
Why Do We Break APIs?
First Answers from Developers

Laerte Xavier, Andre Hora, Marco Tulio Valente
ASERG Group, Department of Computer Science (DCC)

Federal University of Minas Gerais (UFMG), Brazil
{laertexavier,hora,mtov}@dcc.ufmg.br

Abstract—Breaking contracts have a major impact on API
clients. Despite this fact, recent studies show that libraries are
often backward incompatible and that the rate of breaking
changes increase over time. However, the specific reasons that
motivate library developers to break contracts with their clients
are still unclear. In this paper, we describe a qualitative study with
library developers and real instance of API breaking changes.
Our goal is to (i) elicit the reasons why developers introduce
breaking changes; and (ii) check if they are aware about the
risks of such changes. Our survey with the top contributors of
popular Java libraries contributes to reveal a list of five reasons
why developers break API contracts. Moreover, it also shows that
most of developers are aware of these risks and, in some cases,
adopt strategies to mitigate them. We conclude by prospecting a
future study to strengthen our current findings. With this study,
we expect to contribute on delineating tools to better assess the
risks and impacts of API breaking changes.

Index Terms—Software Evolution; API Stability; Backwards
Compatibility; Qualitative Study.

I. INTRODUCTION

Despite of the risks for client applications, breaking API
contracts is a common practice. While maintaining libraries,
developers often introduce breaking changes (e.g., removing
public classes, fields, or methods) [1]–[4]. In a recent study [5],
conducted at a large scale level, we concluded that 28% of all
API changes break backward compatibility (on the median,
14.78% of changes per library).

However, there is a limited number of studies investi-
gating the real motivations driving API breaking changes.
For instance, Dig and Johnson [6] manually analyzed API
change logs and release notes to identify the types of existing
breaking changes. However, they focus on providing a catalog
of API changes to better understand the requirements of
API migration tools. Bogart et al. [7] performed a general-
purpose case study with 28 developers to study how they plan,
manage, and negotiate breaking changes. However, they report
developers general views and conceptions on these changes.
Therefore, we are still unaware about the specific reasons
that motivate breaking changes in open source projects. For
example, these are questions lacking clear answers: (a) Why
do API developers, who are supposed to be careful about
compatibility, break API contracts? (b) When this happens,
are they aware of the risks to client applications?

In this paper, we describe a qualitative study with library
developers and real instances of API breaking changes. Specif-
ically, our goal is to elicit a list of motivations for API breaking

changes from library developers and verify their awareness
on the impact on client applications. Thus, we propose the
following research questions:

• RQ1. Why do developers break API contracts?
• RQ2. Are developers aware of the impact of breaking

changes on client applications?

To answer these questions, we conducted a survey with top
Java library developers. Our results show a list of five reasons
why developers break API contracts. Moreover, we also show
that most developers are aware of the risks, and, in some
cases, they also adopt strategies to alleviate the impact on
client applications (e.g., deprecation). Based on these results,
we suggest a future study to strengthen our current findings
and also to support the development of tools to better assess
the risks and impacts of API breaking changes. Thus, the
contributions of this paper are summarized as follows:

• We provide a qualitative study to elicit the motivations
of API breaking changes and to understand developers
concerns with the impact on client applications.

• We prospect a study based on firehouse interviews [8] to
strengthen our current findings.

Structure of the paper: Section II presents the previous study
that motivates the current work. In Section III, we describe
our qualitative analysis by detailing the survey design, the
results, and the threats to validity. Related work is discussed
in Section IV. Finally, Section V concludes by prospecting a
future study to strengthen our current findings.

II. PREVIOUS STUDY

In our previous study [5], we investigated at a large-
scale level API breaking changes and their impact on client
applications. Specifically, two major points were addressed: (i)
the frequency of API breaking changes, and (ii) the behavior of
these changes over time. We present below a brief description
of our previous study, as it motivated the survey presented in
Section III.

Following the definitions of Dig and Johnson [6], we clas-
sified as breaking changes the code modifications in all API
elements that break backward compatibility (i.e., removal of
types, fieds, and methods; visibility tightening; and signature
changes). To analyze the frequency of these changes in Java
libraries, we implemented an API diff tool based on Eclipse

978-1-5090-5501-2/17 c© 2017 IEEE SANER 2017, Klagenfurt, Austria
Early Research Achievements

Accepted for publication by IEEE. c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

392



JDT. Thus, we collected a set of 317 popular libraries hosted
on GitHub and performed our analysis as follows.

In a first analysis, we focused on the frequency of API
breaking changes. We analyzed the frequency of changes for
types, fields, and methods between the two latest releases of
317 Java libraries. From these libraries, 198 (62.46%) have at
least one breaking change. In total, 140,460 breaking changes
were identified; methods are the API elements with more
changes. Considering the absolute distribution of the number
of breaking changes per library, the first quartile is 0, the
median is 4, and the third quartile is 75. Outlier values are very
different: we detect a library with 11,816 breaking changes for
fields, and another one with 1,392 breaking changes for types,
which were explained by large structure and design changes.
Considering the relative distribution, we detected that the first
quartile is 0%, the median is 14.78%, and the third quartile is
43.35%. In short, libraries often break backward compatibility.
We observe that API breaking changes are recurrent and occur
in a relevant percentage.

In our second experiment, we investigated the behavior of
API breaking changes over time to better understand whether
library stability tends to get better (or worse). In this case,
we analyzed all releases of the 317 studied libraries. To
accomplish that, we verify 9,329 releases and summarize
the frequency of breaking changes per year. The number of
analyzed libraries per years is 232, 212, 149, 106, and 83. The
median of breaking changes per library is 29.02%, 31.46%,
37.12%, 45.16%, and 49.14%. Thus, the historical analysis
of the breaking changes frequency show that they increase
by 20% in five years. This result shows that as time passes,
libraries do not become more stable, as expected.

In summary, our previous analysis presents that libraries
are often backward incompatible and that the rate of breaking
changes increases over time. However, the specific reasons
that motivate library developers to break contracts with their
clients are still unclear.

III. SURVEY WITH DEVELOPERS

A. Survey Design

To investigate the reasons why developers break API con-
tracts, we performed a survey with the major contributors
of the most popular Java libraries hosted on GitHub. We
summarized this study in the following steps.
1. Selecting Surveyed Developers. First, we selected the top
repositories with more than 50 breaking changes collected
in the study described in Section II. Out of 317 studied
libraries, 90 (28.39%) filled this selection criteria. Then, we
accessed each repository with the purpose of retrieving the
email address of their major contributor. From the total, 49
contributors (54.44%) shared their email on GitHub. There-
fore, our initial dataset consists of the corresponding 49
libraries,1 including well-known and worldwide used projects,
such as BITCOINJ/BITCOINJ, JAVASLANG/JAVASLANG, and
JUNIT-TEAM/JUNIT4.

1Full dataset description at: https://goo.gl/NWk9x6

2. Contacting Developers. For each selected library, we sent
an email to the corresponding major contributor (between
November 12th and 25th 2016). Figure 1 presents the sent
email, as well as the proposed questions. In each email,
we presented the number of collected breaking changes and
an external link describing each of them.2 Moreover, we
proposed three questions with the goal of (i) verifying whether
developers are aware about the listed breaking changes; (ii)
investigating their reasons for implementing breaking changes;
and (iii) verifying whether they are aware about the risks
of breaking changes to client applications. Specifically, the
first question was used as a filtering criterion in Step 3 (i.e.,
developers who said not being aware of the breaking changes
had their emails discarded).

Dear [developer name],

I figured out that you are a major contributor of [REP/PROJECT],
from which we found [n] API breaking changes, for instance, in
classes A and B (further details here [link]).

I kindly ask you to answer the following questions to support our
research:

1. Are you aware about these API breaking changes?
2. Could you describe why were these API breaking changes
introduced?
3. Are you aware about the risks of breaking backward compati-
bility with your clients?

Fig. 1. Email sent to the major contributors of the studied libraries

3. Filtering Responses. We received 14 answers, which repre-
sents a response rate of 28.6%. From these answers, 6 were
considered unclear or invalid (e.g., responses reporting that the
developer is no longer engaged with the project). Besides, one
developer stated that he was not aware of the breaking changes
(first question), and thus his answer was also discarded. As
a result, 7 answers were considered for analysis. Table I
describes the libraries whose responses were analyzed, as well
as basic information about them (i.e., number of stars and
total of breaking changes). The number of stars ranges from
857 (BITCOINJ/BITCOINJ) to 1,568 (MOGOBD/MONGO-JAVA-
DRIVER). The number of breaking changes ranges from 53
(OBLAC/JODD) to 3,117 (MOGOBD/MONGO-JAVA-DRIVER).

TABLE I
LIBRARIES WITH VALID ANSWERS

Library Stars Breaking
Changes

D1 MONGODB/MONGO-JAVA-DRIVER 1,568 3,117
D2 OBLAC/JODD 1,445 53
D3 ZIELONY/CARBON 1,380 358
D4 SQUARE/ASSERTJ-ANDROID 1,354 2,218
D5 JAVASLANG/JAVASLANG 1,108 663
D6 DAVIDEAS/FLEXIBLEADAPTER 975 157
D7 BITCOINJ/BITCOINJ 857 1,940

2All lists of breaking changes sent are available at: https://goo.gl/Gx87JL

393



4. Analyzing Data. After collecting and filtering all emails,
we analyzed the responses in order to investigate the proposed
research questions. To answer RQ1, we followed a thematic
analysis, which is a technique whose goal is to identify themes
(or codes) within a set of documents [9]. Thus, the first author
of the paper manually analyzed each response to the second
question in the survey email and cataloged reasons that may
explain why developers break API contracts. The second and
third authors reviewed the analysis and confirmed the proposed
codes. Finally, to answer RQ2, we analyzed responses to the
third question, and, as a result, we identified insights on how
developers deal with the impact of API breaking changes.

B. Survey Results

RQ1. Why do developers break API contracts?

We identified five main reasons that suggest the intents of
developers and their recurrent explanations for breaking APIs.
Table II describes these reasons, a brief description, and the
number of occurrences for each of them.

TABLE II
REASONS WHY DEVELOPERS BREAK API CONTRACTS

Theme Description Occur.

LIBRARY SIMPLIFICATION Redesign to make APIs easier
for clients

3

REFACTORING Remodularization to improve
internal code

2

BUG FIX Resolution of issues 2
DEPENDENCY CHANGES Switch of libraries on which

the library depend
1

PROJECT POLICY Maintenance policy of the
project

1

The most frequent reason for breaking API contracts is
related to LIBRARY SIMPLIFICATION (3 instances). In this
case, the change is mainly motivated by the need of making
APIs easier to use (e.g., developer-friendly code); and also
by the remotion of redundant (and more complex) elements.
For instance, both developers D2 and D3 mentioned this
motivation:

“The change leads to better and more developer-friendly code
(for example, to more fluent code).” [D2]

“Useless item. If a problem can be solved using another
simple method, the library can be simplified by removing the
redundant solution.” [D3]

Differently from the LIBRARY SIMPLIFICATION theme,
whose intents are related to improving the library for external
clients, the second most frequent motivation relates to REFAC-
TORING (2 instances). In this case, developers pointed the need
of internally improving the code of their APIs (e.g., by moving
elements between packages).

Other studies also indicate REFACTORING as a reason for
breaking changes. For example, Dig and Johnson [6] found
that 80% of the breaking changes are due to refactoring. D6
illustrates this motivation, detailing a refactoring on his library
with the purpose of better organizing package signatures:

“The classes/methods/fields are not removed all, they are just
refactored to a better package signature (many months ago/last
year) when the library was know a little but not famous as
now... When possible they are initially deprecated and then
removed completely.” [D6]

In addition, developer D4 discussed another motivation
related to changing the library dependencies: DEPENDENCY
CHANGES. According to him, the breaking changes reported
were caused by the need of changing one library that they
depend on and was not being maintained anymore:

“We switched the assertion library on which the library was
based since FEST was no longer being developed and AssertJ
was a maintained and updated fork.” [D4]

Finally, other developers commented that the breaking
changes are motivated by the need of fixing bugs reported
by clients (developers D2 and D3), and due to a deliberated
project maintenance policy (developer D6). The first one is
illustrated in the following comment:

“Bugfix. For example some of the items shouldn’t be accessible
and were made private.” [D3]

RQ2. Are developers aware of the impact of breaking changes
on client applications?

To verify whether developers are aware about the risks of
breaking APIs, we analyze the answers to the third question
proposed in our initial email. Out of the seven responses, in
five instances developers affirmed being aware of the risks. In
the two remaining, we identified unclear or vague answers.
Thus, all developers who gave valid responses recognized
being aware of the impact and costs of breaking changes. In
some cases, they also discussed alternatives to mitigate them.

A first and natural alternative to decrease the impact of
breaking changes is to use deprecated annotations and
replacement messages [2], [4]. Both developers D3 and D2
cited this strategy. However, developer D2 discusses the lack
of human resources to maintain deprecated methods.

“I always try to mark things I would like to remove as
deprecated, give replacements and document changes to make
transitions easy.” [D3]

“Once one client asked to use @Deprecated on old methods,
but we simply dont have enough resources to maintain all
deprecated methods.” [D2]

In addition, both developers justified their breaking changes
by highlighting the small number of clients of their libraries.
Our previous study (Section II) confirms this fact. The library
maintained by D3 has no client affected by the collected
breaking changes, while only one class of D2’s library impacts
7 clients (which represents 9% of the total). The following
comments illustrate their statements:

“Carbon is not a commercial, production-quality library, so
I’m not as concerned about potential problems as Google is

394



with their libraries. I’m just working on my ideas and I’m
giving my solutions to the public.” [D3]

“Yes. But we are not Spring yet. [...] Being a small-to-middle
library has it’s benefits.” [D2]

Finally, developer D4 illustrated an interesting strategy to
mitigate the risks of breaking changes. With the purpose of
rebuilding the library due to DEPENDENCY CHANGE reasons,
and reusing most of the initial code, the decision was to create
a new library in the Maven Central Repository.3 Thus, clients
interested in migrating had to switch libraries (and update
their code to the new API contracts). This is illustrated in
the following comment:

“From the consumer perspective it’s a totally different library,
not just a new version of an existing one that has a new API. In
order to upgrade, consumers would have to change their build
to point at the new coordinates. If all they were doing was
looking for a new version of the old coordinates they would
never see it. Additionally, because it’s separate coordinates
you can even have both versions installed side-by-side and do
incremental migration. We decided to keep the same repository
despite essentially creating a new library because they solve
the same problem, we could re-use 90% of the code, and there
never would be releases made of the old version once we
switched.” [D4]

C. Summary

In this section, we summarize the results and answer the
investigated research questions.

RQ1. Why do developers break API contracts? We elicit a list
of five specific reasons pointed by developers as motivation for
API breaking changes: LIBRARY SIMPLIFICATION, REFAC-
TORING, BUG FIX, DEPENDENCY CHANGES, and PROJECT
POLICY. Some of them were recurrent between respondents.
For instance, LIBRARY SIMPLIFICATION was discussed in
three out of seven analyzed answers. This may reveal that
developers are more concerned about the usability of their
APIs, despite the possible costs caused by breaking changes.

RQ2. Are developers aware of the impact of breaking changes
on client applications? Our study shows that all developers
are aware of the risks attached to breaking contracts with
clients. However, in most of the cases, they highlighted the
adoption of alternatives to mitigate them. This result suggests
that developers have conscious about the costs for client
applications but rather than planning changes and deprecating
elements, they prefer adopting strategies to alleviate their side-
effects.

D. Threats to Validity

The results presented in this paper provide initial insights
on the reasons why developers break APIs and whether they
are aware of the consequences for client applications. Despite
a response rate of 28.6%, only seven answers were considered

3https://maven.apache.org

for analysis, which impacts the generalization of our results.
However, the studied libraries are representative especially due
to their popularity (i.e., at least 857 stars), and high number
of breaking changes (i.e., more than 50 ones). Another threat
is related to the manual inspection of the answers to provide
the reasons for breaking changes. Although this activity has
been done with special attention and support of the second
and third authors, its subjective nature may bias the presented
results. Finally, against our belief, the trustworthiness of the
responses may also be a threat to be reported.

IV. RELATED WORK

There are several studies in the literature that focused on
analyzing API evolution and stability. In a previous study [5],
we perform a large scale investigation with 317 Java li-
braries and more than 260K client applications. As described
in Section II, we found that libraries are often backward-
incompatible and that the rate of breaking changes increases
over time. Raemaekers et al. [10] investigate API stability by
defining four metrics based on method changes and removals.
Moreover, Jezek et al. [11] focus on more subtle issues
related to source and certain types of behavioral compatibility.
They analyze 109 Java programs and 564 program versions,
concluding that API instability is a common phenomenon.
Finally, McDonnell et al. [12] investigate API stability and
adoption of Android libraries and find that the evolution rate
of such APIs is faster than clients’ update velocity.

As a main strategy to reduce costs of breaking changes,
some studies focus on the use of deprecated annotations.
For instance, Robbes et al. [2] show that some API depre-
cation have large impact on the Smalltalk ecosystem and that
replacement messages usually have low quality. Hora et al. [3]
analyze the impact of API replacement and improvement
messages on a large-scale Smalltalk ecosystem. The results
show that a large amount of clients are affected by API
changes but most of them do not react to them. In a recent
work, Brito et al. [4] investigate the usage of deprecation
messages and provide the basis for a recommendation tool.

However, few studies investigate the reasons that motivate
API breaking changes. As an initial effort, Dig and John-
son [6], defined a catalog of breaking changes and non-
breaking changes, and manually analyzed libraries change
log and release notes to identify the reasons of breaking
changes. As a result, they found that 80% of such changes
are refactorings. In this study, we apply this classification of
changes and we also identified REFACTORING as a motivation
for breaking API contracts. However, we discovered other
four reasons for breaking changes. Indeed, the most common
reason identified in our study (LIBRARY SIMPLIFICATION) is
not discussed by Dig and Johnson.

Finally, Thung et al. [7] perform a general-purpose
case study to understand how developers reason and apply
changes in three software ecosystems: Eclipse, R/CRAN,
and Node.js/npm. As a result, they report the differences in
practice, polices, and tools applied when performing/avoiding
a breaking change. They conclude that in Eclipse developers

395



do not break APIs; in R/CRAN, they reach out affected clients;
and in Node.js/npm, they increase the major version number.
Although this is also a qualitative study, we observe that the
conclusions stated by the authors do not reflect developers
explanations about concrete API breaking changes. Instead,
they reflect general perceptions and views about breaking
changes in the considered software ecosystems. By contrast,
we base our analysis on reasons for concrete breaking changes
collected in a period close to the survey.

Novelty: To the best of our knowledge, this is the first study
investigating the motivations behind API breaking changes
based on the actual explanations of developers on specific
breaking changes they have recently applied.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we performed a qualitative study about API
breaking changes. We applied a survey with the top developers
of popular Java libraries in order to (i) elicit the reasons
why developers implement breaking changes, and (ii) check
whether they are aware about the risks of these changes. We
proposed a list of five reasons that motivate developers to break
API contracts, including: LIBRARY SIMPLIFICATION, REFAC-
TORING, BUG FIX, DEPENDENCY CHANGES, and PROJECT
POLICY. Moreover, we showed that developers are usually
aware of the impact on clients and, in some cases, adopt
strategies to alleviate them.

As a next step, we plan to perform an in-depth study
based on firehouse interviews [8] with the contributors of
popular Java libraries hosted on GitHub. We intend to replicate
a methodology used in a previous study about refactoring
motivations [13]. During several months, we plan to monitor a
large dataset of libraries, fetching commits from each remote
repository to a local copy. Next, we will use the diff tool
implemented in our previous work [5] to iterate through each
commit and identify changes that break compatibility. Finally,
an email will be sent to the author of the commit asking
two main questions: (a) Could you describe why did you
perform the listed breaking change? (b) Are you aware of the
possible impact of them in case they are released to clients?
Our goal is to contact API developers as soon as they introduce
a breaking change, while the change is still fresh. In this
way, we plan to receive more answers, which is important to
increase confidence on the initial list of reasons for breaking

changes elicited in this work. In addition, we also plan to study
breaking changes in other popular programming languages,
such as JavaScript.

ACKNOWLEDGMENT

We thank all 14 developers for sharing their ideas and
answering our emails. Also, we thank CNPq and FAPEMIG
for supporting this research.

REFERENCES

[1] W. Wu, Y.-G. Gueheneuc, G. Antoniol, and M. Kim, “Aura: a hybrid
approach to identify framework evolution,” in 32nd International Con-
ference on Software Engineering (ICSE), 2010, pp. 325–334.

[2] R. Robbes, M. Lungu, and D. Röthlisberger, “How do developers
react to API deprecation? The case of a Smalltalk ecosystem,” in 20th
International Symposium on the Foundations of Software Engineering
(FSE), 2012, pp. 1–11.

[3] A. Hora, R. Robbes, N. Anquetil, A. Etien, S. Ducasse, and M. T. Va-
lente, “How do developers react to API evolution? The Pharo ecosystem
case,” in 31st IEEE International Conference on Software Maintenance
and Evolution (ICSME), 2015, pp. 251–260.

[4] G. Brito, A. Hora, M. T. Valente, and R. Robbes, “Do developers
deprecate APIs with replacement messages? A large-scale analysis on
Java systems,” in 23rd International Conference on Software Analysis,
Evolution and Reengineering (SANER), 2016, pp. 360–369.

[5] L. Xavier, A. Brito, A. Hora, and M. T. Valente, “Historical and
impact analysis of API breaking changes: A large-scale study,” in
24rd International Conference on Software Analysis, Evolution and
Reengineering (SANER), 2017, pp. 1–10.

[6] D. Dig and R. Johnson, “How do APIs evolve? A story of refactoring,” in
22nd International Conference on Software Maintenance (ICSM), 2006,
pp. 83–107.

[7] C. Bogart, C. Kästner, J. Herbsleb, and F. Thung, “How to break an API:
cost negotiation and community values in three software ecosystems,”
in 24th Symposium on the Foundations of Software Engineering (FSE),
2016, pp. 109–120.

[8] E. Murphy-Hill, T. Zimmermann, C. Bird, and N. Nagappan, “The
design space of bug fixes and how developers navigate it,” Transactions
on Software Engineering, vol. 41, no. 1, pp. 65–81, 2015.

[9] D. S. Cruzes and T. Dyba, “Recommended steps for thematic synthesis
in software engineering,” in 5th International Symposium on Empirical
Software Engineering and Measurement (ESEM), 2011, pp. 275–284.

[10] S. Raemaekers, A. van Deursen, and J. Visser, “Measuring software
library stability through historical version analysis,” in 28th International
Conference on Software Maintenance (ICSM), 2012, pp. 378–387.

[11] K. Jezek, J. Dietrich, and P. Brada, “How Java APIs break–an empirical
study,” Information and Software Technology, vol. 65, no. C, pp. 129–
146, 2015.

[12] T. McDonnell, B. Ray, and M. Kim, “An empirical study of API
stability and adoption in the Android ecosystem,” in 29th International
Conference on Software Maintenance (ICSM), 2013, pp. 70–79.

[13] D. Silva, N. Tsantalis, and M. T. Valente, “Why we refactor? Confes-
sions of GitHub contributors,” in 24th International Symposium on the
Foundations of Software Engineering (FSE), 2016, pp. 858–870.

396


