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Abstract—Refactoring is a well-known technique that is widely
adopted by software engineers to improve the design and enable
the evolution of a system. Knowing which refactoring operations
were applied in a code change is a valuable information to under-
stand software evolution, adapt software components, merge code
changes, and other applications. In this paper, we present RefDiff,
an automated approach that identifies refactorings performed
between two code revisions in a git repository. RefDiff employs
a combination of heuristics based on static analysis and code
similarity to detect 13 well-known refactoring types. In an
evaluation using an oracle of 448 known refactoring operations,
distributed across seven Java projects, our approach achieved
precision of 100% and recall of 88%. Moreover, our evaluation
suggests that RefDiff has superior precision and recall than
existing state-of-the-art approaches.

Keywords-refactoring; software evolution; software reposito-
ries; git.

I. INTRODUCTION

Refactoring is a well-known technique to improve the
design of a system and enable its evolution [1]. In fact, existing
studies [2]–[6] present strong evidences that refactoring is fre-
quently applied by development teams, and it is an important
aspect of their software maintenance workflow.

Therefore, knowing about the refactoring activity in a code
change is a valuable information to help researchers to un-
derstand software evolution. For example, past studies have
used such information to shed light on important aspects of
refactoring practice, such as: how developers refactor [2], the
usage of refactoring tools [2], [7], the motivations driving
refactoring [4]–[6], the risks of refactoring [4], [5], [8]–[10],
and the impact of refactoring on code quality metrics [4],
[5]. Moreover, knowing which refactoring operations were
applied in the version history of a system may help in several
practical tasks. For example, in a study by Kim et al. [4],
many developers mentioned the difficulties they face when
reviewing or integrating code changes after large refactoring
operations, which moves or renames several code elements.
Thus, developers feel discouraged to refactor their code. If
a tool is able to identify such refactoring operations, it can
possibly resolve merge conflicts automatically. Moreover, diff
visualization tools can also benefit from such information,
presenting refactored code elements side-by-side with their
corresponding version before the change. Another application
for such information is adapting client code to a refactored
version of an API it uses [11], [12]. If we are able to detect

the refactorings that were applied to an API, we can replay
them on the client code automatically.

Although there are approaches capable of detecting refac-
torings automatically, there are still some issues that hinder
their application. Specifically, the precision and recall of such
approaches still need improvements. In this paper, we try to
fill this gap by proposing RefDiff, an automated approach
that identifies refactorings performed in the version history
of a system. RefDiff employs a combination of heuristics
based on static analysis and code similarity to detect 13
well-known refactoring types. When compared to existing
approaches, RefDiff leverages existing techniques and also
introduces some novel ideas, such as the adaptation of the
classical TF-IDF similarity measure from information retrieval
to compare refactored code elements, and a new strategy to
compare the similarity of fields by taking into account the
similarity of the statements that reads from or writes to them.

In the paper, we also describe in details a study to evaluate
the precision and recall of RefDiff and three existing refactor-
ing detection approaches: Refactoring Miner [6], Refactoring
Crawler [13], and Ref-Finder [14], [15]. In our study, RefDiff
achieved precision of 100% and recall of 88%, which were
the best results among the evaluated approaches.

In summary, the contributions we deliver in this work are:

• RefDiff, which is a new approach to detect refactoring
in version histories. We provide a publicly available1

implementation of our approach that is capable of finding
refactorings in Java code within git repositories in a fully
automated way;

• a publicly available oracle of 448 known refactoring
operations, applied to seven Java systems, that serves
as an evaluation benchmark for refactoring detection
approaches; and

• an evaluation of the precision and recall of RefDiff,
comparing it with three state-of-the-art approaches.

The remainder of this paper is structured as follows. Sec-
tion II describes related work, focusing on the three approaches
we compare with RefDiff. Section III presents the proposed
approach in details. Section IV describes how we evaluated
RefDiff and discusses the achieved results. Section V discusses
threats to validity and we conclude the paper in Section VI.

1RefDiff and all evaluation data are public available in GitHub:
https://github.com/aserg-ufmg/RefDiff



II. RELATED WORK

Empirical studies on refactoring rely on means to identify
refactoring activity. Thus, many different techniques have
been proposed and employed for this task. For example,
Murphy-Hill et al. [2] collected refactoring usage data using
a framework that monitors user actions in the Eclipse IDE,
including calls to refactoring commands. Negara et al. [7]
also used the strategy of instrumenting the IDE to infer
refactorings from fine-grained code edits. Other studies use
metadata from version control systems to identify refactoring
changes. For example, Ratzinger et al. [16] search for a
predefined set of terms in commit messages to classify them
as refactoring changes. In specific scenarios, a branch may be
created exclusively to refactor the code, as reported by Kim
et al. [5]. Another strategy is employed by Soares et al. [17].
They propose an approach that identify behavior-preserving
changes by automatically generating and running test-cases.
While their approach is intended to guarantee the correct
behavior of a system after refactoring, it may also be employed
to classify commits as behavior-preserving. Moreover, many
existing approaches are based on static analysis. This is
the case of the approach proposed by Demeyer et al. [18],
which finds refactored elements by observing changes in code
metrics.

Static analysis is also frequently used to find differences
in the source code [3], [13]–[15], [19]. Approaches based
on comparing source code differences have the advantage of
beeing able to identify each refactoring operation performed.
As RefDiff is one of these approaches, it can be directly
compared with others within this category. In the next sections,
we will describe three of such approaches.

A. Refactoring Miner

Refactoring Miner is an approach introduced by Tsan-
talis et al. [3], that was later extend by Silva et al. [6] to
mine refactorings in large scale in git repositories. This tool
is capable of identifying 14 high-level refactoring types: Re-
name Package/Class/Method, Move Class/Method/Field, Pull
Up Method/Field, Push Down Method/Field, Extract Method,
Inline Method, and Extract Superclass/Interface.

Refactoring Miner runs a lightweight algorithm, similar to
the UMLDiff proposed by Xing and Stroulia [20], for dif-
ferencing object-oriented models, inferring the set of classes,
methods, and fields added, deleted or moved between two code
revisions. First, the algorithm matches code entities in a top-
down order (starting from the classes and going to the methods
and fields) looking for exact matches on their names and
signatures (in the case of methods). Next, the removed/added
elements between the two models are matched based only on
the equality of their names in order to find changes in the
signatures of fields and methods. Third, the removed/added
classes are matched based on the similarity of their members
at signature level. Finally, a set of rules enforcing structural
constraints is applied to identify specific types of refactorings.

In a first study, using the version histories of JUnit, HTTP-
Core, and HTTPClient, Tsantalis et al. [3] found 8 false

positives for the Extract Method refactoring (96.4% precision)
and 4 false positives for the Rename Class refactoring (97.6%
precision). No false positives were found for the remaining
refactorings. In a second study that mined refactorings in
285 GitHub hosted Java repositories, Silva et al. [6] found
1,030 false positives out of 2,441 refactorings (63% precision).
However, the authors also evaluated Refactoring Miner using
as a benchmark the dataset reported by Chaparro et al. [21],
in which it achieved 93% precision and 98% recall.

B. Refactoring Crawler

Refactoring Crawler, proposed by Dig et al. [13], is an
approach capable of finding seven high-level refactoring types:
Rename Package/Class/Method, Pull Up Method, Push Down
Method, Move Method, and Change Method Signature. It uses
a combination of a syntactic analysis to detect refactoring
candidates and a more expensive reference graph analysis to
refine the results.

First, Refactoring Crawler analyzes the abstract syntax tree
of a program and produces a tree, in which each node repre-
sents a source code entity (package, class, method, or field).
Then, it employs a technique known as shingles encoding to
find similar pairs of entities, which are candidates for refactor-
ings. Shingles are representations for strings with the following
property: if a string changes slightly, then its shingles also
change slightly. In a second phase, Refactoring Crawler applies
specific strategies for detecting each refactoring type, and
computes a more costly metric that determines the similarity
of references among code entities in the two versions of the
system. For example, two methods are similar if the sets of
methods that call them are similar, and the sets of methods
they call are also similar. The strategies to detect refactorings
are repeated in a loop until no new refactorings are found.
Therefore, the detection of a refactoring, such as a rename,
may change the reference graph of code elements and enable
the detection of new refactorings.

The authors evaluated Refactoring Crawler comparing pairs
of releases of three open source software components: Eclipse
UI, Struts, and JHotDraw. Such components were chosen
because they provided detailed release notes describing API
changes. The authors relied on such information and on
manual inspection to build an oracle of known refactorings
in those releases, containing 131 refactorings in total. The
reported results are: Eclipse UI (90% precision and 86%
recall), Struts (100% precision and 86% recall), and JHotDraw
(100% precision and 100% recall).

C. Ref-Finder

Ref-Finder, proposed by Prete et al. [14], [15], is an
approach based on logic programming capable of identifying
63 refactoring types from the Fowler’s catalog [1]. The authors
express each refactoring type by defining structural constraints,
before and after applying a refactoring to a program, in terms
of template logic rules.

First, Ref-Finder traverses the abstract syntax tree of a
program and extracts facts about code elements, structural



dependencies, and the content of code elements, to represent
the program in terms of a database of logic facts. Then, it
uses a logic programming engine to infer concrete refactoring
instances, by creating a logic query based on the constraints
defined for each refactoring type. The definition of refactor-
ing types also consider ordering dependencies among them.
This way, lower-level refactorings may be queried to identify
higher-level, composite refactorings. The detection of some
types of refactoring requires a special logic predicate that
indicates that the similarity between two methods is above a
threshold. For this purpose, the authors implemented a block-
level clone detection technique, which removes any beginning
and trailing parenthesis, escape characters, white spaces and
return keywords and computes word-level similarity between
the two texts using the longest common sub-sequence algo-
rithm.

The authors evaluated Ref-Finder in two case studies. In
the first one, they used code examples from the Fowler’s
catalog to create instances of the 63 refactoring types. The
authors reported 93.7% recall and 97.0% precision for this
first study. In the second study, the authors used three open-
source projects: Carol, jEdit, and Columba. In this case, Ref-
Finder was executed in randomly selected pairs of versions.
From the 774 refactoring instances found, the authors man-
ually inspected a sample of 344 instances and found that
254 were correct (73.8% precision). However, in a study by
Soares et al. [22] using a set of randomly select versions of
JHotDraw and Apache Common Collections containing 81
refactoring instances in total, Ref-Finder achieved only 35%
precision and 24% recall.

III. PROPOSED REFACTORING DETECTION ALGORITHM

RefDiff employs a combination of heuristics based on static
analysis and code similarity to detect refactorings between
two revisions of a system. Thus, RefDiff takes as input two
versions of a system, and outputs a list of refactorings found.

The detection algorithm is divided in two main phases:
Source Code Analysis and Relationship Analysis. In the first
phase, the source code of the system is parsed and analyzed
to build a model that represents each high level source code
entity, such as types, methods, and fields. Two models are
built to represent the system before (Eb) and after the changes
(Ea). For efficiency, only code entities that belong to modified
source files (added, removed or edited) are analyzed. Each of
these two models is a set of types, method, and fields contained
in the source code. Specifically, Eb = (Tb∪Mb∪Fb), such that
Tb, Mb, and Fb are the sets of types, methods, and fields in
the source code before the changes, and Ea = (Ta∪Ma∪Fa),
such that Ta, Ma, and Fa are the sets of types, methods, and
fields after the changes.

The second phase of the algorithm, Relationship Analysis,
consists in finding relationships between source code entities
before and after the code changes. Specifically, the algorithm
builds a bipartite graph with two sets of vertices: code entities
before (Eb) and code entities after (Ea). The edges of this
graph are represented by the set of relationships R between

code entities. For example, a certain method m1 ∈ Mb may
correspond to a method m2 ∈ Ma that was renamed by
a developer. This would correspond to a Rename Method
relationship between m1 and m2 and, consequently, to a
Rename Method refactoring.

Table I presents all relationships that RefDiff can identify
between types, methods, or fields. We search for relationships
between source code entities considering each relationship
type in the order they are presented in the table. The following
sections detail how such relationships are identified.

A. Matching Relationships

Some kinds of relationships map code entities before the
change to code entities after the change. For example, let
t1 ∈ Tb be a type in the version before the change. If our
algorithm finds another type t2 ∈ Ta with the same qualified
name, it adds a relationship Same Type between t1 and t2 in R.
This is a matching relationship, because t1 corresponds to t2
after the change. Other examples of matching relationship are
Move Type, Rename Type, and Pull Up Method. In contrast,
suppose that our algorithm finds that m2 is a method that
was extracted from another method m1. In this case, there
is an Extract Method relationship between m1 and m2, but
this is not a matching relationship, because m1 does not
correspond to m2 after the change. From this point on, we
use the notation e1 ∼ e2 to represent a matching relationship
between e1 and e2.

We discriminate matching relationships from non-matching
relationships because their detection algorithm is similar. For
each matching relationship type, we find all pairs of entities
(eb, ea) ∈ Eb × Ea that fall under the conditions specified in
Table I. Each relationship type has its specific conditions. For
example, as presented in Table I, the conditions for identifying
a Rename Method between m1 ∈Mb and m2 ∈Ma are:

• the names of m1 and m2 should be different;
• there should exist a matching relationship between the

container classes of m1 and m2; and
• the similarity index between m1 and m2, denoted by

sim(m1,m2), should be greater than a threshold τ .

Whenever these conditions hold, we add the triple
(eb, ea, sim(eb, ea)) in a list of potential Rename Method
relationships.

The last step to find the actual relationships consists in
selecting non-conflicting relationships from the list of potential
relationships and add them to the graph. For example, there
may be in the list two potential Rename Method relationships:
(e1, e2, 0.5) and (e1, e3, 0.8). However, a code entity can not
be involved in more than one matching relationship. Thus,
only one of them must be chosen, because e1 could not be
renamed to e2 and to e3. The criterion we use is to choose
the triple with the higher similarity index. This means that,
in the aforementioned example, we would choose the triple
(e1, e3, 0.8) and discard (e1, e2, 0.5). In Section III-C we
describe in details how the similarity index is computed.



TABLE I
RELATIONSHIP TYPES

Relationship Condition

(tb, ta) ∈ Tb × Ta, such that:
Same Type name(tb) = name(ta) ∧ π(tb) ∼ π(ta)
Rename Type name(tb) 6= name(ta) ∧ π(tb) ∼ π(ta) ∧ sim(tb, ta) > τ

Move Type name(tb) = name(ta) ∧ π(tb) � π(ta) ∧ sim(tb, ta) > τ

Move and Rename Type name(tb) 6= name(ta) ∧ π(tb) � π(ta) ∧ sim(tb, ta) > τ

Extract Supertype (@x ∈ Tb |x ∼ ta) ∧ (∃y ∈ Ta | tb ∼ y ∧ subtype(y, ta)) ∧ simp(ta, tb) > τ

(mb,ma) ∈Mb ×Ma, such that:
Same Method sig(mb) = sig(ma) ∧ π(mb) ∼ π(ma)

Rename Method name(mb) 6= name(ma) ∧ π(mb) ∼ π(ma) ∧ sim(mb,ma) > τ

Change Method Signature name(mb) = name(ma) ∧ sig(mb) 6= sig(ma) ∧ π(mb) ∼ π(ma) ∧ sim(mb,ma) > τ

Pull Up Method sig(mb) = sig(ma) ∧ subtype(π(mb)
∼, π(ma)) ∧ sim(mb,ma) > τ

Push Down Method sig(mb) = sig(ma) ∧ supertype(π(mb)
∼, π(ma)) ∧ sim(mb,ma) > τ

Move Method name(mb) = name(ma) ∧ π(mb) � π(ma) ∧ ¬ subOrSuper(π(mb)
∼, π(ma)) ∧ sim(mb,ma) > τ

Extract Method (@x ∈Mb |x ∼ ma) ∧ (∃y ∈Ma |mb ∼ y ∧ y ∈ callers(ma)) ∧ simp(ma,mb) > τ

Inline Method (@x ∈Ma |mb ∼ x) ∧ (∃y ∈Mb | y ∼ ma ∧ y ∈ callers(mb)) ∧ simp(mb,ma) > τ

(fb, fa) ∈ Fb × Fa, such that:
Same Field name(fb) = name(fa) ∧ type(fb) = type(fa) ∧ π(fb) ∼ π(fa)
Pull Up Field name(fb) = name(fa) ∧ type(fb) = type(fa) ∧ subtype(π(fb)

∼, π(fa)) ∧ sim(fb, fa) > τ

Push Down Field name(fb) = name(fa) ∧ type(fb) = type(fa) ∧ supertype(π(fb)
∼, π(fa)) ∧ sim(fb, fa) > τ

Move Field name(fb) = name(fa) ∧ type(fb) = type(fa) ∧ π(fb) � π(fa) ∧ ¬ subOrSuper(π(fb)
∼, π(fa)) ∧ sim(fb, fa) > τ

name(e) simple name of a code entity e
sig(m) signature of a method m
type(f) type of a field f
subtype(t1, t2) t1 is subtype of t2
supertype(t1, t2) t1 is supertype of t2
subOrSuper(t1, t2) subtype(t1, t2) ∨ supertype(t1, t2)

π(e) container entity of a code entity e (it may be a type or a package)
e1 ∼ e2 exists a matching relationship between e1 and e2
e1 � e2 does not exists a matching relationship between e1 and e2
e∼ the code entity that matches with e after the change
callers(ma) the set of methods that call ma

sim(e1, e2) similarity index between e1 and e2
simp(e1, e2) similarity index between e1 and e2 for non-matching relationships

B. Non-matching Relationships

In the previous section, we discussed that an entity could
not be involved in multiple matching relationships, but this
property does not hold for non-matching relationships. For
example, suppose that a developer extracted some code from
a method m1 into a new method m2, i.e., an Extract Method
refactoring was applied. It is also possible that the developer
extracted another part of m1 into a new method m3.

Given that non-matching relationships do not conflict with
each other, the algorithm to identify them is simpler. We just
need to find all pairs of entities (eb, ea) ∈ Eb × Ea that
fall under the conditions specified in Table I. For example,
the conditions for identifying an Extract Method relationship
between m1 ∈Mb and m2 ∈Ma are:
• there should not exist a method x ∈Mb such that x ∼ m2

(i.e., m2 was added);
• there should exist a method y ∈ Ma such that m1 ∼ y

(i.e., m1 was not removed);
• y should call m2; and
• the similarity index between m2 and m1, denoted by

simp(m2,m1), should be greater than a threshold τ .
Besides Extract Method, our approach supports the detec-

tion of Inline Method and Extract Supertype relationships.

C. Computing Similarity

A key element of our algorithm to find relationships, as
mentioned previously, is computing the similarity between
entities. The first step to compute similarity of code entities is
to represent their source code as a multiset (or bag) of tokens.
A multiset is a generalization of the concept of a set, but it
allows multiple instances of the same element. The multiplicity
of an element is the number of occurrences of that element
within the multiset. Formally, a multiset can be defined in
terms of a multiplicity function m : U → N, where U is
the set of all possible elements. In other words, m(t) is the
multiplicity of the element t in the multiset. Note that the
multiplicity of an element that is not in the multiset is zero.

For example, Figure 1 depicts the transformation of the
source code of three methods (sum, min, and power), of the
class Calculator, into multisets of tokens. In the Figure,
the multiplicity function m for each method is represented
in a tabular form. For example, the multiplicity of the token
y in method min is two (i.e., mmin(y) = 2), whilst the
multiplicity of the token if in method power is zero (i.e.,
mpower(if) = 0).

Later, to compute the similarity between two source code
entities e1 and e2, we use a generalization of the Jaccard



Source code of a class

public class Calculator {

public int sum(int x, int y) {
return x + y;

}

public int min(int x, int y) {
if (x < y) return x;
else return y;

}

public double power(int b, int e) {
return Math.pow(b, e);

}
}

⇒

Multiset of tokens for each method
Token t msum(t) mmin(t) mpower(t)

return 1 2 1
x 1 2 0
+ 1 0 0
y 1 2 0
; 1 2 1
if 0 1 0
( 0 1 1
< 0 1 0
) 0 1 1
else 0 1 0
Math 0 0 1
. 0 0 1
pow 0 0 1
b 0 0 1
, 0 0 1
e 0 0 1

nt

3
2
1
2
3
1
2
1
2
1
1
1
1
1
1
1

Fig. 1. Transformation of the body of each method into a multiset of tokens

coefficient, known as weighted Jaccard coefficient [23]. Let
U be the set of all possible tokens and w(e, t) be a weight
function of a token t for the entity e. We define the similarity
between e1 and e2 by the following formula:

sim(e1, e2) =

∑
t∈U min(w(e1, t), w(e2, t))∑
t∈U max(w(e1, t), w(e2, t))

(1)

1) Weight of a token for a code entity: Our similarity func-
tion is based on a weighting function w(e, t) that expresses the
importance a token t for a code entity e. In fact, some tokens
are more important than others to discriminate a code element.
For example, in Figure 1, all three methods contain the
token return. In contrast, only one method (power) contains
the token Math. Therefore, the later is a better indicator of
similarity between methods than the former.

In order to take this into account, we employ a variation of
the TF-IDF weighting scheme [24], which is a well-known
technique from information retrieval. TF-IDF, which is the
short form of Term Frequency–Inverse Document Frequency,
reflects how important a term is to a document within a
collection of documents. In the context of code entities, we
consider a token as a term, and the body of a method (or
class) as a document.

Let E be the set of all code entities and nt be the number of
entities in E that contains the token t, we define the weight of
t for a code entity e as the function w(e, t), which is defined
by the following formula:

w(e, t) = me(t)× idf (t) (2)

where me(t) is the multiplicity of t in e, and idf (t) is the
Inverse Document Frequency, which is defined as:

idf (t) = log(1 +
|E|
nt

) (3)

Note that the value of idf (t) decreases as nt increases,
because the more frequent a token is among the collection
of code entities, the less important it is to distinguish code
elements. For example, in Figure 1, the token y occurs in two
methods (sum and min). Thus, its idf is:

idf (y) = log(1 +
|E|
nt

) = log(1 +
3

2
) = 0.398

On the other hand, the token else occurs in one method
(min), and its idf is:

idf (else) = log(1 +
|E|
nt

) = log(1 +
3

1
) = 0.602

2) Similarity of fields: The similarity of types and methods
can be directly computed by the aforementioned similarity
function by scanning the source code within their bodies and
building the multiset of tokens. However, such strategy is not
suitable to compute the similarity of fields, because they do
not have a body. To address this limitation, we defined the
concept of a virtual body of a field, which is composed of all
statements that access the field (read or write) found in the
source code of the system. Thus, we are able to compute the
multiset of tokens for a field f1 by extracting the tokens of all
statements that access f1. The rationale behind such strategy
is that if a field f1 corresponds to a field f2 after a change,
the statements that directly used f1 should use f2 after the
change, thus, they would likely be similar.

3) Similarity for non-matching relationships: While the
similarity function presented previously is suitable to compute
whether the source code of two entities are similar, in some
situations we need to assess whether the source code of an
entity is contained within another one. This is the case of
Extract Supertype, Extract Method, and Inline Method rela-
tionships. For example, if a method m2 is extracted from m1,
the source code of m2 should be contained within m1 prior



to the refactoring, although m1 and m2 may be significantly
different from each other. Analogously, if a method m1 is
inlined into m2, the source code of m1 should be contained
within m2. Thus, we defined a specialized version of the
similarity function simp defined by the following formula:

simp(e1, e2) =

∑
t∈U min(w(e1, t), w(e2, t))∑

t∈U w(e1, t)
(4)

The rationale behind this formula is that the similarity is
at maximum when the multiset of tokens of e1 is a subset of
the multiset of tokens of e2, i.e., all tokens from e1 can be
found in e2. Note that, given this definition, simp(e1, e2) 6=
simp(e2, e1).

D. Calibration of similarity thresholds

Our algorithm relies on thresholds to find relationships be-
tween entities, as discussed in Section III-A and Section III-B.
Specifically, for each relationship type, we define a threshold
τ for the minimum similarity that the involved entities should
have so that we consider them as a potential relationship.
Therefore, the thresholds we choose may affect the precision
an recall of the algorithm. For this reason, we selected such
thresholds by applying a well-defined calibration process.

First, we randomly selected a set of ten commits that contain
refactorings, in ten different projects (see Table II), drawn
from a public dataset used to investigate the reasons for
refactoring operations [6]. We ensured that every refactoring
type is covered by at least one commit. All refactorings
reported in those commits were initially added to an oracle of
known refactorings. Later, for each refactoring type, we run
our algorithm using different thresholds values, ranging from
0.1 to 0.9 by 0.1 increments. The output of our algorithm
(i.e., the refactorings found) were then compared to the
known refactorings from the oracle. Refactorings contained
in our oracle were initially classified as true positives, whilst
refactorings not contained in our oracle were classified as false
positives. Moreover, refactorings in our oracle that were not
found were classified as false negatives. In a second pass,
the false positive refactorings were manually inspected to find
potential true positives incorrectly classified. This step was
necessary because the oracle obtained in the first step may
not contain all refactorings in a commit.

Last, we selected the threshold value by choosing the one
that yields the best compromise between precision and recall.
Specifically, we choose the value that optimize the F1 score,
which is defined as:

F1 = 2× precision× recall

precision+ recall
(5)

where precision and recall are respectively:

precision =
tp

tp+ fp
recall =

tp

tp+ fn
(6)

The set of threshold values chosen are presented in the
third column of Table III (τ ). It is worth noting that the

TABLE II
PROJECTS/COMMITS USED INT THE CALIBRATION

Repository URL Commit

github.com/linkedin/rest.li 54fa890
github.com/droolsjbpm/jbpm 3815f29
github.com/gradle/gradle 44aab62
github.com/jenkinsci/workflow-plugin d0e374c
github.com/spring-projects/spring-roo 0bb4cca
github.com/BuildCraft/BuildCraft a5cdd8c
github.com/droolsjbpm/drools 1bf2875
github.com/jersey/jersey d94ca2b
github.com/undertow-io/undertow d5b2bb8
github.com/kuujo/copycat 19a49f8

threshold calibration for each relationship type was performed
in the order presented in Table III, to minimize the effect of
dependencies between different relationship types. For exam-
ple, suppose that an existing Move Class refactoring is not
identified. It is likely that false positive Move Method instances
will be reported, because there should be some similar (or
identical) methods when comparing the moved class with itself
after the move operation. Therefore, it is important to calibrate
the Move Type threshold before the Move Method threshold.

TABLE III
THRESHOLDS CALIBRATION RESULTS

Ref. Type # τ TP FP FN Precision Recall

Rename Type 2 0.4 2 0 0 1.000 1.000
Move Type 2 0.9 2 0 0 1.000 1.000
Extract Superclass 2 0.8 2 0 0 1.000 1.000
Rename Method 24 0.3 22 3 2 0.880 0.917
Pull Up Method 7 0.4 7 0 0 1.000 1.000
Push Down Method 2 0.6 2 0 0 1.000 1.000
Move Method 24 0.4 21 1 3 0.955 0.875
Extract Method 25 0.1 25 9 0 0.735 1.000
Inline Method 6 0.3 5 2 1 0.714 0.833
Pull Up Field 2 0.5 2 0 0 1.000 1.000
Push Down Field 5 0.3 5 0 0 1.000 1.000
Move Field 1 0.5 1 1 0 0.500 1.000

Total 102 96 16 6 0.857 0.941

Table III also presents the number of entries (#) in the
oracle for each refactoring relationship type, and the results we
achieved using the optimal thresholds devised from the calibra-
tion process. The four rightmost columns show, respectively,
the number of true positives (TP), the number of false positives
(FP), the number of false negatives (FN), the precision and the
recall. In total, 85.7% of the refactoring relationships reported
by RefDiff were correct (precision) and it was able to find
94.1% of the known refactorings (recall).

IV. EVALUATION

A. Precision and Recall

To evaluate precision and recall, we compared the output of
RefDiff with an oracle of known refactoring instances, simi-



TABLE IV
SELECTED PROJECTS

Repository URL Description LOC

github.com/Atmosphere/atmosphere The Asynchronous WebSocket/Comet Framework 65,841
github.com/clojure/clojure The Clojure programming language 58,417
github.com/google/guava Google Core Libraries for Java 6+ 374,068
github.com/dropwizard/metrics Capturing JVM- and application-level metrics, so you know what’s going on 24,242
github.com/orientechnologies/orientdb An Open Source NoSQL DBMS with the features of both Document and Graph DBMSs 168,924
github.com/square/retrofit Type-safe HTTP client for Android and Java by Square, Inc. 17,073
github.com/spring-projects/spring-boot Spring Boot makes it easy to create Spring-powered, production-grade applications and

services with absolute minimum fuss
39,190

larly to the calibration procedure described in Section III-D.
Besides, we compared our tool with three existing approaches,
namely Refactoring Miner [6], Refactoring Crawler [13], and
Ref-Finder [15].

1) Construction of the oracle: In the calibration proce-
dure (Section III), we used an oracle containing refactor-
ing instances found on commits from open-source software
repositories. This strategy has the advantage of using real
refactoring instances, but it also has a drawback. There are no
practical means of assuring that the oracle contains all existing
refactoring instances in a given commit. In many cases, a
single commit changes several files in non trivial ways, and
a manual inspection of all changes using diff tools is time-
consuming and error-prone. Thus, refactoring instances might
be missed by the tool under evaluation and also by the oracle.
Therefore, the computation of recall may not be reliable.

To be able to reliably compute recall, we employed the
strategy of building an evaluation oracle by deliberately ap-
plying refactoring in software repositories in a controlled
manner, similarly to Chaparro et al. [21]. Such refactorings
were applied by graduate students of a Software Architecture
course. First, we randomly selected a list of 20 GitHub hosted
Java repositories from the dataset of Silva et al. [6] that
contained a Maven project file (pom.xml). This way, we
could use the Maven tool to build the project and import its
source code to Eclipse IDE. Then, the professor of the course
(an author of this paper) asked the students to:

1) Choose one of the 20 Java repositories in the list, given
the constraint that a repository could not be taken by
two students.

2) Analyze the latest revision of the source code, apply
a specified number of refactoring operations on it, and
commit the changes. The students were instructed to
apply at least three refactorings of each refactoring type
listed in Table V.

3) Document all refactoring operations applied in a spread-
sheet, using a specified format.

It is worth noting that refactoring operations documented
by them were confirmed by the first author of the paper by
inspecting the source code. In this step, minor mistakes and
typos were fixed. For example, in some cases students typed
the name of a class or method incorrectly. There were also
a few cases of refactorings actually applied that were not

TABLE V
REFACTORING TYPES IN THE EVALUATION ORACLE

Supported by

Ref. Type # RDiff RMinr RCraw RFind

Rename Type 35 yes yes yes no
Move Type 31 yes yes no no
Extract Superclass 16 yes yes no yes
Rename Method 70 yes yes yes yes
Pull Up Method 15 yes yes yes yes
Push Down Method 68 yes yes yes yes
Move Method 31 yes yes yes yes
Extract Method 29 yes yes no yes
Inline Method 52 yes yes no yes
Pull Up Field 33 yes yes no yes
Push Down Field 42 yes yes no yes
Move Field 26 yes yes no yes

Total 448

reported in the spreadsheet. For example, a student inlined
a method into the body of two other methods, but incorrectly
reported only one of them in the spreadsheet.

By the end of the deadline, seven students properly com-
pleted the tasks and applied the refactorings in the repositories
listed in Table IV. Note that the repositories contain relevant
Java projects such as Google Guava, Spring Boot and Ori-
entDB. Table IV also presents a short description of the project
and the number of lines of Java code within each repository.

In total, we included 448 refactoring relationships in the
evaluation oracle, as presented in Table V, covering 12 well-
known refactoring types. Note that a refactoring operation
may be represented by more than one refactoring relationship.
For example, a method m may be extract from both x and
y. In this case, the oracle would contain the relationships
ExtractMethod(x,m) and ExtractMethod(y,m).

2) Execution of the selected approaches: After constructing
the evaluation oracle, we run RefDiff, Refactoring Miner
(1.0.0), Refactoring Crawler (1.0.0), and Ref-Finder (1.0.4)
to compare their output with the refactoring relationships in
the oracle. Refactoring Miner can be used as an API, and
it provides mechanisms to export its output, thus, we only
needed to transform it into a normalized format. Refactoring
Miner and Refactoring Crawler are plug-ins that depend on



TABLE VI
PRECISION AND RECALL BY REFACTORING TYPE

RDiff RMinr RCraw RFind

Ref. Type Precision Recall Precision Recall Precision Recall Precision Recall

Rename Type 1.000 1.000 1.000 1.000 0.750 0.429
Move Type 1.000 0.968 1.000 0.968
Extract Superclass 1.000 0.875 1.000 0.875 0.484 0.938
Rename Method 1.000 0.943 1.000 0.886 0.971 0.486 0.868 0.843
Pull Up Method 1.000 0.600 1.000 0.733 0.500 0.067 1.000 0.571
Push Down Method 1.000 0.971 1.000 0.176 1.000 0.265 1.000 0.491
Move Method 1.000 1.000 1.000 0.742 0.090 0.323 0.054 0.759
Extract Method 1.000 0.897 1.000 0.862 0.607 0.586
Inline Method 1.000 0.981 1.000 0.423 0.917 0.688
Pull Up Field 1.000 0.576 1.000 0.970 1.000 0.394
Push Down Field 1.000 0.929 1.000 0.929 1.000 0.333
Move Field 1.000 0.269 0.583 0.808 0.097 0.923

Eclipse IDE. In both cases, we needed to adapt their source
code to enable or to facilitate the evaluation. We faced an issue
to run Refactoring Crawler on the selected projects, because
it was dependent on an outdated version of the Eclipse IDE,
in which we were unable to import the projects through the
Maven-Eclipse integration. To resolve such issue, we decided
to adapt the source code of Refactoring Crawler to a recent
Eclipse release (Mars). The necessary code modifications were
simple, but, as a precaution, we assessed whether the results
of our modified version of the tool were identical to those
achieved by the original implementation using the evaluation
dataset provided by the authors. In the case of Ref-Finder, we
also had to modify its source code, but the reason was to be
able to export its output into a text file.

Another issue we faced with Ref-Finder was related with
refactorings that involved methods, because Ref-Finder only
displays the name of the method and its class, but not its
complete signature. Therefore, when there are overloaded
methods in a class, Ref-Finder’s output is ambiguous. To
overcome this issue, we adopted a less strict check that
ignores method parameters when comparing Ref-Finder’s
output with entries in the oracle. For example, if that the
oracle contains the entry:
ExtractMethod(Calc.mult(int, int), Calc.add(int, int))

and Ref-Finder reports:
ExtractMethod(Calc.mult, Calc.add)

we still consider it a true positive.
Last, it is worth noting that the refactoring types contained

in the oracle are not supported by all approaches, as detailed in
Table V. For example, Refactoring Crawler does not support
the detection of Move Attribute refactorings. We decided to
disregarded such entries of the oracle when counting the
number of false negatives. This means that an approach may
achieve 1.0 recall even if it does not support all refactoring
types in the oracle.

3) Results and discussion: The overall precision and recall
for each approach are presented in Table VII. RefDiff achieves

the best precision (1.000), followed by Refactoring Miner
(0.956), Refactoring Crawler (0.419), and Ref-Finder (0.264).
In terms of recall, RefDiff still holds the best result (0.877),
followed by Refactoring Miner (0.728), Ref-Finder (0.642),
and Refactoring Crawler (0.356).

TABLE VII
OVERALL PRECISION AND RECALL

Approach TP FP FN Precision Recall

RDiff 393 0 55 1.000 0.877
RMinr 326 15 122 0.956 0.728
RCraw 78 108 141 0.419 0.356
RFind 231 645 129 0.264 0.642

RCraw* 78 56 141 0.582 0.356
RFind* 231 241 129 0.489 0.642

Detailed precision and recall results for each refactoring
type are presented in Table VI. We can note that the results for
some refactoring types stand out from the rest. For example,
RefDiff achieved a recall of only 0.269 for Move Field. This
observation suggests that the threshold for such refactoring
could possibly be less restrictive. For Refactoring Miner, the
main offender in terms of recall is Push Down Method.

When we focus on Refactoring Crawler and Ref-Finder,
one fact that clearly draws one’s attention is the extremely
low precision for Move Method and Move Field. A more
detailed analysis revealed that one reason for this was the
lack of Move Type and/or Rename Type detection support
in these approaches. For example, in the case of a class A
is moved to become A′, several Move Method and Move
Field relationships from members of class A to class A′ are
mistakenly reported. This issue drastically affects the precision
of such approaches. For example, 284 (74%) out of 382
Move Method false positives reported by Ref-Finder are due
to this reason. Thus, we decided to recompute the overall
precision for Refactoring Crawler and Ref-Finder disregarding
false positives that fell in that scenario. The last two lines of



TABLE VIII
EXECUTION TIME

RDiff execution time RMinr execution time

Repository Commits Min. (ms) Max. (ms) Avg. (ms) Total. (s) Min. (ms) Max. (ms) Avg. (ms) Total. (s)

androidannotations/androidannotations 29 1 4,956 451 13 1 1,753 211 6
bumptech/glide 41 1 3,349 594 24 2 8,992 466 19
elastic/elasticsearch 946 1 42,344 1,897 1,795 1 103,943 1,105 1,046
libgdx/libgdx 69 0 5,112 805 56 1 6,774 578 40
netty/netty 225 0 3,384 640 144 0 59,736 665 150
PhilJay/MPAndroidChart 14 1 816 245 3 1 310 79 1
ReactiveX/RxJava 120 1 810,744 10,475 1,257 1 17,369 538 65
spring-projects/spring-framework 478 1 15,019 1,205 576 1 6,133 920 440
square/okhttp 45 1 1,526 380 17 1 616 178 8
zxing/zxing 23 1 773 342 8 1 502 230 5

Total 1990 0 810,744 1,956 3,893 0 103,943 894 1,779

Table VII presents the recomputed results for both tools, under
the names of RCraw* and RFind*. We can note a significant
improvement in precision for Refactoring Crawler (from 0.419
to 0.582) and Ref-Finder (from 0.264 to 0.489). However, even
in this scenario, RefDiff and Refactoring Miner results are
still far ahead from them. We should also note that our results
corroborate with the findings of Soares et al. [22] in a study
with JHotDraw and Apache Common Collections, in which
Ref-Finder achieved precision of 0.35 and recall of 0.24.

It is interesting to note that the precision achieved in the
calibration process was inferior to the one achieved in the
evaluation, specially considering that the thresholds were op-
timized to that data. However, such behavior is not surprising,
because the calibration oracle is composed of real refactorings
performed in those systems, possibly interleaved with all
kinds of code changes. Such scenario is undoubtedly more
challenging for refactoring detection tools than refactoring-
only commits.

B. Execution Time
Besides evaluating precision and recall, we also designed a

study to evaluate the execution time and scalability of RefDiff
and Refactoring Miner, in the context of mining refactorings
from open-source software repositories. Ref-Finder and Refac-
toring Crawler were removed from the comparison because
they are Eclipse-based plug-ins, which are not suitable for
automation. Specifically, there are two issues that hinder their
application. First, they require user interaction through the
Eclipse UI to select their input and trigger the refactoring
detection. Second, they require each pair of versions under
comparison to be imported and configured as Eclipse projects.
Thus, such tasks cannot be reliably automated. In contrast,
both RefDiff and Refactoring Miner are able to detect refac-
torings directly from commits in git repositories, comparing
the revisions of the source code before and after the changes.

To run the study, we selected the ten most popular Java
repositories from GitHub that met the following criteria: (i)
the repository was not used in the studies from Section IV-A
and Section III; (ii) the repository contains a real software

component (i.e., not a toy example or tutorial); (iii) the repos-
itory contains at least 1,000 commits; and (iv) the repository
contains commits pushed in the last three months. Then, we
employed RefDiff and Refactoring Miner to analyze each
commit found in the default branch of the repositories, in
a time window ranging from January 1, 2017 to March 27,
2017. For simplicity, merge commits were excluded from the
analysis, as the code changes they contain are usually devised
from other commits.

Table VIII shows the selected repositories, the number of
analyzed commits, the execution time (minimum, maximum,
and average) per commit, and the total execution time, for each
approach. On average, RefDiff spends 1.96 seconds to detect
refactorings in a commit, while Refactoring Miner spends
0.89 seconds. The total execution time to analyze the data set
was 3,893 seconds (about 64 min) for RefDiff, against 1,779
seconds (about 29 min) for Refactoring Miner. In the worst
case, RefDiff spent 810 seconds (about 13 minutes) in single
commit. However, such case happened only in a commit from
ReactiveX/RxJava. For all other repositories, the worst execu-
tion time was less than a minute. Figure 2 shows a box plot of
the distribution of execution time per commit (omitting outliers
for readability). We can note that the median is similar for both
approaches (close to one second), with a slight advantage to
Refactoring Miner. It is clear from the results that Refactoring
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Fig. 2. Boxplot of execution time per commit (ommiting outliers)



Miner achieves lower execution time in most cases, but such
differences are relatively small in practice. Thus, the potential
gain in precision and recall using RefDiff may still be worth
it. Besides, the implementation of RefDiff had as its main
objective the evaluation of the approach. Thus, it is possible
that its source code can be optimized. In summary, we can
conclude that both approaches provide acceptable performance
and scalability, enabling their application in large code bases,
such as Elasticsearch (922 KLOC) and Spring Framework
(1,016 KLOC).

V. THREATS TO VALIDITY

External validity: The evaluation of precision and recall of
RefDiff used refactoring instances injected in seven popular
open-source Java projects. We cannot claim that the pre-
cision and recall of our approach would be the same for
different projects, with distinct characteristics, and with actual
refactorings applied by developers. However, such setup was
necessary to compute recall, as discussed in Section IV-A1.
Besides, the results we achieved in the calibration process
(precision of 85.7% and recall of 94.1%), in which we used
actual commits from relevant Java repositories, suggest that
RefDiff’s precision and recall are acceptable in real scenarios.
Nevertheless, we plan to extend this study by assessing the
precision of RefDiff in a large corpus of commits from open-
source repositories.
Internal validity: The evaluation oracle we used in our
study is subject to human errors due to the manual task of
applying the refactorings and documenting them. However,
we addressed that issue by inspecting the source code of
the refactored systems to validate all documented refactorings
before running our experiment. Besides, the procedures to
compare the output of each tool with the entries in the oracle
were automated to avoid any mistake.

VI. CONCLUSION

In this paper, we propose RefDiff, an approach to detect
refactorings in version histories of software components. Our
approach employs a combination of heuristics based on static
analysis and code similarity to detect 13 well-known refactor-
ing types. One key aspect of our algorithm is the employed
similarity index, which is an adaptation of the TF-IDF weight-
ing scheme. We have also evaluated RefDiff, comparing it
with Refactoring Miner, Refactoring Crawler, and Ref-Finder,
using on oracle of 448 known refactorings across seven Java
projects. RefDiff achieved the best result among the evaluated
tools: precision of 1.00 and recall of 0.88. As an additional
contribution, we made publicly available the implementation
of RefDiff and all data used in the experiments.

As future work, we intend to explore applications of RefD-
iff. For example, we could use information of refactorings to
build an improved code diff visualization that presents changes
in refactored code elements side-by-side with their matching
elements in the previous version. Besides, a reliable refactoring
detection tool open up possibilities for novel empirical studies

on refactoring practices, taking advantage of the vast amount
of historical information available in code repositories.
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