
apiwave: Keeping Track of
API Popularity and Migration

André Hora, Marco Tulio Valente
ASERG Group, Department of Computer Science, Federal University of Minas Gerais, Brazil

{hora, mtov}@dcc.ufmg.br

Abstract—Every day new frameworks and libraries are created
and existing ones evolve. To benefit from such newer or improved
APIs, client developers should update their applications. In prac-
tice, this process presents some challenges: APIs are commonly
backward-incompatible (causing client applications to fail when
updating) and multiple APIs are available (making it difficult to
decide which one to use). To address these challenges, we propose
apiwave, a tool that keeps track of API popularity and migration
of major frameworks/libraries. The current version includes data
about the evolution of top 650 GitHub Java projects, from which
320K APIs were extracted. We also report an experience using
apiwave on real-world scenarios.

I. INTRODUCTION

Nowadays, software repositories make it simpler to store
source code and collaborate when creating small or large
systems. GitHub, the most popular software repository, has
more than 24 million projects and 10 million developers. Such
projects continue to evolve daily with the addition of new
features, bug-fixes and code refactoring. This generates a large
amount of information that is hard to keep track.

Many of these projects are frameworks and libraries, which
are commonly used worldwide in software development to in-
crease productivity. As these projects evolve, their Application
Programming Interfaces (APIs) are likely to change. As a side
effect, client developers should often update their applications
to benefit from newer or improved APIs. In practice, these
activities involve some challenge due to:

• API Popularity: APIs are evolving at fast pace and
multiple libraries that provide similar services are avail-
able [1]. This makes it difficult for client developers to
decide which API to use. For example, developers should
decide whether they should use a bleeding edge library
or an old-stable one.

• API Migration: APIs are commonly backward-
incompatible, causing client applications to fail [2], [3].
Thus, when updating their code, client developers may
need to find replacements for removed/renamed/updated
APIs to keep their applications working correctly.

To address these challenges, we propose the tool apiwave. Its
goal is to keep track of API popularity and migration of major
open-source frameworks/libraries, aiming to help both API
client and developers. The current apiwave version includes
data about top 650 GitHub Java projects and is available at
http://apiwave.com.

II. APIWAVE IN A NUTSHELL

apiwave is proposed to fill a gap existing between the
literature and real-world tools in the context of API evolution.
By mining hundreds of frameworks and libraries, we aim to
better understand how APIs are evolving over time and make
such large-scale data easily accessible. apiwave is implemented
as a web application and it is responsive for multiple devices
as shown in Figure 1.

Fig. 1. apiwave home page.

We focus on two aspects: API popularity and migration.
While it is easy to know how “popular” is a project in
number of contributors or fans, it is quite hard to know how
many clients are actually using it. Thus, apiwave covers such
aspect and characterizes how popular is a framework/library,
package or interface in number of clients. For example, one
can detect what are the most used interfaces in Android or
whether Facebook packages are decreasing/increasing usage.
apiwave also supports the replacement of interfaces in order to
help framework/library migration. Moreover, APIs are always
presented in the light of source code examples.

A. Architecture
Figure 2 presents an overview of apiwave architecture, which

includes two modules: Preprocessing and Frontend.
Preprocessing Module. This module receives as input the
history of a project stored in a source code repository (e.g.,
a GitHub project). It provides as output a database of APIs
including information about API popularity and migration as
well as a database of source code examples about such APIs.

In a first step, in Diff Processor, the project history is down-
loaded from the repository and organized in way that eases the
comparison between two versions of a source code file. This
structured data is then used in the second step to facilitate

978-1-4673-7532-0/15 c© 2015 IEEE ICSME 2015, Bremen, Germany

Accepted for publication by IEEE. c© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

52

321

http://apiwave.com


Fig. 2. apiwave architecture.

the extraction of data on API popularity, API migration and
source code examples. API Popularity Extractor mines from
the diff the notion of popularity while API Migration Extractor
mines the notion of migration; the results of such mining is
stored in a database. For example, consider the diff shown
in Figure 3 in which a refactoring was done between two
versions of a Java class. API Popularity Extractor will detect
that a dependency to java.util.Vector has been removed and that
a dependency to java.util.List has been added, i.e., java.util.List
has gained one user while java.util.Vector has lost one user.
This is done by mining import statements. In addition, API
Migration Extractor will infer that the class java.util.Vector
has been replaced by java.util.List. This is done by ensuring
that only one dependency is removed and only one is added.
Finally, Source Code Extractor will extract the whole diff as
an example to document the refactoring.

Fig. 3. Diff between two versions of a source code file.

Frontend Module. This module represents the web application
interface of apiwave. It receives as input two databases: one in-
cluding information about API popularity and API migration,
and one with source code examples. It provides as output the
view for the end user, which is implemented in Python. This
module and the two databases are stored on the cloud through
Google AppEngine platform. This allows us to focus more
on code development than on database administration, and to
scale using Google infrastructure.

B. Main Functionalities
In apiwave it is possible to navigate in three levels of granu-

larity: (1) frameworks/libraries, (2) packages or (3) interfaces.
Each framework/library is composed of a set of packages, and
each package is composed of a set of interfaces.

Figure 4 presents a typical page for framework/library (or
package) granularity with respective functionalities. First, the

Fig. 4. Framework/library example page.

API Popularity Graph (top-left) presents the evolution of the
number of users for a given framework/library. The green
line represents the gain of dependencies while the red line
represents the loss of dependencies over time. Second, the API
Popularity Ranks (top-right) show the most popular packages
and interfaces of the analyzed framework/library. Finally, the
API Migration Rank (bottom) displays the most migrated
interfaces. In the case an interface is selected, the page is
contextually updated including source code examples.

The current version of apiwave includes data about the evo-
lution of top 650 GitHub Java projects. From such data, 320K
frameworks/libraries, packages, and interfaces were extracted.
To summarize such information, we propose two rankings:
Most Popular APIs1 and Most Migrated APIs2.

C. Potential Users

Framework/library developers can use apiwave to verify how
their APIs are being used by clients. Client developers can
discover, compare and migrate APIs. In addition, we present
a complementary view of our users obtained from our Google
Analytics data. We present the data collected from such service
covering over two months, from April 5th, 2015 to June
16th, 2015. During this time frame, we had 32,063 unique
users and 50,080 pageviews. Such users came from different
countries and were classified by this service as related to
distinct interests, as shown in Table I.

TABLE I
TOP-5 USERS BY COUNTRY AND INTEREST.

Country Unique Users
United States 7,039 (22%)
India 3,196 (10%)
Germany 1,817 (5.7%)
South Korea 1,642 (5,1%)
France 1,255 (3.9%)

Interest % of Users
Java 9.05%
Mobile Phones 3.34%
Web Development 3.06%
Data Management 2.85%
Linux and Unix 2.85%

1http://apiwave.com/most_popular_projects
2http://apiwave.com/most_migrated_apis

322

http://apiwave.com/most_popular_projects
http://apiwave.com/most_migrated_apis


III. CASE STUDIES

A. Following API Popularity
In this case study, we focus on exploring four distinct API

popularity trends: (1) fast growth, (2) constant growth, (3)
peak growth, and (4) dead growth. To detect these trends, we
analyze the interface popularity of four widely adopted Java
libraries: Android, JSON, Apache Hadoop, and Minecraft.

Figure 5 shows trends detected in interfaces of these li-
braries. Fast growth is seen in android.content.Context, con-
firming the overall popularity of Android nowadays. Constant
growth is presented in org.json.JSONArray; this alerts library
developers that even though they are gaining clients over time,
it occurs at a constant pace, so there is space for improvements.
Peak growth is shown in org.apache.hadoop.fs.Path; such peaks
may confirm (or not) whether an improvement or a promotion
resulted in more clients. Finally, dead growth is seen in
net.minecraft.src.ItemStack; this states that clients are not using
the interface anymore either because it is buggy or because it
is replaced by another one.

Fig. 5. Exploring API popularity trends in widely adopted Java libraries.

B. Supporting API Migration
In this preliminary case study, we analyze real-world needs

in the context of API migration and assess whether apiwave
is able to handle such needs. To cover that, we present in
the following lines four real-world questions about interface
migration extracted from StackOverflow:3

1) Replacement for obsolete Hashtable class in Java (12.3K
views): “When I tried to use the Hashtable class, Netbeans
gave me an error. Any replacement suggestions?”

2) Assert in junit.framework has been deprecated - what use
next? (8.6K views): “I bump version of JUnit to 4.11 and get
a warning. How and to what migrate?

3) Replacing com.google.inject with javax.inject (5K views):
“Is it true that javax.inject annotations can function as direct
replacements for com.google.inject?

4) Replacement for java.net.URL (200 views): “I am looking
for replacement for java.net.URL. The problem with current
java.net.URL is that it can’t model protocols other than [http,
https, ftp, file, and jar]”

These questions highlight that there exist a demand for
API migration. By using apiwave we are able to automatically
answer all the aforementioned questions. For the first ques-
tion, apiwave proposes the replacement of java.util.Hashtable
by java.util.HashMap.4 For the second, the tool proposes the
replacement of junit.framework.Assert by org.junit.Assert.5 For
the third question, it confirms that com.google.inject.Inject can
be replaced by javax.inject.Inject.6 For the last one, apiwave

3StackOverflow question pages: 1) http://goo.gl/9axMJl, 2) http://goo.gl/
VJFI65, 3) http://goo.gl/3Uaz5S, 4) http://goo.gl/5OFJuP

4http://apiwave.com/java/api/java.util.Hashtable
5http://apiwave.com/java/api/junit.framework.Assert
6http://apiwave.com/java/api/com.google.inject.Inject

proposes the replacement of java.net.URL by java.net.URI.7

Moreover, apiwave provides more than one suggestion for
some interfaces. The replacement of junit.framework.Assert,
for example, is complemented with two other suggestions:
org.testng.Assert and org.junit.Assert.assertEquals, which are
alternative solutions. All the migrations suggested by apiwave
matched the best human answer to these questions in Stack-
Overflow, confirming the correctness of our answers.

IV. RELATED WORK

The literature proposes several approaches to handle API
migration. For example, this can be done with the support of
modified IDEs [4] or by mining source code [2], [5], [6], [7],
[8], [9] In the context of API popularity, one study was an
inspiration for us, but it is restricted to medium-scale Apache-
only analysis with no tool support [10]. Unfortunately, these
approaches neither provide a tool to be used by developers nor
analyze large-scale data to satisfy real-world needs. Moreover,
none of them handle both API popularity and migration.

V. CONCLUSION

To the best of our knowledge, apiwave is the first large-
scale tool that keeps track of API popularity and migration.
Currently, it contains data from 650 GitHub Java projects, from
which 320K APIs were extracted. We plan to extend apiwave
with more projects and to cover other programming languages.

ACKNOWLEDGMENT

This research was supported by CNPq, Conselho Nacional
de Desenvolvimento Científico e Tecnológico - Brasil.

REFERENCES

[1] T. McDonnell, B. Ray, and M. Kim, “An empirical study of API stability
and adoption in the android ecosystem,” in International Conference on
Software Maintenance, 2013.

[2] W. Wu, Y.-G. Gueheneuc, G. Antoniol, and M. Kim, “Aura: a hybrid
approach to identify framework evolution,” in International Conference
on Software Engineering, 2010.

[3] R. Robbes, M. Lungu, and D. Röthlisberger, “How do developers react
to API deprecation? The case of a smalltalk ecosystem,” in International
Symposium on the Foundations of Software Engineering, 2012.

[4] J. Henkel and A. Diwan, “Catchup!: Capturing and replaying refactor-
ings to support API evolution,” in International Conference on Software
Engineering, 2005.

[5] H. A. Nguyen, T. T. Nguyen, G. Wilson, Jr., A. T. Nguyen, M. Kim,
and T. N. Nguyen, “A graph-based approach to API usage adaptation,”
in ACM International Conference on Object Oriented Programming
Systems Languages and Applications, 2010.

[6] A. Hora, N. Anquetil, S. Ducasse, and S. Allier, “Domain Specific
Warnings: Are They Any Better?” in International Conference on
Software Maintenance, 2012.

[7] A. Hora, N. Anquetil, S. Ducasse, and M. T. Valente, “Mining Sys-
tem Specific Rules from Change Patterns,” in Working Conference on
Reverse Engineering, 2013.

[8] A. Hora, A. Etien, N. Anquetil, S. Ducasse, and M. T. Valente,
“APIEvolutionMiner: Keeping API Evolution under Control,” in Soft-
ware Evolution Week (European Conference on Software Maintenance
and Working Conference on Reverse Engineering), 2014.

[9] A. Hora, R. Robbes, N. Anquetil, A. Etien, S. Ducasse, and M. T.
Valente, “How Do Developers React to API Evolution? The Pharo
Ecosystem Case,” in International Conference on Software Maintenance
and Evolution, 2015.

[10] Y. M. Mileva, V. Dallmeier, and A. Zeller, “Mining API Popularity,” in
International Academic and Industrial Conference on Testing - Practice
and Research Techniques, 2010.

7http://apiwave.com/java/api/java.net.URL

323

http://goo.gl/9axMJl
http://goo.gl/VJFI65
http://goo.gl/VJFI65
http://goo.gl/3Uaz5S
http://goo.gl/5OFJuP
http://apiwave.com/java/api/java.util.Hashtable
http://apiwave.com/java/api/junit.framework.Assert
http://apiwave.com/java/api/com.google.inject.Inject
http://apiwave.com/java/api/java.net.URL

	Introduction
	apiwave in a Nutshell
	Architecture
	Main Functionalities
	Potential Users

	Case Studies
	Following API Popularity
	Supporting API Migration

	Related Work
	Conclusion
	References

