
Why We Refactor? Confessions of GitHub Contributors

Danilo Silva
Universidade Federal de

Minas Gerais, Brazil
danilofs@dcc.ufmg.br

Nikolaos Tsantalis
Concordia University

Montreal, Canada
tsantalis@cse.concordia.ca

Marco Tulio Valente
Universidade Federal de

Minas Gerais, Brazil
mtov@dcc.ufmg.br

ABSTRACT

Refactoring is a widespread practice that helps developers
to improve the maintainability and readability of their code.
However, there is a limited number of studies empirically
investigating the actual motivations behind specific refac-
toring operations applied by developers. To fill this gap,
we monitored Java projects hosted on GitHub to detect re-
cently applied refactorings, and asked the developers to ex-
plain the reasons behind their decision to refactor the code.
By applying thematic analysis on the collected responses,
we compiled a catalogue of 44 distinct motivations for 12
well-known refactoring types. We found that refactoring ac-
tivity is mainly driven by changes in the requirements and
much less by code smells. Extract Method is the most
versatile refactoring operation serving 11 different purposes.
Finally, we found evidence that the IDE used by the devel-
opers affects the adoption of automated refactoring tools.

CCS Concepts

•Software and its engineering → Software evolution;
Maintaining software; Software maintenance tools;

Keywords

Refactoring, software evolution, code smells, GitHub

1. INTRODUCTION
Refactoring is the process of improving the design of an

existing code base, without changing its behavior [26]. Since
the beginning, the adoption of refactoring practices was fos-
tered by the availability of refactoring catalogues, as the one
proposed by Fowler [10]. These catalogues define a name
and describe the mechanics of each refactoring, as well as
demonstrate its application through some code examples.
They also provide a motivation for the refactoring, which is
usually associated to the resolution of a code smell. For ex-
ample, Extract Method is recommended to decompose a
large and complex method or to eliminate code duplication.

As a second example, Move Method is associated to smells
like Feature Envy and Shotgun Surgery [10].

There is a limited number of studies investigating the real
motivations driving the refactoring practice based on inter-
views and feedback from actual developers. Kim et al. [17]
explicitly asked developers “in which situations do you per-
form refactorings?” and recorded 10 code symptoms that
motivate developers to initiate refactoring. Wang [39] inter-
viewed professional software developers about the major fac-
tors that motivate their refactoring activities and recorded
human and social factors affecting the refactoring practice.
However, both studies were based on general-purpose sur-
veys or interviews that were not focusing the discussion on
specific refactoring operations applied by the developers, but
rather on general opinions about the practice of refactoring.
Contribution: To the best of our knowledge, this is the
first study investigating the motivations behind refactoring
based on the actual explanations of developers on specific
refactorings they have recently applied. To fill this gap on
the empirical research in this area, we report a large scale
study centered on 463 refactorings identified in 222 commits
from 124 popular, Java-based projects hosted on GitHub. In
this study, we asked the developers who actually performed
these refactorings to explain the reasons behind their deci-
sion to refactor the code. Next, by applying thematic anal-
ysis [6], we categorized their responses into different themes
of motivations. Another contribution of this study is that
we make publicly available1 the data collected and the tools
used to enable the replication of our findings and facilitate
future research on refactoring.
Relevance to existing research: The results of this em-
pirical study are important for two main reasons.

First, having a list of motivations driving the application
of refactorings can help researchers and practitioners to in-
fer rules for the automatic detection of these motivations
when analyzing the commit history of a project. Recent
research has devised techniques to help in understanding
better the practice of code evolution by identifying frequent
code change patterns from a fine-grained sequence of code
changes [25], isolating non-essential changes in commits [13],
and untangling commits with bundled changes (e.g., bug
fix and refactoring) [7]. In addition, we have empirical ev-
idence that developers tend to interleave refactoring with
other types of programming activity [23], i.e., developers
tend to floss refactor. Therefore, knowing the motivation
behind a refactoring can help us to understand better other
related changes in a commit. In fact, in this study we found

1http://aserg-ufmg.github.io/why-we-refactor

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

FSE’16, November 13–18, 2016, Seattle, WA, USA
c© 2016 ACM. 978-1-4503-4218-6/16/11...

http://dx.doi.org/10.1145/2950290.2950305

Artifact evaluated by FSE✓

858



several cases where developers extract methods in order to
make easier the implementation of a feature or a bug fix.

Second, having a list of motivations driving the applica-
tion of refactorings can help researchers and practitioners to
develop refactoring recommendation systems tailored to the
actual needs and practices of the developers. Refactoring
serves multiple purposes [10], such as improving the design,
understanding the code [9], finding bugs, and improving pro-
ductivity. However, research on refactoring recommenda-
tion systems [1] has mostly focused on the design improve-
ment aspect of refactoring by proposing solutions oriented
to code smell resolution. For example, most refactoring rec-
ommenders have been designed based on the concept that
developers extract methods either to eliminate code duplica-
tion, or decompose long methods [35, 30, 33, 12, 18, 37]. In
this study, we found 11 different reasons behind the appli-
cation of Extract Method refactorings. Each motivation
requires a different strategy in order to detect suitable refac-
toring opportunities. Building refactoring recommendation
systems tailored to the real needs of developers will help to
promote more effectively the practice of refactoring to the
developers, by recommending refactorings helping to solve
the actual problems they are facing in maintenance tasks.

2. RELATED WORK
Refactoring is recognized as a fundamental practice to

maintain a healthy code base [10, 4, 26, 19]. For this reason,
vast empirical research was recently conducted to extend our
knowledge on this practice.
Studies on refactoring practices: Murphy et al. [20]
record the first results on refactoring usage, collected us-
ing the Mylar Monitor, a standalone framework that col-
lects and reports trace information about a user’s activity
in Eclipse. Murphy-Hill et al. [23] rely on multiple data
sources to reveal how developers practice refactoring activi-
ties. They investigate nine hypotheses about refactoring us-
age and conclude for instance that commit messages do not
reliably indicate the presence of refactoring, that program-
mers usually perform several refactorings within a short time
period, and that 90% of refactorings are performed manu-
ally. Negara et al. [24] provide a detailed breakdown on the
manual and automated usage of refactoring, using a large
corpus of refactoring instances detected using an algorithm
that infers refactorings from fine-grained code edits. As their
central findings, they report that more than half of the refac-
torings are performed manually and that 30% of the applied
refactorings do not reach the version control system.
Studies based on surveys & interviews: Kim et al. [16,
17] present a field study of refactoring benefits and chal-
lenges in a major software organization. They conduct a sur-
vey with developers at Microsoft regarding the cost and risks
of refactoring in general, and the adequacy of refactoring
tool support, and find that the developers put less emphasis
on the behavior preserving requirement of refactoring def-
initions. They also interview a designated Windows refac-
toring team to get insights into how system-wide refactoring
was carried out, and report that the binary modules refac-
tored by the refactoring team had a significant reduction in
the number of inter-module dependencies and post-release
defects. Wang [39] interviews 10 professional software de-
velopers and finds a list of intrinsic (i.e., self-motivated) and
external (i.e., forced by peers or the management) factors
motivating refactoring activity.

Studies on refactoring tools: Vakilian et al. [38] reveal
many factors that affect the appropriate and inappropriate
use of refactoring tools. They show for example that novice
developers may underuse some refactoring tools due to lack
of awareness. Murphy-Hill et al. [21] investigate the bar-
riers in using the tool support provided for the Extract
Method refactoring [10]. They report that users frequently
made mistakes in selecting the code fragment they want to
extract and that error messages from refactoring engines are
hard to understand. Murphy-Hill et al. [23] show that 90% of
configuration defaults in refactoring tools are not changed by
the developers. As a practical consequence of these studies,
refactoring recommendation systems [1] have been proposed
to foster the use of refactoring tools and leverage the ben-
efits of refactoring, by alerting developers about potential
refactoring opportunities [34, 35, 2, 29, 3, 30].
Studies on refactoring risks: Kim et al. [14] show that
there is an increase in the number of bug fixes after API-level
refactorings. Rachatasumrit and Kim [28] show that refac-
torings are involved in almost half of the failed test cases.
Weißgerber and Diehl show that refactorings are sometimes
followed by an increasing ratio of bug reports [40].

However, existing studies on refactoring practices do not
investigate in-depth the motivation behind specific refactor-
ing types, i.e., why developers decide to perform a certain
refactoring operation. For instance, Kim et al. [17] do not
differentiate the motivations between different refactoring
types, and Wang [39] does not focus on the technical moti-
vations, but rather on the human and social factors affecting
the refactoring practice in general. The only exception is a
study conducted by Tsantalis et al. [36], in which the authors
themselves manually inspected the relevant source code be-
fore and after the application of a refactoring with a text diff
tool, to reveal possible motivations for the applied refactor-
ings. Because they conducted this study without asking the
opinion of the developers who actually performed the refac-
torings, the interpretation of the motivation can be consid-
ered subjective and biased by the opinions and perspectives
of the authors. In addition, the manual inspection of source
code changes is a rather tedious and error-prone task that
could affect the correctness of their findings. Finally, the ex-
amined refactorings were collected from the history of only
three open source projects, which were libraries or frame-
works. This is a threat to the external validity of the study
limiting the ability to generalize its findings beyond the char-
acteristics of the selected projects. In this study, we collected
refactorings from 124 different projects, and asked the devel-
opers who actually performed these refactorings to explain
the reasons behind their decision to refactor the code.

3. RESEARCH METHODOLOGY

3.1 Selection of GitHub Repositories
First, we selected the top 1,000 Java repositories ordered

by popularity in GitHub (stargazers count) that are not
forks. From this initial list, we discarded the lower quartile
ordered by number of commits, to focus the study on repos-
itories with more maintenance activity. The final selection
consists of 748 repositories, including well-known projects,
like JetBrains/intellij-community, apache/cassandra,
elastic/elasticsearch, gwtproject/gwt, and spring-
projects/spring-framework.

Figure 1 shows violin plots [11] with the distribution of

859



2
0

4
0

6
0

8
0

all active studied

●
●

●A
g

e
 (

m
o

n
th

s
)

(a) Age

●

●

●

all active studied

1
0

0
1

,0
0

0
1

0
,0

0
0

1
0

0
,0

0
0

N
u

m
b

e
r 

o
f 

c
o

m
m

it
s
 (

lo
g

 s
c
a

le
)

(b) Commits

●

●

●

all active studied

1
1

0
1

0
0

1
,0

0
0

1
0

,0
0

0

N
u

m
b

e
r 

o
f 

J
a
va

 f
ile

s
 (

lo
g

 s
c
a

le
)

(c) Source files

●

●

●

all active studied

1
1

0
1

0
0

1
,0

0
0

N
u

m
b

e
r 

o
f 

c
o

n
tr

ib
u

to
rs

 (
lo

g
 s

c
a

le
)

(d) Contributors

Figure 1: Distribution of (a) age, (b) commits, (c) Java source files, and (d) contributors of repositories

age (in months), number of commits, size (number of ∗.java
files), and number of contributors of the selected reposito-
ries. We provide plots for all 748 systems (labeled as all),
for the 471 systems (63%) with at least one commit during
the study period (labeled as active), and for the 124 systems
(17%) effectively analyzed in the study (labeled as studied),
which correspond to the repositories with at least one refac-
toring detected in the commits during the study period (61
days), along with answers from the developers to our ques-
tions about the motivation behind the detected refactorings.
We can observe in Figure 1 that the active systems tend to
have a higher number of commits, source files, and contrib-
utors than the initially selected systems (all). The same
holds when comparing the studied systems with the active
systems. These observations are statistically confirmed by
applying the one-tailed variant of the Mann-Whitney U test.

3.2 RefactoringMiner Tool
In the study, we search for refactorings performed in the

version history of the selected GitHub repositories by ana-
lyzing the differences between the source code of two revi-
sions. For this purpose, we use a refactoring detection tool
proposed in a previous work [36]. The tool, named Refactor-
ingMiner in this paper, implements a lightweight version of
the UMLDiff [41] algorithm for differencing object-oriented
models. This algorithm is used to infer the set of classes,
methods, and fields added, deleted or moved between suc-
cessive code revisions. After executing this algorithm, a set
of rules is used to identify different types of refactorings. Un-
like other existing refactoring detection tools, such as Ref-
Finder [15] and JDevAn [42], RefactoringMiner provides an
API and can be used as an external library independently
from an IDE, while Ref-Finder and JDevAn can be executed
only within the Eclipse IDE. The strong dependency of Ref-
Finder and JDevAn to the Eclipse IDE prevented us from
using these tools in our study, since as it will be explained
in Section 3.3, our study required a high degree of automa-
tion, and this could be achieved only by being able to use
RefactoringMiner programmatically through its API.

In the study, we analyze 12 well-known refactoring types
detected by RefactoringMiner, as listed in the first column of
Table 2. The detection of Rename Class/Method/Field
refactorings is not currently supported by RefactoringMiner,
because it requires a more advanced source code analysis
that examines changes in usage patterns (i.e., changes in
class instantiations, method call sites, field accesses, respec-
tively) to verify the consistency of the renaming operation.
Typically, these refactorings are performed to give a more
meaningful name to the renamed code element. Previous

studies show that they are usually performed automatically,
using the refactoring tool support of popular IDEs [23, 24].

3.2.1 RefactoringMiner Precision and Recall

As we rely on RefactoringMiner to find refactorings per-
formed in the version history of software repositories, it is
important to estimate its recall and precision. For this rea-
son, we evaluated RefactoringMiner using the dataset re-
ported in a study by Chaparro et al. [5]. This dataset in-
cludes a list of refactorings performed by two Ph.D. students
on two software systems (ArgoUML and aTunes) along with
the source code before and after the modifications. There
are 173 refactoring instances in total, from which we se-
lected all 120 instances corresponding to 8 of the refactoring
types considered in this study (8 × 15 instances per type).
The dataset does not contain instances of Extract Super-
class/Interface, Move Class, and Rename Package
refactorings. We compared the list of refactorings detected
by RefactoringMiner with the known refactorings in those
systems to obtain the results of Table 1, which presents the
number of true positives (TP), the number of false posi-
tives (FP), the number of false negatives (FN), the recall
and precision for each refactoring type. In total, there are
111 true positives (i.e., existing refactoring instances that
were correctly detected) and 9 false negatives (i.e., existing
refactoring instances that were not detected), which yield a
fairly high recall of 0.93. Besides, there are 2 false positives
(i.e., incorrectly detected refactoring instances), which yield
a precision of 0.98. The lowest observed recall is for Pull
Up Method (0.80), while the lowest observed precision is
for Extract Method (0.88).

In conclusion, the accuracy of RefactoringMiner is at ac-
ceptable levels, since Ref-Finder (the current state-of-the-
art refactoring reconstruction tool) has an overall precision
of 79% according to the experiments conducted by its own
authors [27], while an independent study by Soares et al. [32]
has shown an overall precision of 35% and an overall recall
of 24% for Ref-Finder.

3.3 Study Design
During 61 days (between June 8th and August 7th 2015),

we monitored all selected repositories to detect refactorings.
We built an automated system that periodically fetches com-
mits from each remote repository to a local copy (using the
git fetch operation). Next, the system iterates through
each commit and executes RefactoringMiner to find refac-
torings and store them in a relational database.

As in a previous study [36], we compare each examined
commit with its parent commit in the directed acyclic graph

860



Table 1: RefactoringMiner Recall and Precision

Refactoring TP FP FN Recall Prec.

Extract Method 15 2 0 1.00 0.88
Inline Method 13 0 2 0.87 1.00
Pull Up Attribute 15 0 0 1.00 1.00
Pull Up Method 12 0 3 0.80 1.00
Push Down Attribute 15 0 0 1.00 1.00
Push Down Method 13 0 2 0.87 1.00
Move Attribute 15 0 0 1.00 1.00
Move Method 13 0 2 0.87 1.00

Total 111 2 9 0.93 0.98

(DAG) that models the commit history in git-based ver-
sion control repositories. Furthermore, we exclude merge
commits from our analysis to avoid the duplicate report of
refactorings. Suppose that commit CM merges two branches
containing commits CA and CB , respectively. Suppose also
that a refactoring ref is performed in CA, and therefore
detected when we compare CA with its parent commit. Be-
cause the effects of ref are present in the code that resulted
from CM , ref would be detected again if we compared CM

with CB . Therefore, we assume that discarding merge com-
mits from our analysis does not lead to any refactoring loss,
but rather avoids duplicate refactoring reports.

On each working day, we retrieved the recent refactorings
from the database to perform a manual inspection, using a
web interface we built to aid this task. In this step, we filter
out false positives by analyzing the source code diff of the
commit. In this way, we avoid asking developers about false
refactorings. Additionally, we also marked commits that al-
ready include an explanation for the detected refactoring
in the commit description, to avoid asking an unnecessary
question. For instance, in one of the analyzed commits we
found several methods extracted from a method named on-

Create, and the commit description was:

“Refactored AIMSICDDbAdapter::DbHelper#onCreate for eas-
ier reading”

Thus, it is clear that the intention of the refactoring was
to improve readability by decomposing method onCreate.
Therefore, it would be unnecessary and inconvenient to ask
the developer.

This process was repeated daily, to detect the refactor-
ings as soon as possible after their application in the exam-
ined systems. In this way, we managed to ask the develop-
ers shortly after they perform a refactoring, to increase the
chances of receiving an accurate response. We send at most
one email to a given developer, i.e., if we detect a refactoring
by a developer who has been already contacted before, we
do not contact her again, to avoid the perception of our mes-
sages as spam email. The email addresses of the developers
were retrieved from the commit metadata.

In each email, we describe the detected refactoring(s) and
provide a GitHub URL for the commit where the refactor-
ing(s) is(are) detected. In the email, we asked two questions:

1. Could you describe why did you perform the listed
refactoring(s)?

2. Did you perform the refactoring(s) using the auto-
mated refactoring support of your IDE?

With the first question, our goal is to reveal the actual mo-
tivation behind real refactorings instances. With the second
question, we intend to collect data about the adequacy and
usage of refactoring tools, previously investigated in other

empirical studies [23, 24]. In this way, we can check whether
the findings of these studies are reproduced in our study.
We should clarify that by “automated refactoring” we re-
fer to user actions that trigger the refactoring engine of an
IDE by any means (e.g., through the IDE menus, keyboard
shortcuts, or drag-and-drop of source code elements).

During the study period, we sent 465 emails and received
195 responses, achieving a response rate of 41.9%. Each
response corresponds to a distinct developer and commit.
The achieved response rate is significantly larger than the
typical 5% rate found in questionnaire-based software engi-
neering surveys [31]. This can be attributed to the firehouse
interview [22] nature of our approach, in which developers
provide their feedback shortly after performing a refactor-
ing and have fresh in their memory the motivation behind
it. Additionally, we included in our analysis all 27 commits
whose description already explained the reasons for the ap-
plied refactorings, totaling a set of 222 commits. This set
of commits covers 124 different projects and contains 463
refactoring instances in total.

After collecting all responses, we analyzed the answers
using thematic analysis [6], a technique for identifying and
recording patterns (or “themes”) within a collection of doc-
uments. Thematic analysis involves the following steps: (1)
initial reading of the developer responses, (2) generating
initial codes for each response, (3) searching for themes
among codes, (4) reviewing the themes to find opportunities
for merging, and (5) defining and naming the final themes.
These five steps were performed independently by the first
two authors of the paper, with the support of a simple web
interface we built to allow the analysis and tagging of the
detected refactorings. At the time of the study, the first
author (Author#1) had 3 years of research experience on
refactoring, while the second author (Author#2) had over 8
years of research experience on refactoring.

After the generation of themes from both authors, a meet-
ing was held to assign the final themes. In 155 cases (58%),
both authors suggested semantically equivalent themes that
were rephrased and standardized to compose the final set
of themes. The refactorings with divergent themes were
then discussed by both authors to reach a consensus. In
94 cases (35%), one author accepted the theme proposed by
the other author. In the remaining 18 cases (7%), the final
theme emerged from the discussion and was different from
what both authors previously suggested. Figure 2 shows a
case of an Extract Method refactoring instance that was
required to reach a consensus between the authors. The de-
veloper who performed the refactoring explained that the
reason for the refactoring was to support a new feature that
required pagination, as described in the following comment:

“Educational part of PyCharm uses stepic.org courses provid-
er. This server recently decided to use pagination in replies.”

By inspecting the source code changes, we can see that
a part of the original method getCourses() (left-hand side
of Figure 2) was extracted into method addCoursesFrom-

Stepic() (right-hand side of Figure 2). After the refac-
toring, the extracted method is called twice, once before
the while loop added in the original method, and once in-
side the while loop. For this reason, Author#1 labeled this
case as “Avoid duplication”, since the extracted method is
reused two times after the refactoring. However, the ex-
tracted method contains additional new code to compute
properly the URL based on the page number passed as a

861



public static List?CourseInfoB;getCoursesz2;{

try {

List?CourseInfoB;result;K new ArrayList?CourseInfoBz21

final List?CourseInfoB;courseInfos;K

getFromStepicz,courses,H;CoursesContainerMclass2Mcourses1

for zCourseInfo;info;h;courseInfos2;{

final String;courseType;K;infoMgetTypez21

if zStringUtilMisEmptyOrSpaceszcourseType22 continue1

final List?StringB;typeLanguage;K;StringUtilMsplitzcourseTypeH ,;,21

if ztypeLanguageMsizez2;KK;0;EE;PYCHARM_PREFIXMequalsztypeLanguageMgetzX222;{

resultMaddzinfo21

}

}

return result1

}

catch zIOException;e2;{

LOGMerrorz,Cannot;load;course;list;, Y;eMgetMessagez221

}

return CollectionsMemptyListz21

}

public static List?CourseInfoB;getCoursesz2;{

try {

List?CourseInfoB;result;K new ArrayList?CourseInfoBz21

int pageNumber;K;X1

boolean hasNext;K;addCoursesFromStepiczresultH;pageNumber21

while zhasNext2;{

pageNumber;YK;q1

hasNext;K;addCoursesFromStepiczresultH;pageNumber21

}

return result1

}

catch zIOException;e2;{

LOGMerrorz,Cannot;load;course;list;, Y;eMgetMessagez221

}

return CollectionsMemptyListz21

}

private static boolean addCoursesFromStepiczList?CourseInfoB;resultH int pageNumber2

throws IOException;{

final String;url;K;pageNumber;KK;X;v ,courses, h ,coursesvpageK, Y

final CoursesContainer;coursesContainer;K;getFromStepiczurlH;CoursesContainerMclass21

final List?CourseInfoB;courseInfos;K;coursesContainerMcourses1

for zCourseInfo;info;h;courseInfos2;{

final String;courseType;K;infoMgetTypez21

if zStringUtilMisEmptyOrSpaceszcourseType22 continue1

final List?StringB;typeLanguage;K;StringUtilMsplitzcourseTypeH ,;,21

if ztypeLanguageMsizez2;KK;0;EE;PYCHARM_PREFIXMequalsztypeLanguageMgetzX222;{

resultMaddzinfo21

}

}

return coursesContainerMmetaMcontainsKeyz,has_next,2;EE

coursesContainerMmetaMgetz,has_next,2;KK;BooleanMTRUE1

}

StringMvalueOfzpageNumber21

Extracted Code

Added Code

Call to the Extracted Method

Figure 2: Example of Extract Method refactoring that was required to reach a consensus.

parameter (first line in the extracted method), and to re-
turn a boolean indicating if there exists a next page (last
line in the extracted method). For this reason, Author#2 la-
beled this case as “Facilitate extension”, since the extracted
method also helps to implement the new pagination require-
ment. After deliberation, the authors reached a consensus
by keeping both theme labels, since the extracted method
serves both purposes of reuse and extension.

3.4 Examined Refactorings
We monitored 748 Java projects during the study pe-

riod, and found commits in 471 projects (63%), i.e., 277
projects remained inactive. We also found 285 projects with
refactoring activity, as detected by RefactoringMiner (in-
cluding false positives). In these projects, 2,241 refactoring
instances were detected (in 729 commits), and were man-
ually inspected by the first author of the paper to confirm
whether they are indeed true positives.

Table 2: Refactoring activity

Refactoring TP FP Prec. Com. Proj.

Extract Method 468 135 0.78 312 136
Move Class 432 512 0.46 85 60
Move Attribute 129 44 0.75 45 38
Rename Package 105 0 1.00 25 24
Move Method 99 48 0.67 40 31
Inline Method 58 67 0.46 44 36
Pull Up Method 33 1 0.97 18 17
Pull Up Attribute 23 1 0.96 11 11
Extract Superclass 22 11 0.67 18 16
Push Down Method 16 1 0.94 6 6
Push Down Attribute 15 1 0.94 7 7
Extract Interface 11 8 0.58 10 9

Total 1411 830 0.63 539 185

Table 2 shows the number of true positives (TP), false
positives (FP), and precision (Prec.) of RefactoringMiner by
refactoring type, as computed after the manual inspection
of the detected refactorings. In general, our tool achieves
very high precision for Rename Package (100%), Pull
Up/Push Down Attribute/Method refactorings (over

94%), and relatively high precision for Extract Method
and Move Attribute refactorings (over 75%), while the
precision for Move Method and Extract Superclass
is 67%. However, for some refactorings the precision is
closer to 50%, namely Extract Interface (58%), Inline
Method (46%), and Move Class (46%). We observed sev-
eral cases of inner classes falsely detected as moved, because
their enclosing class was simply renamed. By supporting
the detection of Rename Class refactoring, we could im-
prove Move Class precision. It should be emphasized that
we asked the developers only about the true positives de-
tected by RefactoringMiner. In comparison to the results
presented in Section 3.2.1, the precision is lower, because
the commits analyzed from GitHub projects may include
tangled changes, while the commits analyzed in Section 3.2.1
include only refactoring operations. Tangled changes make
the detection of refactorings more challenging, thus resulting
in more false positives. Finally, Table 2 shows the number
of distinct commits (Com.) and projects (Proj.) containing
at least one true positive refactoring (539 out of 729 com-
mits and 185 out of 285 projects with detected refactorings
contain at least one true positive refactoring).

4. WHY DO DEVELOPERS REFACTOR?
In this section, we present the results for the first question

answered by the developers, regarding the reasons behind
the application of the refactorings we detected. Based on
the results of the thematic analysis process (Section 3.3),
we compile a catalogue of 44 distinct motivations. We ded-
icate Section 4.1 to discuss Extract Method, which is
the most frequently occurring refactoring operation in our
study, and also the one with the most observed motivations
(11). Section 4.2 presents the motivations for the remaining
refactorings.

4.1 Motivations for Extract Method
Table 3 describes 11 motivations for Extract Method

refactoring and the number of occurrences for each of them.
The most frequent motivation is to extract a reusable method
(43 instances). In this case, the refactoring is motivated by

862



Table 3: Extract Method motivations

Theme Description Occurrences

Extract reusable method Extract a piece of reusable code from a single place and call the extracted
method in multiple places.

43

Introduce alternative method
signature

Introduce an alternative signature for an existing method (e.g., with addi-
tional or different parameters) and make the original method delegate to the
extracted one.

25

Decompose method to im-
prove readability

Extract a piece of code having a distinct functionality into a separate method
to make the original method easier to understand.

21

Facilitate extension Extract a piece of code in a new method to facilitate the implementation of
a feature or bug fix, by adding extra code either in the extracted method, or
in the original method.

15

Remove duplication Extract a piece of duplicated code from multiple places, and replace the du-
plicated code instances with calls to the extracted method.

14

Replace Method preserving
backward compatibility

Introduce a new method that replaces an existing one to improve its name or
remove unused parameters. The original method is preserved for backward
compatibility, it is marked as deprecated, and delegates to the extracted one.

6

Improve testability Extract a piece of code in a separate method to enable its unit testing in
isolation from the rest of the original method.

6

Enable overriding Extract a piece of code in a separate method to enable subclasses override the
extracted behavior with more specialized behavior.

4

Enable recursion Extract a piece of code to make it a recursive method. 2

Introduce factory method Extract a constructor call (class instance creation) into a separate method. 1

Introduce async operation Extract a piece of code in a separate method to make it execute in a thread. 1

the immediate reuse of a piece of code in multiple other
places, in addition to the place from which it was origi-
nally extracted. We often observe a concern among develop-
ers to reuse code wherever possible, by extracting pieces of
reusable code. This is illustrated by the following comments:

“These refactorings were made because of code reusability. I
needed to use the same code in new method. I always try to
reuse code, because when there’s a lot of code redundancy it
gets overwhelmingly more complicated to work with the code
in future, because when something change in code that has
it’s duplicate somewhere, it usually needs to be changed also
there.”

“The reason for me to do the refactoring was: Don’t repeat
yourself (DRY).”

The second most frequent motivation is to introduce an
alternative method signature for an existing method (25 in-
stances), e.g., with extra parameters. To achieve that, the
body of the existing method is extracted to a new one with
an updated signature and additional logic to handle the ex-
tended variability. The original method is changed to dele-
gate to the new one, passing some default values for the new
parameters. The following comment illustrates this case:

“The extracted method values(names List<String>, val-

ues List<Object>) could be of help for some users using
Lists instead of arrays, and because the implementation al-
ready transformed the provided arrays into Lists internally.”

Decomposing a method for improving readability (21 in-
stances) is the third most frequent motivation. Typically,
this corresponds to a Long Method code smell [10], as illus-
trated in this comment:

“The method was so long that it didn’t fit onto the screen
anymore, so I moved out parts.”

The next two motivations are to facilitate extension (15
instances) and to remove duplication (14 instances). In the
first case, a method is decomposed to facilitate the imple-
mentation of a new feature or the fix of a bug by adding

code either in the extracted or in the original method, as
illustrated in this comment:

“I was fixing an exception, in order to do that I had to add
the same code to 2 different places. So I extracted initial
code, replace duplicate with the extracted method and add
the ‘fix’ to the extracted method.”

In the second case (i.e., remove duplication), a piece of
duplicated code is extracted from multiple places into a sin-
gle method, as illustrated in the following comments:

“I refactored shared functionality into a single method.”

“I checked how other test methods create testing User objects
and noticed that it takes two lines of code that were repeated
all over the test class. So I abstracted these two lines of
code into a method for better readability and then reused the
method in all the places that had the same code.”

Finally, two other important motivations are to improve
testability (6 instances) and to replace a method by preserv-
ing backward compatibility (6 instances). In the first case,
the decomposition enables the developer to test parts of the
code in isolation, as illustrated in this comment:

“I wanted to test the part of authenticate() which verifies
that a member is element of a set, and that would have been
more complex using authenticate directly.”

In the second case, the goal is to introduce a method hav-
ing the same functionality with an already existing one, but
a different signature (e.g., improved name, or removed un-
used parameter), and at the same time preserve the public
API by making the original method delegate to the new one.
This motivation is best illustrated in the following comment:

“I did that refactoring because essentially I wanted to re-
name the functions involved - you’ll see the old functions
just forward straight to the new ones. But I didn’t just re-
name because other code in other projects might be referring
to the old functions, so they would need to still be present
(I guess they should have been marked as @deprecated then,
but I was a bit lazy here).”

863



Table 4: Motivations for Move Class, Attribute, Method (MC, MA, MM), Rename Package (RP) Inline
Method (IM), Extract Superclass, Interface (ES, EI), Pull Up Method, Attribute (PUM, PUA), Push Down
Attribute, Method (PDA, PDM)

Type Theme Description Occurrences

MC Move class to appropriate container Move a class to a package that is more functionally or conceptually
relevant.

13

MC Introduce sub-package Move a group of related classes to a new subpackage. 7

MC Convert to top-level container Convert an inner class to a top-level class to broaden its scope. 4

MC Remove inner classes from depre-
cated container

Move an inner class out of a class that is marked deprecated or is
being removed.

3

MC Remove from public API Move a class from a package that contains external API to an
internal package, avoiding its unnecessary public exposure.

2

MC Convert to inner class Convert a top-level class to an inner class to narrow its scope. 2

MC Eliminate dependencies Move a class to another package to eliminate undesired dependen-
cies between modules.

1

MC Eliminate redundant sub-package Eliminate a redundant nesting level in the package structure. 1

MC Backward compatibility Move a class back to its original package to maintain backward
compatibility.

1

MA Move attribute to appropriate class Move an attribute to a class that is more functionally or concep-
tually relevant.

15

MA Remove duplication Move similar attributes to another class where a single copy of
them can be shared, eliminating the duplication.

4

RP Improve package name Rename a package to better represent its purpose. 8

RP Enforce naming consistency Rename a package to conform to project’s naming conventions. 3

RP Move package to appropriate con-
tainer

Move a package to a parent package that is more functionally or
conceptually relevant.

2

MM Move method to appropriate class Move a method to a class that is more functionally or conceptually
relevant.

8

MM Move method to enable reuse Move a method to a class that permits its reuse by other classes. 3

MM Eliminate dependencies Move a method to eliminate dependencies between classes. 3

MM Remove duplication Move similar methods to another class where a single copy of them
can be shared, eliminating duplication.

1

MM Enable overriding Move a method to permit subclasses to override it. 1

IM Eliminate unnecessary method Inline and eliminate a method that is unnecessary or has become
too trivial after code changes.

13

IM Caller becomes trivial Inline and eliminate a method because its caller method has be-
come too trivial after code changes, so that it can absorb the logic
of the inlined method without compromising readability.

2

IM Improve readability Inline a method because it is easier to understand the code with-
out the method invocation.

1

ES Extract common state/behavior Introduce a new superclass that contains common state or behav-
ior from its subclasses.

7

ES Eliminate dependencies Introduce a new superclass that is decoupled from specific depen-
dencies of a subclass.

1

ES Decompose class Extract a superclass from a class that holds many responsibilities. 1

PUM Move up common methods Move common methods to superclass. 8

PUA Move up common attributes Move common attributes to superclass. 7

EI Facilitate extension Introduce an interface to enable different behavior. 1

EI Enable dependency injection Introduce an interface to facilitate the use of a dependency injec-
tion framework.

1

EI Eliminate dependencies Introduce an interface to avoid depending on an existing
class/interface.

1

PDA Specialized implementation Push down an attribute to allow specialization by subclasses. 2

PDA Eliminate dependencies Push down attribute to subclass so that the superclass does not
depend on a specific type.

1

PDM Specialized implementation Push down a method to allow specialization by subclasses. 1

864



4.2 Motivations for Other Refactorings
Table 4 presents the motivations for the remaining refac-

torings studied in the paper. We found nine different motiva-
tions for Move Class. The two most frequent motivations
are to move a class to a package that is more functionally
or conceptually related to the purpose of the class (13 in-
stances), and to introduce a sub-package (7 instances). The
first one is illustrated by the following comment:

“This refactoring was done because common interface for
those classes lived in org.neo4j.kernel.impl.store.

record, while most of it’s implementors lived in org.neo4j.

kernel.impl.store which did not make sense because all of
them are actually records.”

For Move Attribute, the most common motivation is
also to move the attribute to an appropriate class that is
more functionally or conceptually relevant (15 instances),
as in the example below:

“In this case, each of these fields was moved as their rel-
evance changed. As UserService already handles the lo-
gin process, it makes sense that changes to the login process
should be encapsulated within UserService.”

Remove duplication is another motivation for moving an
attribute, as illustrated by the following comment:

“The attributes were duplicated, so I moved them to the
proper common place.”

For Rename Package, the most common motivation is
to update the name of a package to better represent its pur-
pose (8 instances), as in the example below:

“This was a simple package rename. test seems to fit better
than tests here as a single test can be executed too.”

We found three main reasons for a Move Method refac-
toring: move a method to an appropriate class (8 instances),
move a method to enable reuse (3 instances), and move a
method to eliminate dependencies (3 instances). The most
frequent motivation for Inline Method is to eliminate an
unnecessary or trivial method, as illustrated in the comment:

“Since the method was a one-liner and was used only in one
place, inlining it didn’t make the code more complex. On the
other hand, it allowed to lessen calls to getVirtualFile().”

Extract Superclass is usually applied to introduce a
new class with state or behavior that can be shared by sub-
classes (7 instances). Pull Up Method/Attribute is per-
formed to move common code to an existing superclass (8
and 7 instances, respectively). Extract Interface and
Push Down Attribute/Method are less popular refactor-
ings and thus their motivations have at most two instances.

5. REFACTORING AUTOMATION
In this section, we discuss the results drawn from the sec-

ond question answered by the developers, regarding the use
(or not) of automatic refactoring tools provided by their
IDEs to apply the refactorings we presented. First, in Sec-
tion 5.1, we present how many of the interviewed developers
applied the refactoring(s) automatically. We also present
which refactoring types are more frequently applied with
tool support. In Section 5.2, we discuss some insights drawn
from developers’ answers that explain why refactoring is still
applied manually in most of the cases. Last, in Section 5.3,
we present additional details regarding which IDE develop-
ers most often used for refactoring.

5.1 Are refactoring tools underused?
Table 5 shows the results for this question. 95 develop-

ers (55% of valid answers) answered that the refactoring
was performed manually without tool support; 66 develop-
ers (38%) answered that the refactoring engine of an IDE
was used; 13 developers (7%) answered that the refactoring
was partially automated. In summary, refactoring is proba-
bly more often applied manually than with refactoring tools.

Table 5: Manual vs. automated refactoring

Modification Occurrences

Manual 95
Automated 66
Not answered 48
Partially automated 13

We also counted the percentage of automated refactorings
by refactoring type, as presented in Table 6. Rename Pack-
age is the refactoring most often performed with tool sup-
port (58%), followed by Move Class (50%). Three other
refactorings are performed automatically in around a quar-
ter of the cases: Extract Method (29%), Move Method
(26%), and Move Attribute (24%). Inline Method fol-
lows with 18% of automatic applications. Finally, for the
remaining refactorings, we do not have a large number of in-
stances to draw safe conclusions (maximum 9 instances), but
there is a consistent trend showing that inheritance-related
refactorings are mostly manually applied.

Table 6: Refactoring automation by type

Refactoring Type Occurrences Automated %

Extract Method 118 29%
Move Class 36 50%
Move Attribute 21 24%
Move Method 19 26%
Inline Method 17 18%
Rename Package 12 58%
Extract Superclass 9 11%
Pull Up Method 9 11%
Pull Up Attribute 7 14%
Extract Interface 3 0%
Push Down Attribute 3 33%
Push Down Method 2 0%

5.2 Why do developers refactor manually?
29 developers explained in their answers why they did not

use a refactoring tool. Table 7 shows five distinct themes we
identified in these answers.

Table 7: Reasons for not using refactoring tools

Description Occurrences

The developer does not trust automated sup-
port for complex refactorings.

10

Automated refactoring is unnecessary, be-
cause the refactoring is trivial and can be
manually applied.

8

The required modification is not supported
by the IDE.

6

The developer is not familiar with the refac-
toring capabilities of his/her IDE.

3

The developer did not realize at the moment
of the refactoring that he/she could have
used refactoring tools.

2

865



Lack of trust (10 instances) was the most frequent rea-
son. Some developers do not trust refactoring tools for com-
plex operations that involve code manipulation and only use
them for renaming or moving:

“I don’t trust the IDE for things like this, and usually lose
other comments, notation, spacing from adjacent areas.”

“I’d say developers are reluctant to let a tool perform any-
thing but trivial refactorings, such as the ones you picked up
on my commit.”

On the other hand, some developers also think that tool
support is unnecessary in simple cases (8 instances). Some-
times the operation may involve only local changes and is
trivial to do by hand. Thus, calling a special operation to do
it is considered unnecessary, as illustrated by this comment:

“Automated refactoring is overkill for moving some private
fields.”

Additionally, developers also mentioned: lack of tool sup-
port for the specific refactoring they were doing (6 instances),
not being familiar with refactoring features of the IDE (3 in-
stances), and not realizing they could use refactoring tools
at the moment of the refactoring (2 instances).

5.3 What IDEs developers use for refactoring?
When answering to our emails, 83 developers spontane-

ously mentioned which IDE they use. Therefore, we decided
to investigate these answers, specially because our study is
not dependent on any IDE, and thus differs from previous
studies which are usually based only on Eclipse data [23,
24]. Table 8 shows the most common IDEs mentioned in
these answers and the percentage of refactorings performed
automatically in these cases. 139 developers (63%) did not
explicitly mention an IDE when answering this question.
Considering the answers citing an IDE, IntelliJ IDEA is the
most popular one. It also has the highest ratio of refactor-
ings performed automatically (71%). Since 11 JetBrains/-
intellij-community (and related plug-ins) developers an-
swered to our questions, we also investigated the answers
separately in two groups, namely answers from IntelliJ IDEA
developers and from IntelliJ IDEA users. We observed that
the ratio of automated refactorings in both groups is very
similar (73% vs. 70%). Therefore, the responses from these
11 IntelliJ IDEA developers do not bias the percentage of
automated refactoring reported for IntelliJ IDEA.

Table 8: IDE popularity

IDE Occurrences Automated %

Editor not mentioned 139 12%
IntelliJ IDEA 51 71%
Eclipse 18 44%
NetBeans 8 50%
Android Studio 4 25%
Text Editor 2 0%

6. DISCUSSION
In this section, we discuss the main findings of our study.

Refactoring Motivations: Our study confirms that Ex-
tract Method is the“Swiss army knife of refactorings”[36].
It is the refactoring with the most motivations (11 in total).
In comparison to [36], there is an overlap in the reported mo-
tivation themes for Extract Method. We found some new
themes, such as improve testability and enable recursion, but

we did not find any instances of the themes encapsulate field
and hide message chain, reported in [36], which are related
to code smell resolution. We assume these different themes
are due to the nature of the examined projects, since [36]
examined only three libraries and frameworks, while in this
study we examined 124 projects from various domains in-
cluding standalone applications. By comparing to the code
symptoms that initiate refactoring reported in the study by
Kim et al. [17], we found the readability, reuse, testability,
duplication, and dependency motivation themes in common.

Most of the refactoring motivations we found have the
intention to facilitate or even enable the completion of the
maintenance task that the developer is working on. For in-
stance, extract reusable method, introduce alternative method
signature, and facilitate extension are among the most fre-
quent motivations, and all of them involve enhancing the
functionality of the system. Therefore, Extract Method
is a key operation to complete other maintenance tasks, such
as adding a feature or fixing a bug. In contrast, only two out
of the 11 motivations we found (decompose method to im-
prove readability and remove duplication) are targeting code
smells. This finding could motivate researchers and tool
builders to design refactoring recommendation systems [35,
30, 33, 12, 18, 37] that do not focus solely on detecting refac-
toring opportunities for the sake of code smell resolution, but
can support other refactoring motivations as well.

We also observe that developers are seriously concerned
about avoiding code duplication, when working on a given
maintenance task. They often use refactorings—especially
Extract Method—to achieve this goal, as illustrated by
the following comments:

“I need to add a check to both the then- and the else-part of
an if-statement. This resulted in more duplicated code than
I was comfortable with.”

“There was already code duplication, but the bug fix required
another cut-and-paste, which made it code triplication. That
was above my pain level so I decided to group the replicated
code out into bail().”

The other refactorings we analyzed are typically performed
to improve the system design. For example, the most com-
mon motivation for Move Class, Move Attribute, and
Move Method is to reorganize code elements, so that they
have a stronger functional or conceptual relevance.

Automated vs. Manual Refactoring: In a field study
with Eclipse users, Negara et al. [24] report that most refac-
torings (52%) are manually performed. In our study, in-
volving developers using a wider variety of IDEs, we found
that 55% of refactorings are manually performed. However,
we also found that IntelliJ IDEA users tend to use more
the refactoring tool support than other IDE users. More-
over, the results for automated Extract Method refac-
torings are very similar in both studies: 28% in our study
vs. 30% in their study. While the total percentages of manu-
ally performed refactorings are very similar, we should keep
in mind that Negara et al. counted simple refactorings, like
renamings, which are more often applied with tool support.
Compared to the study by Murphy-Hill et al. [23], where
they report that 89% of refactorings are performed manually
(considering also renamings), we detected significantly more
automated refactorings. We suspect this difference may be
due to two reasons. First, automated refactoring tools may
have become more popular and reliable over the last years.

866



Second, our study involves developers using a broader range
of IDEs, which may also influence how developers use refac-
toring tool support.

Regarding the reasons for not using automated refactor-
ing, our results are in line with the three main factors found
in the study by Murphy-Hill et al. [23]: awareness, oppor-
tunity, and trust. The exception is the argument that tool
support is unnecessary in simple cases, which is not closely
related to any of the three aforementioned factors. How-
ever, the same argument can be observed in the study by
Kim et al. [17], in which some developers mention that they
do not feel a great need for automated refactoring tools.

Refactoring Popularity: In this study we detected refac-
torings in 285 of the monitored repositories in a time window
of 61 days. Given that only 471 out of the 748 monitored
repositories were active during that period, we found refac-
toring activity in 60.5% of the repositories with at least one
commit. This shows that refactoring is a common practice,
especially considering that frequent refactorings such as Re-
name Class/Method/Field were not considered.

The top-5 most popular refactorings detected in our study
are Extract Method, Move Class, Move Attribute,
Rename Package, and Move Method. Move Method
is the third most popular refactoring in the study by Negara
et al. [24]. The top-2 refactorings in this study (Rename
Local Variable and Extract Local Variable) are low-
level refactorings, which have not been considered in our
study. We focused on high-level refactorings, because they
can be motivated by multiple factors.

Using a sample of 40 commits with manual and auto-
mated refactorings, Murphy-Hill et al. [23] report that the
two most popular refactorings are Rename Constant and
Push Down. However, Push Down refactorings are among
the least popular ones in our study. This difference may be
related to the number of commits analyzed in the studies (40
vs. 539 commits in our study), and the specialized nature
of the software (i.e., the Eclipse IDE) examined in [23].

7. THREATS TO VALIDITY
External Validity: This study is restricted to open source,
Java-based, GitHub-hosted projects. Thus, we cannot claim
that our findings apply to industrial systems, or to systems
implemented in other programming languages. However, we
collected responses from 222 developers contributing in 124
different projects, which is one of the largest samples of sys-
tems used in refactoring studies.

Internal Validity: First, we use in the study a tool that
detects refactorings by comparing two revisions of the code.
We evaluated the recall of this tool using a sample of 120
documented refactoring operations. We achieved a recall of
0.93. However, we cannot guarantee a similar recall in the
studied GitHub projects, because some commits might con-
tain tangled changes making more difficult to isolate (or un-
tangle [7]) the changes related to refactorings. In addition,
it is known that this kind of detection approach may miss
refactorings that do not reach the version control system
(e.g., sequences of overlapping refactorings applied to the
same piece of code). We claim this threat should be toler-
ated in large scale studies, where we cannot assume that the
developers would be willing to install an external monitoring
tool in their IDEs [24]. Furthermore, as we showed in this
study, developers nowadays use IDEs from multiple vendors.

In order to cover as many IDEs as possible and strengthen
the external validity, a study based on monitoring would re-
quire to develop a separate version of this tool for each IDE.
Second, we cannot claim that the catalogue of motivations
we propose is exhaustive. Notably, we have a limited num-
ber of motivation themes for less frequent refactoring types,
such as Push Down Method/Attribute and Extract
Interface. Third, to mitigate inconsistencies in the pro-
posed themes, we rely on an initial classification performed
independently by two authors of the paper, followed by a
consensus building process. We also make publicly available
the responses collected from the developers and the pro-
posed refactoring motivation themes to provide a means for
replication and verification.

8. CONCLUSIONS
In summary, the main conclusions and lessons learned are:

1. Refactoring activity is mainly driven by changes in the
requirements (i.e., new feature and bug fix requests) and
much less by code smell resolution. Only 2 out of the 11
motivations for Extract Method were related to code
smell resolution (remove duplication, decompose method)
covering only 25% (35/138) of the motivation instances.

2. Extract Method is a key operation that serves mul-
tiple purposes, specially those related to code reuse and
functionality extension. It is also used to improve the
testability of code, and deprecate public API methods.

3. The elimination of dependencies is the most common mo-
tivation among the move/abstract related refactorings.

4. Manual refactoring is still prevalent (55% of the develop-
ers refactored manually the code). In particular, inher-
itance related refactoring tool support seems to be the
most under-used (only 10% done automatically), while
Move Class andRename Package are the most trusted
refactorings (over 50% done automatically).

5. The IDE plays an important role in the adoption of refac-
toring tool support. IntelliJ IDEA users perform more
automated refactorings (71% done automatically) than
Eclipse users (44%) and Netbeans users (50%).

6. Compared to the study by Murphy-Hill et al. [23], it
seems that developers apply more automated refactor-
ings nowadays. Our findings confirm Negara et al. [24]
who collected data only from Eclipse IDE users, but our
study covers developers using more IDEs.

Based on our findings, we propose that future research
on refactoring recommendation systems should refocus from
code-smell-oriented to maintenance-task-oriented solutions.
This could be achieved by leveraging the recent advance-
ments in feature location [8] and requirements tracing to
automatically locate the code associated with a feature or
bug fix request, or a requirement change, and recommend
suitable refactorings that will make easier the completion of
the maintenance task. We strongly believe this will boost
the adoption of recommendation systems by the developers.

Acknowledgments

Danilo Silva and Marco Tulio Valente are partially funded
by FAPEMIG and CNPq. Nikolaos Tsantalis is partially
funded by NSERC and FRQNT. We gratefully thank the
222 developers who participated in our study.

867



9. ARTIFACT DESCRIPTION
The data collected in this study is provided as an artifact,

which is publicly available at:

http://aserg-ufmg.github.io/why-we-refactor

The dataset includes a list of 539 commits from 185 GitHub-
hosted Java projects with 1,411 refactorings identified by the
RefactoringMiner tool and confirmed with manual inspec-
tion. The detected refactorings cover 12 different types:

1. Extract Method (EM)
2. Move Class (MC)
3. Move Attribute (MA)
4. Rename Package (RP)
5. Move Method (MM)
6. Inline Method (IM)
7. Pull Up Method (UM)
8. Pull Up Attribute (UA)
9. Extract Superclass (ES)

10. Push Down Method (DM)
11. Push Down Attribute (DA)
12. Extract Interface (EI)

Additionally, the dataset includes a list of 222 commits
with 463 refactorings and their motivations. This is the
subset of the commits with refactorings where the devel-
opers answered to our mails, describing the reasons for per-
forming the detected refactorings. The motivation theme for
each refactoring was proposed after analyzing all developers’
answers using thematic-analysis. The dataset contains de-
tails of the themes assigned by each one of the two authors
that independently analyzed each commit, and also the final
themes derived after a discussion phase to reach a consen-
sus. Moreover, the dataset also includes information about
the IDE used to perform the refactorings (if reported by
the developer). In case the refactoring is performed manu-
ally, we also include a possible reason for not using the IDE
refactoring tool support.

Figure 3 illustrates one of these commits. In this exam-
ple, there are two refactorings applied in the neo4j project.

The first one is an Extract Superclass, in which the su-
perclass AbstractLuceneIndexAccessorReaderTest was ex-
tracted from two other classes. This refactoring was per-
formed to Extract common state/behavior. The second refac-
toring, in which the method query was extracted from two
other methods of class LuceneIndexAccessorReader, was
performed to Remove duplication. Additionally, the refac-
toring was performed manually (Manual tag) due to a Lack
of trust in refactoring tools. Finally, the IDE is Unknown,
because it was not reported by the developer. The dataset
also includes meta-data about the commits (SHA1 hash, au-
thor, date, and time).

The dataset is available as a navigable web site, where re-
searchers and practitioners can view and explore each com-
mit including a refactoring with the motivation inferred in
our study. However, we also provide the dataset in JSON
format, to facilitate its import and use by other tools.

9.1 License
The dataset is distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted
use, distribution, reproduction and adaptation in any medi-
um provided that it is properly attributed.

Danilo Silva, Nikolaos Tsantalis, Marco Tulio Valente. Why
We Refactor? Confessions of GitHub Contributors. In Pro-
ceedings of the 24th International Symposium on the Foun-
dations of Software Engineering (FSE), 2016.

9.2 How to contribute
Researchers are welcome to contribute to this dataset ei-

ther reporting issues or submitting new data from different
projects or commits. Such contributions should be made via
GitHub issues or pull requests in the following repository:

https://github.com/aserg-ufmg/why-we-refactor

Instructions on how to submit new data are available in
the artifact’s web page, explaining details about the format
of the data that should be submitted and how to make a
pull request.

neo4j b83e6a5

Authored by Mats Rydberg, Committed at 6/18/15 7:27 AM

Commit Message

Implement index prefix search for lucene indices

Refactorings

Extract Superclass org.neo4j.kernel.api.impl.index.AbstractLuceneIndexAccessorReaderTest from classes

org.neo4j.kernel.api.impl.index.LuceneIndexAccessorReaderTest and

org.neo4j.kernel.api.impl.index.LuceneUniqueIndexAccessorReaderTest

Extract Method protected query(query Query) : PrimitiveLongIterator extracted from public

lookup(value Object) : PrimitiveLongIterator and public scan() : PrimitiveLongIterator in class

org.neo4j.kernel.api.impl.index.LuceneIndexAccessorReader

Motivation Tags

EM: Remove duplication

ES: Extract common

state/behavior

Tool Usage Tags

Manual

manual: Lack of trust

ide: Unknown

Figure 3: An example of a commit with refactorings and their motivations.

868



10. REFERENCES
[1] G. Bavota, A. De Lucia, A. Marcus, and R. Oliveto.

Recommending refactoring operations in large
software systems. In M. P. Robillard, W. Maalej, R. J.
Walker, and T. Zimmermann, editors,
Recommendation Systems in Software Engineering,
pages 387–419. Springer Berlin Heidelberg, 2014.

[2] G. Bavota, A. De Lucia, and R. Oliveto. Identifying
Extract Class refactoring opportunities using
structural and semantic cohesion measures. J. Syst.
Softw., 84(3):397–414, Mar. 2011.

[3] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk,
and A. De Lucia. Methodbook: Recommending Move
Method refactorings via relational topic models. IEEE
Trans. Softw. Eng., 40(7):671–694, July 2014.

[4] K. Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 2000.

[5] O. Chaparro, G. Bavota, A. Marcus, and M. Di Penta.
On the impact of refactoring operations on code
quality metrics. In Proceedings of the 2014 IEEE
International Conference on Software Maintenance
and Evolution, pages 456–460, 2014.

[6] D. S. Cruzes and T. Dyba. Recommended steps for
thematic synthesis in software engineering. In
Proceedings of the 2011 International Symposium on
Empirical Software Engineering and Measurement,
pages 275–284, 2011.

[7] M. Dias, A. Bacchelli, G. Gousios, D. Cassou, and
S. Ducasse. Untangling fine-grained code changes. In
Proceedings of the 22nd IEEE International
Conference on Software Analysis, Evolution, and
Reengineering, pages 341–350, 2015.

[8] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk.
Feature location in source code: a taxonomy and
survey. Journal of Software: Evolution and Process,
25(1):53–95, 2013.

[9] B. Du Bois, S. Demeyer, and J. Verelst. Does the
”refactor to understand” reverse engineering pattern
improve program comprehension? In Proceedings of
the Ninth European Conference on Software
Maintenance and Reengineering, pages 334–343, 2005.

[10] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, Boston, MA, USA,
1999.

[11] J. L. Hintze and R. D. Nelson. Violin plots: A box
plot-density trace synergism. The American
Statistician, 52(2):181–184, 1998.

[12] K. Hotta, Y. Higo, and S. Kusumoto. Identifying,
tailoring, and suggesting Form Template Method
refactoring opportunities with program dependence
graph. In Proceedings of the 16th European Conference
on Software Maintenance and Reengineering, pages
53–62, 2012.

[13] D. Kawrykow and M. P. Robillard. Non-essential
changes in version histories. In Proceedings of the 33rd
International Conference on Software Engineering,
pages 351–360, 2011.

[14] M. Kim, D. Cai, and S. Kim. An empirical
investigation into the role of api-level refactorings
during software evolution. In Proceedings of the 33rd
International Conference on Software Engineering,
pages 151–160, 2011.

[15] M. Kim, M. Gee, A. Loh, and N. Rachatasumrit.
Ref-Finder: A refactoring reconstruction tool based on
logic query templates. In Proceedings of the Eighteenth
ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 371–372,
2010.

[16] M. Kim, T. Zimmermann, and N. Nagappan. A field
study of refactoring challenges and benefits. In
Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software
Engineering, pages 50:1–50:11, 2012.

[17] M. Kim, T. Zimmermann, and N. Nagappan. An
empirical study of refactoring challenges and benefits
at Microsoft. IEEE Trans. Softw. Eng., 40(7), July
2014.

[18] N. Meng, L. Hua, M. Kim, and K. S. McKinley. Does
automated refactoring obviate systematic editing? In
Proceedings of the 37th International Conference on
Software Engineering, May 2015.

[19] T. Mens and T. Tourwe. A survey of software
refactoring. IEEE Trans. Softw. Eng., 30(2):126–139,
2004.

[20] G. C. Murphy, M. Kersten, and L. Findlater. How are
Java software developers using the Eclipse IDE? IEEE
Software, 23(4):76–83, July 2006.

[21] E. Murphy-Hill and A. P. Black. Breaking the barriers
to successful refactoring: Observations and tools for
Extract Method. In Proceedings of the 30th
International Conference on Software Engineering,
pages 421–430, 2008.

[22] E. Murphy-Hill, T. Zimmermann, C. Bird, and
N. Nagappan. The design space of bug fixes and how
developers navigate it. IEEE Transactions on Software
Engineering, 41(1):65–81, Jan 2015.

[23] E. R. Murphy-Hill, C. Parnin, and A. P. Black. How
we refactor, and how we know it. IEEE Trans. Softw.
Eng., 38(1):5–18, 2012.

[24] S. Negara, N. Chen, M. Vakilian, R. E. Johnson, and
D. Dig. A comparative study of manual and
automated refactorings. In Proceedings of the 27th
European Conference on Object-Oriented
Programming (ECOOP), pages 552–576, 2013.

[25] S. Negara, M. Codoban, D. Dig, and R. E. Johnson.
Mining fine-grained code changes to detect unknown
change patterns. In Proceedings of the 36th
International Conference on Software Engineering,
pages 803–813, 2014.

[26] W. F. Opdyke. Refactoring object-oriented
frameworks. PhD thesis, University of Illinois at
Urbana-Champaign, IL, USA, 1992.

[27] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim.
Template-based reconstruction of complex
refactorings. In Proceedings of the 2010 IEEE
International Conference on Software Maintenance,
pages 1–10, 2010.

[28] N. Rachatasumrit and M. Kim. An empirical
investigation into the impact of refactoring on
regression testing. In 28th IEEE International
Conference on Software Maintenance, pages 357–366,
2012.

[29] V. Sales, R. Terra, L. Miranda, and M. Valente.
Recommending Move Method refactorings using

869



dependency sets. In Proceedings of the 20th Working
Conference on Reverse Engineering, pages 232–241,
2013.

[30] D. Silva, R. Terra, and M. T. Valente. Recommending
automated Extract Method refactorings. In
Proceedings of the 22nd International Conference on
Program Comprehension, pages 146–156, 2014.

[31] J. Singer, S. E. Sim, and T. C. Lethbridge. Guide to
Advanced Empirical Software Engineering, chapter
Software Engineering Data Collection for Field
Studies, pages 9–34. Springer London, London, 2008.

[32] G. Soares, R. Gheyi, E. Murphy-Hill, and B. Johnson.
Comparing approaches to analyze refactoring activity
on software repositories. J. Syst. Softw.,
86(4):1006–1022, Apr. 2013.

[33] R. Tairas and J. Gray. Increasing clone maintenance
support by unifying clone detection and refactoring
activities. Inf. Softw. Technol., 54(12):1297–1307, Dec.
2012.

[34] N. Tsantalis and A. Chatzigeorgiou. Identification of
Move Method refactoring opportunities. IEEE Trans.
Softw. Eng., 35(3):347–367, May 2009.

[35] N. Tsantalis and A. Chatzigeorgiou. Identification of
Extract Method refactoring opportunities for the
decomposition of methods. J. Syst. Softw.,
84(10):1757–1782, Oct. 2011.

[36] N. Tsantalis, V. Guana, E. Stroulia, and A. Hindle. A
multidimensional empirical study on refactoring
activity. In Proceedings of the Conference of the Centre

for Advanced Studies on Collaborative Research
(CASCON), pages 132–146, 2013.

[37] N. Tsantalis, D. Mazinanian, and G. P. Krishnan.
Assessing the refactorability of software clones. IEEE
Trans. Softw. Eng., 41(11):1055–1090, Nov 2015.

[38] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar,
B. P. Bailey, and R. E. Johnson. Use, disuse, and
misuse of automated refactorings. In Proceedings of
the 34th International Conference on Software
Engineering, pages 233–243, 2012.

[39] Y. Wang. What motivate software engineers to
refactor source code? evidences from professional
developers. In IEEE International Conference on
Software Maintenance, pages 413–416, Sept 2009.

[40] P. Weißgerber and S. Diehl. Are refactorings less
error-prone than other changes? In Proceedings of the
2006 International Workshop on Mining Software
Repositories, pages 112–118, 2006.

[41] Z. Xing and E. Stroulia. UMLDiff: An algorithm for
object-oriented design differencing. In Proceedings of
the 20th IEEE/ACM International Conference on
Automated Software Engineering, pages 54–65, 2005.

[42] Z. Xing and E. Stroulia. The JDEvAn tool suite in
support of object-oriented evolutionary development.
In Companion of the 30th International Conference on
Software Engineering, pages 951–952, 2008.

870


