to build visualizations, diagrams, inter-

ctive browsers; it also includes tools to support common software

aintenance tasks such as code duplication detection, identifying de-

endency cycles, among others. It is currently supported by several

esearch groups around the world,11 and also adopted in industrial

rojects. The latest analyzed version has 210 KLOC, 2617 classes, and

s supported by 45 developers.

We extracted rules from source code changes that occurred dur-

ng the evolution of Pharo 1.4–2.0 (435 revisions from April 2012 to

arch 2013). Then, we applied such rules in the last release of Pharo

.0 itself and in Moose. Although we claim that the rules are system-

pecific, when they are about the Pharo public API, they are also rele-

ant to Pharo clients. Moose is a Pharo client and should thus benefit

lso from Pharo’s new conventions.

We have access to an expert of the Pharo environment, which is

undamental to receive relevant assessment about the rules and their

iolations and to validate the approach. The expert selected to vali-

ate the rules and the violations is a core developer and release mas-

er of the system. He has worked on it since the first version and for

0 years on a preceding system (Squeak) from which Pharo is de-

ived. Results were evaluated violation by violation, sometimes with

he help of documentation.

Additionally, in a previous study (Hora et al., 2013) we experi-

ented with three Java systems: Apache Ant, Tomcat and Lucene. Ant

s a tool for automating software build processes, Tomcat is a web

erver and servlet container, and Lucene is an information retrieval

oftware library. This analysis was intended to compare the specific

ules created by our approach with generic ones found in static analy-

is tools. We evaluated whether our approach can be used to improve

he set of generic rules provided by these tools, and then provide bet-

er rules to developers. This experiment is discussed in Section 5.

.3. Detecting rules

We obtain the rules by mining Pharo code changes which incre-

entally occurred in revisions between versions 1.4 and 2.0. As small

eltas between revisions are preferable to avoid the noise that can be

ound in large ones (Livshits and Zimmermann, 2005; Mileva et al.,

011), we select deltas involved in less than five deleted or added

nvocations. There is a total of 6513 deltas; from such deltas, 4272

65,6%) have less than five deleted or added invocations. Therefore,

hey represent a relevant amount of the deltas.

In this process, changes are represented as the deltas described in

ection 3.1 and stored in a database. From this database of deltas, we

enerated the rules as described in Section 3.2.

As shown in Table 2, this process generated a total of 426 rules

onsidering all patterns. Because this was too much for the expert

valuation, we ranked the rules generated by each pattern by the

umber of distinct revision they appear in. Then, we only analyzed

he top-15 (i.e., the first 15 in the ranking) rules generated by each

attern; this was done to reduce the amount of rules to be manually
10 http://consortium.pharo.org.
11 http://www.moosetechnology.org/docs/publications.

y

T

s

2

nalyzed by an expert. To detect the rules relevant for our study (cf.,

ection 3.3), we selected from the top-15 the ones that occurred in

wo or more revisions. In the case that some rule(s) in the top-15 and

he 16th rule occurred in the same amount of revisions, they were

ot considered; this was done to ensure a maximum of 15 rules per

attern and then facilitate the validation by the expert. This process

enerated at the end 45 rules considering all patterns.

.4. Experiment for RQ1: assessing rules correctness

Q1: Are the rules correct to the system expert?

With the help of an expert we validate the rules according to their

orrectness. We asked the expert to classify the rules as correct or

ncorrect, a correct rule being one that he believes would describe a

alid modification to apply in the source code.

.5. Experiment for RQ2: assessing rule violations

We detail this experiment with the methodology proposed by

ohlin et al. (2000).

.5.1. Hypotheses formulation

Q2: Are the violations “real” ones (i.e., that the experts want to fix)?

2
0 Number of violations before and after fixing are the same.

2
a Number of violations before and after fixing are not the same.

.5.2. Variable and subject selection

The subjects for this experiment are the violations generated by

ules. First, we take the last version of Pharo and Moose, and we com-

ute the number of violations generated by each rule; this will gen-

rate a sample, namely violations before fixing. From such sample, we

emove the violations that, according to the expert, should be fixed

xactly as suggested by the rule; this will generate another sample,

amely violations after fixing.

The independent variable is the rule. It is categorical and takes two

alues: before or after fixing the violations. The dependent variable

measured) is the number of violations for each rule.

.5.3. Experiment design

We want to compare the two generated samples (violations be-

ore fixing and violations after fixing). Thus, we use a paired setting,

hich means the rules composing one sample (before fixing the vi-

lations) are the same than those composing the other sample (after

xing the violations). We use the Wilcoxon test which is used for as-

essing whether one of two samples tends to have smaller/larger val-

es than the other. It can be used when the participants are the same

n each sample. The null hypothesis is that the median of violations

s the same for both samples. The tests will be performed at the 5%

ignificance level (i.e., α = 0.05).

We also report the effect size which measures the distance be-

ween the null hypothesis and alternative hypothesis, and is indepen-

ent of sample size. Effect size values 0.1, 0.3 and 0.5 are considered

mall, medium and large effects, respectively.

Notice that for this experiment we do not present recall. That

ould imply knowing all the conventions of the systems under anal-

sis, which is not feasible in practice due to the size of the systems.

he decision of not computing recall is also shared by related studies

uch as (Dagenais and Robillard, 2008; Kim et al., 2006; Schäfer et al.,

008).

http://consortium.pharo.org
http://www.moosetechnology.org/docs/publications


198 A. Hora et al. / The Journal of Systems and Software 109 (2015) 192–204

Table 3

RQ1: Assessing rules correctness.

Pattern 1 2 3 4 5 Total

Rules ≥ 2 revisions 14 11 3 13 4 45

Correct rules 11 (79%) 6 (55%) 1 (33%) 7 (54%) 3 (75%) 28 (62%)

Table 4

Examples of Pharo rules.

Pattern 1 FileDirectory.default() → FileSystem.workingDirectory()

RPackageOrganizer.default() → RPackage.organizer()

Pattern 2 ZnCharacterEncoder.forEncoding(∗) → ZnCharacterEncoder.newForEncoding(∗)

SystemAnnouncer.current() → SystemAnnouncer.uniqueInstance()

Pattern 3 DataStream.initialize() → MCDataStream.initialize()

SystemChangeNotifier.uniqueInstance() → SystemAnnouncer.uniqueInstance()

Pattern 4 getSource() → sourceCode()

noMoreNotificationsFor(∗) → unsubscribe(∗)

Pattern 5 vm().getSystemAttribute(1001) → platform().name()

vm().getSystemAttribute(1003) → platform().subtype()

p

M

H

l

M

C

b

w

i

t

t

t

S

w

c

S

l

o

t

1

5

R

H

H

M

i

a

p

v

p

o

r

t

fi

t

p

fi

d

5. Experiment results

In this section, we present the results of our empirical study and

discuss them. All the results (the generated rules and the evaluation

by the expert) are available for download.12

The whole process to produce rules took no longer than 1 h, for

each system. Notice that, execution time was rather long in this case

because it was the first analysis of the systems. It meant we had

to download the full code history, compute the deltas, and process

them. For day to day use, one can compute the deltas and process

them incrementally (see the discussion in Section 6.2). In our ap-

proach, all the steps can be done off-line, by nightly jobs. In that case,

execution time is negligible.

5.1. Evaluating RQ1: assessing rules correctness

RQ1: Are the rules correct to the system expert?

Table 3 shows that 62% (28 out of 45) of the analyzed rules were

correct according to the expert. In Pattern 1, 79% (11 out of 14) of an-

alyzed rules were correct while in Pattern 3, 1 out of 3 were correct.

Some patterns are clearly better than others, e.g., Pattern 1 and 5 have

77% correctness. The incorrect rules were mostly noisy rules, which

are likely to occur when they are extracted from deltas not related to

change conventions. In such deltas, method calls not involved with

change conventions tend to get intermingled with real rules (Livshits

and Zimmermann, 2005). The outcome of this experiment is that a

relatively large percentage of rules are correct according to the ex-

pert. Next, we present examples of correct and incorrect rules.

Table 4 presents some correct rules generated for Pharo. For

instance, in the rule RPackageOrganizer.default() → RPack-

age.organizer(), the method RPackageOrganizer.default() should

only be used in specific cases as stated in a comment into the

method definition of RPackageOrganizer.default(). The rule vm().

getSystemAttribute(1001) → platform().name() clearly improves

legibility.

Some of the generated rules were also incorrect (or not

blindly applicable) for different reasons. The rule FileSys-

tem.workingDirectory() → FileDirectory.default() was generated

when the correct one is in fact its opposite (also generated, see 1st

rule in Table 4). The incorrect rule was generated due to unrelated

rollbacks applied on the source code. In this case, the correct rule

was much more frequent, and, thus, easy to be detected.

Other rules were not incorrect but should not be applied blindly

as there are cases where the old form is also valid. For exam-
12 https://goo.gl/PyvSMF. P
le, the rule MCHttpRepository.locationUserPassword(∗,∗,∗) →
CHttpRepository.location(∗) should not be applied when the

TTP access does require user and password information. Simi-

arly, the rule ComposableModel.new() → DummyComposable-

odel.new() came out from a specific convention to ease testing of

omposableModel.

We believe the existence of such rules, that should not be applied

lindly, actually reinforce the need for applying coding convention as

idely as possible. In the case of these rules, not applying the change

s meaningful and points to different use scenarios. In this case,

he maintainers get useful information from the fact that there are

wo different invocation conventions (notice that as aforementioned

he correct rule is more frequent, and, thus, easy to be detected).

uch cases should not be mistaken with those where the changes

ere not applied because the developers were not aware of the new

onvention.

All the correct rules were implemented in the static analysis tool

mallLint (the static analysis tool for Smalltalk), and they are pub-

icly available13 to support developers. Furthermore, the discovering

f 28 new system-specific rules represents a significant addition to

he set of rules provided by SmallLint, which originally includes only

9 generic change rules that were created by experts.

.2. Evaluating RQ2: assessing rule violations

Q2: Are the violations “real” ones (i.e., that the experts want to fix)?

2
0 Number of violations before and after fixing are the same.

2
a Number of violations before and after fixing are not the same.

We extracted two samples of violations of the rules for Pharo and

oose, the first sample before fixing and the second sample after fix-

ng the violations. Table 5 shows the number of rules that produced

t least one violation and the total number of violations in each sam-

le. In the last analyzed Pharo release, 8 rules generated at least one

iolation, producing a total of 21 violations (before fixing). The expert

ointed that, from such violations, 10 should be fixed, so only 11 vi-

lations remained (after fixing). In the last analyzed Moose release, 7

ules generated at least one violation, producing a total of 37 viola-

ions (before fixing). The expert pointed that all violations should be

xed, thus, 0 violations remained (after fixing). Applying the Wilcoxon

est in the samples gives a p-value < 0.01, then we reject the null hy-

othesis and consider that the number of violations before and after

xing are not the same. Moreover, the effect size is = 0.56, which in-

icates a large effect.
13 www.smalltalkhub.com, Project: FindBugs, Package: MiningLintRules-

haroMigration.

https://goo.gl/PyvSMF
http://www.smalltalkhub.com


A. Hora et al. / The Journal of Systems and Software 109 (2015) 192–204 199

Table 5

RQ2: Assessing violations before and after fixing the

real ones. Rules refers to the number of rules that pro-

duced at least one violation.

System Rules Violations

Before fixing After fixing

Pharo 8 21 11

Moose 7 37 0

Total 15 58 11

c

v

i

t

c

r

5

p

o

o

r

p

R

g

f

c

d

a

t

0

2

c

s

w

g

R

r

p

m

s

i

c

t

d

a

i

s

“

t

f

t

c

i

r

r

g

t

a

r

c

t

D

p

l

S

r

t

S

d

6

o

l

f

a

n

c

6

s

s

w

l

e

e

i

l

C

c

v

fi

l

r

l

l

o

t

a

r

e

r

l

m

We conclude that the rules are pointing to violations in source

ode. In total, 15 rules generated violations, producing a total of 58

iolations from which 47 (81%) were real ones.

Fixing a violation generated by a rule is usually a fast and easy task

f the developers know the system. The rules consist in a LHS which is

he current code and a RHS which is the suggested replacement. This

an be done automatically if the user validates the application of the

ule.

.3. Java case studies

In our previous work (Hora et al., 2013), we evaluated the pro-

osed approach on the Java systems Ant, Tomcat and Lucene. The goal

f this study was to compare our system specific rules with generic

nes provided by static analysis tools. In order to complement the

esults of this paper, we present the main research questions of our

revious study and discuss them.

Q3: Are specific warnings more likely to point to real violations than

eneric warnings?

The outcome of this experiment is that specific warnings are in

act more likely to point to real violations. This was true for all the

ase studies. As expected, in general, tools to detect coding stan-

ard violations produce too many false positives (Joao Araujo Filho

nd Valente, 2011; Kim and Ernst, 2007; Renggli et al., 2010). In

his case, precision of generic warnings remained between 0.015 and

.07 (which is coherent with previously published results Hora et al.,

012; Kim and Ernst, 2007; Kim et al., 2006), while precision of spe-

ific warnings remained between 0.12 and 0.49.

However, rules are not equal in identifying real violations, i.e.,

ome rules performed better than others. Thus, we also studied

hether specific rules are more likely to point to real violations than

eneric ones.

Q4: Are specific rules more likely to point to real violations than generic

ules?

This was true for Tomcat. We could not show that the specific rules

erformed better than the generic ones for Ant and Lucene. This was

ostly because warnings generated by some generic rules in these

ystems were almost all fixed during the experiment timeframe.

An example of rule generated for Apache Ant was presented

n the motivation section: the convention to close files, where

alls to InputStream.close() should be replaced by calls to FileU-

ils.close(InputStream). As mentioned, this convention was intro-

uced in the system in 2004, but in practice it has never been fully

dopted as, even six years later (2010), the refactoring was still be-

ng applied. Our approach caught it and, thus, can be used to avoid

imilar maintenance problems.

In Tomcat, we detected rules defined by FindBugs such as

DM_NUMBER_CTOR: Method invokes inefficient Number construc-

or; use static valueOf instead”.14 This rule is intended to solve per-

ormance issues and it states that using valueOf is approximately 3.5
14 goo.gl/JK3aDi.

t

c

r

imes faster than using constructor. In fact, we detected such rules be-

ause Tomcat developers have been using FindBugs over time. Even

f there was an effort to fix such violations, they were not completely

emoved. This means that developers may not be aware of common

efactorings even when static analysis tools are adopted. Also, the

reat amount of violations generated by such tools in real-world sys-

ems is not easy to manage (Joao Araujo Filho and Valente, 2011; Kim

nd Ernst, 2007; Renggli et al., 2010). Our approach also caught this

efactoring and again it can be used to avoid similar problems where

hanges are not consistently applied.

In Lucene, system specific rules were related, for example,

o structural changes (e.g., replace Document.get() by Stored-

ocument.get()) and to internal guidance to have better

erformance (e.g., replace Analyzer.tokenStream() by Ana-

yzer.reusableTokenStream(), replace Random.nextInt() by

martRandom.nextInt()). Overall, the analysis also produced rules

elated to Java API changes such as the replacement of calls to

he classes Vector to calls to ArrayList, Hashtable to Map, and

tringBuffer to StringBuilder, which were incrementally fixed by

evelopers, and, thus, also detected by our approach.

. Complementary research questions

In this section we present complementary research questions to

ur study. First, we compare rule extraction at revision and release

evel. Second, we discuss the creation of rules with respect to their

requency over different revisions. Third, we discuss the creation of

dditional patterns in order to complement the proposed ones. Fi-

ally, we discuss the overlap of our rules with predefined generic

hange rules.

.1. Comparing rule extraction at revision and release level

In the proposed approach we extract rules from changes at revi-

ion level. The motivation to do that came from real world examples

uch as the ones presented in Section 2, in which recurrent changes

ere spread over different revisions of the systems as well as from re-

ated studies (Dagenais and Robillard, 2008; Meng et al., 2012). How-

ver, another solution to extract rules is at release level, i.e., consid-

ring changes between releases rather than between revisions. Thus,

n this subsection we compare rule extraction at revision and release

evel.

RQ1: Is it better to extract rules considering revision or release level?

In order to produce rules at release level, we considered the

hanges between Pharo releases 1.4 and 2.0, i.e., discarding the re-

isions between them. Notice that when release level is adopted, the

ne-grained changes (i.e., commits) existing between the two ana-

yzed releases may be lost. As a result, when comparing two major

eleases, more noise can be found.

Table 6 shows the number of rules extracted at revision and re-

ease level. Considering all rules, 426 rules were produced at revision

evel and 311 at release level; considering the relevant rules (i.e., that

ccurred in two or more revisions for the rules at revision level and

hat occurred two or more times for the rules at release level), 45

nd 21 rules were produced, respectively. At revision level, 28 correct

ules were extracted (62%). At release level, only 9 correct rules were

xtracted (43%); such rules are included in the 28 generated rules at

evision level. Therefore, 19 rules were found only at revision level.

The smaller amount of rules at release level occurs due to the

arger size of changes between the releases. In such larger changes,

ethod calls not involved with change conventions tend to get in-

ermingled with real rules (Livshits and Zimmermann, 2005). This

onfirms that, in our case, extraction at revision level gives better

esults than at release level.

http://goo.gl/JK3aDi


200 A. Hora et al. / The Journal of Systems and Software 109 (2015) 192–204

Table 6

Number of correct rules extracted at revision and release level per pattern.

Rules Level 1 2 3 4 5 Total

All Revision 25 31 49 304 17 426

Release 15 23 35 238 0 311

Relevant Revision 14 11 3 13 4 45

Release 2 7 5 7 0 21

Correct Revision 11 (79%) 6 (55%) 1 (33%) 7 (54%) 3 (75%) 28 (62%)

Release 1 (50%) 5 (83%) 1 (20%) 2 (28%) 0 (0%) 9 (43%)

Table 7

Evaluation of the frequency (f) to create rules.

Frequency (f) 2 3 4 5 6 7 8 9

Precision 25% 34% 63% 71% 72% 72% 75% 75%

Rules 104 43 23 12 8 8 6 6

Table 8

p-values comparing the precisions of the created rules.

Frequency (f) 3 4 5 6 7 8 9

2 0.07∗ 0.05∗ 0.07∗ 0.02∗∗ 0.02∗∗ 0.02∗∗ 0.01∗∗

3 – 0.36 0.23 0.11 0.11 0.07∗ 0.05∗

4 – – 0.25 0.11 0.14 0.05∗ 0.04∗∗

5 – – – 0.36 0.43 0.22 0.17

6 – – – – 0.60 0.39 0.43

7 – – – – – 0.37 0.27

8 – – – – – – 0.43

∗ p-value < 0.10.
∗∗ p-value < 0.05.

m

n

o

r

e

W

0

o

p

l

c

w

t

r

p

t

t

l

t

i

s

c

o

t

I

r

f

6

s

b

C

i

p

c

t

6.2. Assessing when rules should be created

In our experiments we extracted rules from a specific time frame,

i.e., for revisions between Pharo 1.4 and 2.0. Then, we validated such

rules in the latest Pharo and Moose releases. However, in practice,

there should be no clear time frame about what should be analyzed

in the past code history. Therefore, to support these cases, in this sub-

section we discuss the creation of rules considering when a change is

frequent enough to be considered as a rule.

CRQ2: When is a change frequent enough to be considered a rule?

This frequency can impact the quality of the produced rules as

well as the amount of generated rules. Thus, depending on the goal

of the developer (e.g., to produce rules with better precision or to

produce more rules), different frequencies can be adopted. Next, we

study the impact of such frequency to obtain rules.

6.2.1. Process to learn and evaluate rules

To automatically assess when rules should be created, we need

to learn the rules and evaluate them incrementally revision by revi-

sion. To learn the rules from source code history, we use the approach

developed by Kim et al. (2006) on navigating through revisions to ex-

tract information. It suits well since it works by learning from changes

in revisions. The idea is that we walk through the revision history of

a project learning rules and evaluating at each revision how well our

approach works when using only the information available for that

revision. We learn a rule when it occurs in f different revisions. We

evaluate at revision n the rules learned from revisions 1 to n − 1. If

a fix in revision n matches the learned rule, i.e., revision n − 1 has a

call to the LHS of the rule and revision n replaces it by a call to RHS,

we have a true positive (TP) violation. If a fix in revision n matches

the LHS, but not the RHS, we have a false positive (FP) violation. We

can measure the precision of a rule from the portion of violations pre-

dicted correctly over all violations, i.e., precision = TP/(TP + FP).

6.2.2. Discussion

Table 7 shows the precision and the number of rules obtained over

the frequency f such that 2 ≤ f ≤ 9 for our case study. For example, if

we say that rules are created when the same change occurs over two

different revisions (i.e., f = 2), then 104 rules are generated and they

have a precision of 25%. As expected, the greater the frequency, the

more precise are the generated rules, but the smaller the number of

generated rules.

From Table 7 we can also compute deltas for the precision and the

number of rules. For example, moving from f = 2 to f = 3 improves

the precision by 36% but reduces the number of generated rules by

58% (which is the greatest loss in number of rules). Moving from f =
3 to f = 4 improves the precision by 85% (which is the greatest gain

in precision) but reduces the number of generated rules by 46%. Also,
oving from f = 6 to f = 7 changes neither the precision nor the

umber of generated rules.

We observe that the precision tend to be greater and the number

f generated rules tend to be smaller. If the number of generated

ules is an important goal, then we should not choose a large f.

In Table 8 we compare the precisions of the rules generated for

ach frequency. This comparison is done by applying the Mann-

hitney test on each pair of rule samples. For example, the p-value

.01 (first line and last column) means that the precision of the rules

btained with f = 9 is statistically greater at the 1% level than the

recision of the rules obtained with f = 2. Also, the p-value 0.43 (last

ine and last column) means that we cannot decide whether the pre-

ision for f = 9 is greater than the precision for f = 8. We marked

ith ∗ results that are significant at the 10% level and with ∗∗ results

hat are significant at the 5% level.

By analyzing the first line in the table, we see that the precision of

ules obtained with f = 2 is statistically smaller than any other sam-

le (they are all marked). When analyzing the second line, we see that

he precision of rules obtained with f = 3 is statistically smaller than

he ones obtained with f = 8 and f = 9. The same occurs in the third

ine: the precision of rules obtained with f = 4 is statistically smaller

han the ones obtained with f = 8 and f = 9. However, when analyz-

ng the fourth line (i.e., f = 5 in bold), we see that no other sample is

tatistically greater than the one obtained with f = 5. The same oc-

urs for the subsequent lines. Therefore, it means that the precisions

f the rules obtained from f = 5 to 9 are equivalent. In such samples,

he precision remains between 71% and 75% (as we see in Table 7).

t means that, choosing between f = 5 to 9 would bring equivalent

esults. If precision is an important goal, we should choose a large

, but only up to a certain point (f = 5 in our experiments).

.3. Evaluating additional patterns

In Section 3.2 we proposed five patterns in order to detect system-

pecific rules. In practice, other patterns than the proposed ones can

e created. Therefore, we ask:

RQ3: What other patterns can be created considering single method

nvocation and how relevant are them?

For this experiment and to limit the scope, we will consider all

ossible patterns with one single method invocation. Table 9 shows a

omplete list of possible patterns for single method invocation. Recall

hat a pattern must include one added and one removed predicate.



A. Hora et al. / The Journal of Systems and Software 109 (2015) 192–204 201

Table 9

Exhaustive list of patterns for single method invocation. The patterns annotated with ∗ are the ones

adopted in this study. rules means the number of rules that occurred in two or more revisions. cor. means

the number of correct rules. s means static and ns means non-static.

deleted-call(…) added-call(…) rules cor. % of cor.

1∗ deletedRec deletedSig s addedRec addedSig s 14 11 79

2∗ receiver deletedSig s receiver addedSig s 11 6 55

3∗ deletedRec signature s addedRec signature s 3 1 33

4 deletedRec deletedSig ns addedRec addedSig ns 15 0 0

5∗ receiver deletedSig ns receiver addedSig ns 13 7 54

6 deletedRec signature ns addedRec signature ns – – –

7 deletedRec deletedSig s addedRec addedSig ns 10 2 20

8 receiver deletedSig s receiver addedSig ns – – –

9 deletedRec signature s addedRec signature ns 5 0 0

10 deletedRec deletedSig ns addedRec addedSig s 3 0 0

11 receiver deletedSig ns receiver addedSig s – – –

12 deletedRec signature ns addedRec signature s 15 0 0

W

S

p

(

e

s

d

i

(

m

t

(

m

p

h

d

c

w

a

P

s

o

n

o

a

P

r

m

t

p

b

f

e

p

e

T

m

P

a

m

p

r

g

l

i

6

p

I

b

C

a

g

s

d

J

s

c

m

7

7

t

i

m

b

S

e

w

H

fi

o

a

h

P

t

b

a

w

i

15 http://smalltalkhub.com/#!/˜Moose.
e use a shorthand notation as compared to the one presented in

ection 3.2 to facilitate the comparison between the patterns.

Each group of pattern has three patterns in order to check all the

ossible variations of receivers and signatures. The first in each group

i.e., Patterns 1, 4, 7 and 10) is about changing receiver (from delet-

dRec to addedRec) and invocation (from deletedSig to addedSig); the

econd (i.e., Patterns 2, 5, 8 and 11) is about changing invocation (from

eletedSig to addedSig) and keeping the same receiver; and the third

n each group (i.e., Patterns 3, 6, 9 and 12) is about changing receiver

from deletedRec to addedRec) and keeping the same invocation.

The first group of patterns (i.e., Patterns 1–3) is about the replace-

ent of static methods, the second group (i.e., Patterns 4–6) covers

he replacement of non-static methods, the third group of patterns

i.e., Patterns 7–9) describes the replacement of static by non-static

ethods, and the fourth group (i.e., Patterns 10–12) is about the re-

lacement of non-static by static methods.

The 12 patterns are presented in Table 9 to facilitate the compre-

ension on how they were produced. However, Patterns 6, 8 and 11

o not make sense in our context. Pattern 6 is about changing re-

eiver while keeping the same invocation for non-static methods,

hich cannot produce relevant rules since the non-static invocations

re the same (e.g., it would produce rules such as foo() → foo()).

atterns 8 and 11 are about changing invocation while keeping the

ame receiver while swapping between static and non-static meth-

ds, which cannot occur since the same receiver cannot be static and

on-static.

The last three columns of Table 9 present the number of rules that

ccurred in two or more revisions, the correct ones and the percent-

ge of correct rules, respectively. The patterns annotated with ∗ (i.e.,

atterns 1, 2, 3, 5) are the ones with best performance. They are al-

eady the patterns described in Section 3.2 and used in our experi-

ent in Section 5 (note that we also used another pattern with more

han one invocation, so it does not appear here).

The patterns not annotated with ∗ have lowest performance; they

roduced too many incorrect rules. The same explanation of RQ1 can

e used in the cases where the rules were incorrect: they came out

rom specific refactorings in sources code therefore we cannot gen-

ralize them to be applied in all the system. For example, Pattern 7

roduced the rule TestResult.error() → defaultTestError(), which

ven if it makes sense, is only applicable in the context of Test classes.

hese patterns did not show promising in our case study because too

any rules should be analyzed in order to detect correct ones (e.g.,

attern 7 in Table 9) or because they did not produced correct rules

t all.

Overall, the patterns involving only the replacement of static

ethods (first group) performed better than the others. In fact, these

atterns include the type of the receiver which gives naturally more

obust rules. The patterns involving only non-static methods (second

roup) also performed well. In this case, it is preferable patterns re-
ated to less noisy changes such as Pattern 5 in Table 9, in which the

nvocation changes but the receiver is the same.

.4. Overlap with generic change rules

As stated in the introduction, the static analysis tool SmallLint also

rovides generic change rules that were manually created by experts.

t contains 19 generic change rules that detail how source code should

e updated to improve code maintainability. Based on that we ask:

RQ4: Is there any overlap between the system-specific rules we gener-

ted and the generic ones provided by SmallLint?

We found that there is no overlap between our rules and the

eneric change rules provided by SmallLint. This is similar to the re-

ults provided by Kim et al. (2006) in which the intersection of bug-

etection rules generated by their approach and rules found in the

ava static analysis tool PMD were exclusive. One reason for this re-

ult is that the generic change rules were not applied in the analyzed

ase study over different revisions or they were applied in large com-

its, so our approach was not able to detect them.

. Threats to validity

.1. Construct validity

The construct validity is related to whether the measurement in

he study reflects real-world situations. In our study, the main threat

s the validation of the rules.

As an error in this process would bias the results, our rules were

anually validated with the help of an expert to decrease the possi-

ility of bias. In fact, many previous studies (e.g., Meng et al., 2012;

chäfer et al., 2008; Wu et al., 2010) do not adopt the validation with

xperts, i.e., the authors of the studies validate the rules themselves,

hich may introduce bias.

Another threat is that we are acquainted with the system expert.

owever, we reinforce that the expert has worked on Pharo since the

rst version and for 10 years on the preceding Pharo system. Based

n that, we believe that we could not find a better expert for such

nalysis. For example, not all the rules were correct for him; in fact,

e only marked as correct the rules that made sense for him as core

haro developer.

Moreover, we address that Moose was initially written by one of

he authors of the paper in its conception. This threat is alleviated

ecause since then, around 10 years passed and Moose has evolved

nd became a broadly used tool with several developers around the

orld. From the Moose repository control website, we can see that

t has now 45 contributors.15 Therefore, we believe that the fact that

http://smalltalkhub.com/\043!/~Moose


202 A. Hora et al. / The Journal of Systems and Software 109 (2015) 192–204

2

L

f

a

n

i

l

g

t

e

c

c

o

p

r

t

p

o

c

a

c

d

T

w

(

t

t

p

r

d

i

r

c

a

8

s

v

a

i

t

l

v

r

w

r

r

a

o

i

i

t

i

v

(

T

r

m

a

i

t

one of the authors has initially contributed to Moose does not influ-

ence our results.

7.2. Internal validity

The internal validity is related to uncontrolled aspects that may

affect the experimental results. In our study, the main threat is the

possible errors in the implementation of our approach causing the

generation of wrong rules.

Apart from the validation by the expert presented in this paper,

the rules generated by our approach have been (i) used by several

members of our laboratory in different systems and (ii) divulged in

the Moose open-source software reengineering mailing list such that

developers of this community can use it, thus, we believe that the

risks of this threat are reduced.

Moreover, the patterns used to extract rules from source code his-

tory may be an underestimation of the real changes occurring in com-

mits: some changes are more complex, only introducing new code or

only removing old code. We do not extract rules from such cases, and

they might also represent relevant source of information. However,

the patterns do reflect generic change rules found in static analysis

tools.

7.3. External validity

The external validity is related to the possibility to generalize our

results. In our study, the main threat is the representativeness of our

case studies.

Pharo and Moose are credible case studies as they are open-source

and non-trivial systems with a consolidated number of developers

and users. They also come from different domains and include a large

number of revisions. Despite this observation, our findings – as usual

in empirical software engineering – cannot be directly generalized

to other systems, specifically to systems implemented in other lan-

guages or to systems from different domains. Closed-source systems,

due to differences in the internal processes, might also have differ-

ent properties in their commits. Finally, small systems or systems in

initial stage may not produce data sufficient to generate rules.

8. Related work

8.1. System-specific rules

This work is an extension of our previous study (Hora et al., 2013).

In that study, we focused on extracting rules for the Patterns 1–3 and

comparing the mined rules with predefined rules provided by PMD

and SmallLint. We extracted and validated the rules for the Java sys-

tems Ant, Tomcat and Lucene, and for Pharo. As a result, the mined

rules were shown to be statistically more precise than PMD and Smal-

lLint rules. Overall, such work detected several relevant rules as we

discussed in Section 5.3. The current work differs from the previous

one in several points. We have now five patterns while the previous

study had three. The research questions are different: while the pre-

vious study compared the change rules with rules provided by static

analysis tools, in the current work there is no comparison with static

analysis tools in the research questions, instead, we focus on the cor-

rectness of rules and whether they are likely to point to real viola-

tions. In the current work we have the support of the expert to vali-

date the change rules while in the previous the rules were validated

automatically. Furthermore, in the current study we discuss the over-

lap between our change rules and predefined generic rules and the

creation of rules with respect to its frequency over different revisions.

8.2. API migration

Some work has been proposed to support during API evolution

and migration (apiwave, 2015; Hora and Valente, 2015; Hora et al.,
014; 2015; Xing and Stroulia, 2007). Nguyen et al. (2010a) propose

ibSync that uses graph-based techniques to help developers migrate

rom one framework version to another. In this process, the tool takes

s input the client system, a set of systems already migrated to the

ew framework as well as the old and new version of the framework

n focus. Using the learned adaptation patterns, the tool recommends

ocations and update operations for adapting due to API evolution.

Dagenais and Robillard (2008) present a tool (SemDiff) that sug-

ests replacements for framework elements accessed by client sys-

ems based on how a framework adapts to its own changes. Schäfer

t al. (2008) propose to mine framework usage change rules from

lient systems. They produce rules by comparing two versions of a

lass using the framework. These studies are intended to produce

ne-replaced-by-one rules; this is done in order to filter out false

ositives. In contrast, our study is not restricted to produce one-

eplaced-by-one rules (see for example Pattern 5, which produces

wo-replaced-by-two rules); we filter out false positive rules using

atterns and considering their spread over different revisions. More-

ver, the goal of our study is very different: we detect rules about

onventions, and not API migration. Our approach can also be seen as

generalization of such related studies, in which more flexible rules

an be generated.

Wu et al. (2010) propose an approach (AURA) that combines call

ependency and text similarity analyses to produce evolution rules.

hey extract rules by comparing two major versions of the frame-

ork. Meng et al. (2012) propose a history-based matching approach

HiMa) to support framework evolution. The rules are extracted from

he revisions in code history together with comments recorded in

he evolution history of the framework. These studies focus on sup-

orting framework clients during a migration while we focus on new

ules about conventions. Moreover, such studies use addition and

eletion of methods (instead of method calls) as the basis for detect-

ng rules. That is to say that they verify how methods deleted in one

evision or release were replaced in the next one. As a result, they

annot produce rules about conventions (i.e., when both methods are

vailable to be used) as proposed by our approach.

.3. Bug discovering

Kim et al. (2006) aim to discover system-specific bugs based on

ource code history. They analyze bug-fixes changes extracting in-

olving numeric and string literals, variables and method calls, which

re then stored in a database. Our approach and the related work are

ntended to find system-specific changes but in very different con-

exts. There are several differences between our study and the re-

ated one. First, the input is different. While the authors check re-

isions related to bug-fixes in the learning process, we check all the

evisions. As a result, they focus on rules in the context of bug-fixes

hile we focus on conventions spread over revisions. Second, the way

ules are presented to developers is distinct. Our approach produces

ules while the related work stores bug-fix changes in a database. As

result, their work is not intended to give rules beforehand for devel-

pers (they provide “on-demand rules”), in contrast with ours, which

s intended to give rules for developers. Finally, the goal of both stud-

es is very different. As stated before, the related work is intended

o support developers to discover system-specific bugs while ours is

ntended to detect system-specific conventions unknown to the de-

elopers. In summary, to filter out noise in the data mining process

which produce many false positives), they concentrate on bug-fixes.

his means they discard a lot of information that we are using. If the

elated study worked with as many data as ours, they would produce

any false positives because they would not have filtering like our

pproach.

Williams and Hollingsworth (2005) focus on discovering warn-

ngs which are likely real bugs by mining code history. They inves-

igate a specific type of warning (checking if return value is tested



A. Hora et al. / The Journal of Systems and Software 109 (2015) 192–204 203

b

T

h

t

t

t

p

r

w

r

c

s

n

d

s

f

h

t

d

d

p

e

a

r

i

v

m

t

o

e

c

w

t

u

s

w

t

W

(

s

c

v

c

m

9

s

e

t

q

o

p

r

t

t

c

c

s

f

c

t

w

c

A

N

A

R

a
B

B

C

D

D

H

H

H

H

H

H

J

K

K

K

L

L

L

M

M

M

efore being used), which is more likely to happen in C programs.

hey improve bug-finding techniques by ranking warnings based on

istorical information. While the authors investigate a single known

ype of warning, we are intended to discover new system-specific

ypes of violations. Another similar research in the sense that au-

hors use historical information to improve ranking mechanism is

roposed by Kim and Ernst (2007). They propose to rank warnings

eported by static analysis tools based on the number of times such

arnings were fixed over the history. Again, they focus on defined

ules while we focus on new system-specific rules that are not in-

luded in static analysis tools.

Livshits and Zimmermann (2005) propose to discover system-

pecific usage patterns over code history. These patterns are then dy-

amically tested to support discovering such pattern, they use the

ata mining technique a priori. Results show that the usage patterns,

uch as method pairs (e.g.,lock() must happen with unlock()), can be

ound. While the related work extracts usage patterns to understand

ow methods should be invoked, we extract invocation changes pat-

erns to understand how invocations should be updated.

Other studies focus on extracting information by analyzing the

ifferences between major versions. Nguyen et al. (2010b) aim to

iscover recurring bug-fixes by analyzing system two versions. They

ropose to recommend the fix according to learned bug-fixes. Meng

t al. (2013) study systematic edits in source code related to bug-fixes

nd feature addition. They aim to find relevant location and make cor-

ect edits in source code in order to support developers. Our work

s not restricted to bug-fix analysis and we also extract rules at re-

ision level. Mileva et al. (2011) focus on discovering changes that

ust be systematically applied in source code. These changes are ob-

ained by comparing two versions of the same system, determining

bject usage, and deriving patterns. They compare object usage mod-

ls and temporal properties from each version. By learning systematic

hanges, they are able to find places in source code where changes

ere not correctly applied. We focus on rule related to API changes

o improve static analysis while the related work focuses on object

sage. Sun et al. (2012) propose to extend a commercial static analy-

is tool by discovering specific defects. They focus on mining a graph,

ith data or control dependencies, to discover specific defects. While

hey extract data from a single version, we extract from code history.

e focus on mining invocation changes to produce change rules.

Some studies investigate rule recovering from execution traces

Lo et al., 2008; 2012). While they extract rules via dynamic analy-

is of a single system version to produce temporal rules (e.g., every

all to m1() must be preceded by a call to m2()), we extract rules

ia static analysis of changes from incremental versions to produce

hange rules (e.g., every call to m1() must be replaced by a call to

2()).

. Conclusion

In this paper, we proposed to automatically extract system-

pecific conventions unknown to the developers. In this process, we

xtract information from incremental revisions in source code his-

ory and the rules are based on predefined patterns that ensure their

uality.

We validated our approach on open-source systems with the help

f an expert. For such validation, we had the support of a Pharo ex-

ert which was very valuable to provide assessment about the change

ules. In our previous study, we validated our approach in Java sys-

ems showing that relevant rules were also extracted. In addition, in

his paper, we compared the extracted rules with predefined generic

hange rules provided by a static analysis tool and we discussed the

reation of rules with respect to their frequency over different revi-

ions. We reiterate here the most interesting conclusions we derived

rom our study:
1. A a relatively large percentage of the change rules (62%, 28 out

of 45) were correct to the expert in our Pharo case study. The

discovering of 28 new system-specific rules represents a sig-

nificant addition to the set of rules provided by the static analy-

sis tool SmallLint since it contains only 19 generic change rules.

2. Rules pointed to real violations in source code: 58 violation

were produced, from which 47 (81%) were fixed by the expert.

3. Different frequencies (f) can be adopted depending on the goal

of the developer to assess when rules should be created. If pre-

cision is an important goal, we should choose a large f but only

up to a certain point (f = 5 in our experiments).

4. There was no overlap between our rules and the generic

change rules provided by SmallLint.

As future work, we plan to extract rules from other structural

hanges such as class access and inheritance. In addition, we plan

o investigate frequent large changes to extract rules. In this case,

e plan to use a data mining approach to induce the rules from the

hanges.

cknowledgments

This research has been supported by grants from CNPq (Conselho

acional de Desenvolvimento Cientiífico e Tecnológico - Brasil) and

NR (ANR-2010-BLAN-0219-01).

eferences

piwave, 2015. Discover and track APIs. http://apiwave.com.
ergel, A., Cassou, D., Ducasse, S., Laval, J., 2013. Deep into Pharo. Square Bracket Asso-

ciates.
lack, A., Ducasse, S., Nierstrasz, O., Pollet, D., Cassou, D., Denker, M., 2009. Pharo by

Example. Square Bracket Associates.
opeland, T., 2005. PMD Applied. Centennial Books.

agenais, B., Robillard, M.P., 2008. Recommending adaptive changes for framework

evolution. In: International Conference on Software Engineering, pp. 481–490.
ucasse, S., Anquetil, N., Bhatti, M.U., Hora, A., Laval, J., Girba, T., 2011. MSE and FAMIX

3.0: an interexchange format and source code model family. Technical report.
ora, A., Valente, M.T., 2015. apiwave: Keeping track of API popularity and migration.

In: International Conference on Software Maintenance and Evolution.
ora, A., Anquetil, N., Ducasse, S., Allier, S., 2012. Domain specific warnings: are they

any better? In: International Conference on Software Maintenance.

ora, A., Anquetil, N., Ducasse, S., Valente, M.T., 2013. Mining system specific rules from
change patterns. In: Working Conference on Reverse Engineering.

ora, A., Etien, A., Anquetil, N., Ducasse, S., Valente, M.T., 2014. APIEvolutionMiner:
keeping API evolution under control. In: Software Evolution Week (European Con-

ference on Software Maintenance and Working Conference on Reverse Engineer-
ing).

ora, A., Robbes, R., Anquetil, N., Etien, A., Ducasse, S., Valente, M.T., 2015. How do de-

velopers react to API evolution? The Pharo ecosystem case. In: International Con-
ference on Software Maintenance and Evolution.

ovemeyer, D., Pugh, W., 2004. Finding bugs is easy. In: Object Oriented Programming
Systems Languages and Applications, pp. 132–136.

oao Araujo Filho, S.S., Valente, M.T., 2011. Study on the relevance of the warnings re-
ported by Java bug-finding tools. IET Softw. 5 (4), 366–374.

im, M., Notkin, D., 2009. Discovering and representing systematic code changes. In:

International Conference on Software Engineering, pp. 309–319.
im, S., Ernst, M.D., 2007. Which—I fix first? In: European Software Engineering Con-

ference and Symposium on the foundations of Software Engineering, pp. 45–54.
im, S., Pan, K., Whitehead Jr., E.E.J., 2006. Memories of bug fixes. In: International

Symposium on Foundations of Software Engineering, pp. 35–45.
ivshits, B., Zimmermann, T., 2005. DynaMine: finding common error patterns by min-

ing software revision histories. In: European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, pp. 296–305.
o, D., Khoo, S.C., Liu, C., 2008. Mining temporal rules for software maintenance. J.

Softw. Maintenance Evol.: Res. Pract. 20 (4), 227–247.
o, D., Ramalingam, G., Ranganath, V.P., Vaswani, K., 2012. Mining quantified temporal

rules: formalism, algorithms, and evaluation. Sci. Comput. Program. 77 (6), 743–
759.

eng, N., Kim, M., McKinley, K.S., 2013. Lase: locating and applying systematic edits
by learning from examples. In: International Conference on Software Engineering,

pp. 502–511.

eng, S., Wang, X., Zhang, L., Mei, H., 2012. A history-based matching approach to iden-
tification of framework evolution. In: International Conference on Software Engi-

neering, pp. 353–363.
ileva, Y.M., Wasylkowski, A., Zeller, A., 2011. Mining evolution of object usage. In:

European Conference on Object-Oriented Programming, pp. 105–129.

http://apiwave.com
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0001
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0002
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0003
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0004
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0005
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0006
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0007
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0008
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0009
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0010
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0011
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0012
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0013
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0014
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0015
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0016
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0017
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0018
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0019
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0020
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0021
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0021


204 A. Hora et al. / The Journal of Systems and Software 109 (2015) 192–204
Nguyen, H.A., Nguyen, T.T., Wilson Jr., G., Nguyen, A.T., Kim, M., Nguyen, T.N., 2010a.
A graph-based approach to API usage adaptation. In: International Conference on

Object Oriented Programming Systems Languages and Applications, pp. 302–321.
Nguyen, T.T., Nguyen, H.A., Pham, N.H., Al-Kofahi, J., Nguyen, T.N., 2010b. Recurring bug

fixes in object-oriented programs. In: International Conference on Software Engi-
neering, pp. 315–324.

Nierstrasz, O., Ducasse, S., Gı̌rba, T., 2005. The story of moose: an agile reengineer-
ing environment. In: European Software Engineering Conference and International

Symposium on Foundations of Software Engineering, pp. 1–10.

Renggli, L., Ducasse, S., Gîrba, T., Nierstrasz, O., 2010. Domain-specific program check-
ing. In: Objects, Models, Components, Patterns, pp. 213–232.

Robbes, R., Lungu, M., Röthlisberger, D., 2012. How do developers react to API depreca-
tion? The case of a smalltalk ecosystem. International Symposium on the Founda-

tions of Software Engineering. ACM, pp. 56:1–56:11.
Roberts, D., Brant, J., Johnson, R., 1997. A refactoring tool for Smalltalk. Theory Pract.

Object Syst. 3, 253–263.

Schäfer, T., Jonas, J., Mezini, M., 2008. Mining framework usage changes from instanti-
ation code. In: International Conference on Software Engineering, pp. 471–480.

Sun, B., Shu, G., Podgurski, A., Robinson, B., 2012. Extending static analysis by min-
ing project-specific rules. In: International Conference on Software Engineering,

pp. 1054–1063.
Williams, C.C., Hollingsworth, J.K., 2005. Automatic mining of source code repositories

to improve bug finding techniques. Trans. Softw. Eng. 31, 466–480.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A., 2000. Experi-
mentation in Software Engineering: An Introduction. Kluwer Academic Publishers.

Wu, W., Gueheneuc, Y.G., Antoniol, G., Kim, M., 2010. AURA: a hybrid approach to iden-
tify framework evolution. In: International Conference on Software Engineering,

pp. 325–334.
Xing, Z., Stroulia, E., 2007. Api-evolution support with diff-catchup. Trans. Softw. Eng.

33 (12).

André Hora is a postdoctoral fellow in Software Engineer-

ing in the ASERG Group at the Department of Computer
Science, Federal University of Minas Gerais, Brazil. He re-

ceived a Ph.D. degree from University of Lille-1/Inria, France,
in 2014. His main research interests include software evolu-

tion, reverse engineering, software analysis, and empirical
software engineering.

Nicolas Anquetil is an assistant professor at the Univer-

sity of Lille-1, France, since September 2009. He obtained
his Ph.D. in 1996 from the University of Montreal, Canada.

He also worked at University of Ottawa, Canada, Federal

University of Rio de Janeiro, Brazil, Catholic University of
Brasilia, Brazil, and Ecole des Mines de Nantes, France.

His research focuses on software evolution and mainte-
nance at large which already included work on software re-

architecturing, knowledge management for software main-
tenance, or software maintenance management. He is best

known for his work on software rearchitecturing.
Anne Etien is been an assistant professor at Ecole Poly-

technique Universitaire de Lille. She received a Ph.D. degree
from Université of Paris 1, France, in 2006. She is a mem-

ber of Inria Lille and recently joined the RMoD team. Her

research interests concern reengineering of complex legacy
systems.

Stéphane Ducasse is research director at Inria Lille leading

the RMoD team since September 2007. During 10 years, he
co-directed with Oscar Nierstrasz the Software Composition

Group. He is the president of ESUG. He co-founded Synec-
tique, a company that offers specific tools for Software anal-

ysis. He is one of the leaders of Pharo: a new exciting dy-
namic language.

Marco Tulio Valente received his Ph.D. degree in Computer

Science from the Federal University of Minas Gerais, Brazil
(2002), where he is an associate professor in the Computer

Science Department, since 2010. His research interests in-

clude software architecture and modularity, software main-
tenance and evolution, and software quality analysis. He is

a “Researcher I-D” of the Brazilian National Research Coun-
cil (CNPq). He also holds a “Researcher from Minas Gerais

State” scholarship, from FAPEMIG. Valente has coauthored
more than 60 refereed papers in international conferences

and journals. Currently, he heads the Applied Software En-

gineering Research Group (ASERG), at DCC/UFMG.

http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0022
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0023
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0024
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0025
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0026
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0027
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0028
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0029
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0030
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0031
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0032
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0033
http://refhub.elsevier.com/S0164-1212(15)00172-7/sbref0033

	Automatic detection of system-specific conventions unknown to developers
	1 Introduction
	2 Motivating examples
	3 Mining system-specific rules
	3.1 Extracting deltas (Step 1)
	3.2 Mining rules (Step 2)
	3.3 Selecting relevant rules (Step 3)

	4 Validation experiment
	4.1 Research questions
	4.2 Case studies
	4.3 Detecting rules
	4.4 Experiment for RQ1: assessing rules correctness
	4.5 Experiment for RQ2: assessing rule violations
	4.5.1 Hypotheses formulation
	4.5.2 Variable and subject selection
	4.5.3 Experiment design


	5 Experiment results
	5.1 Evaluating RQ1: assessing rules correctness
	5.2 Evaluating RQ2: assessing rule violations
	5.3 Java case studies

	6 Complementary research questions
	6.1 Comparing rule extraction at revision and release level
	6.2 Assessing when rules should be created
	6.2.1 Process to learn and evaluate rules
	6.2.2 Discussion

	6.3 Evaluating additional patterns
	6.4 Overlap with generic change rules

	7 Threats to validity
	7.1 Construct validity
	7.2 Internal validity
	7.3 External validity

	8 Related work
	8.1 System-specific rules
	8.2 API migration
	8.3 Bug discovering

	9 Conclusion
	 Acknowledgments
	 References


