Recuperacio de informaciao em documentos XML

Desde 2000, quando aconteceu o primeiro workshop sobre XML e Recuperacdo de Informacao,
este tema tem estado presente nas conferéncias ACM SIGIR, mostrando o interesse da comunidade de
Recuperacdo de Informagdo em explorar melhor as informacdes semi-estruturadas, dando a estas um
enfoque de RI, em contrapartida ao enfoque de Banco de Dados que sempre receberam. Esta abordagem ¢
importante para estender o papel do XML além do objetivo de troca de dados na Web , tornando-o
interessante para troca de informacao, dentro de toda a flexibilidade e liberdade que caracterizam a Web.

Em 2002, na Finlandia, durante o 2° workshop sobre o tema, debates sobre o sentido da
recuperacdo de documentos XML, levaram a conclusdo de que é importante trata-la desvinculada de
operagdes de Banco de Dados.

Tendo estudado a Web Semantica anteriormente, e concluido ser uma proposta ambiciosa demais
para a diversidade da Web e pouco disseminada até o momento, optamos por recuar um passo atras e
estudar de que forma as informacdes semi-estruturadas, e mais especificamente o XML, podem contribuir
para melhorar a precisdo e revocacio das maquinas de busca. Fomos motivados pelo entendimento de que
as rags ajudam a definir o significado dos termos que delimitam, podendo, conseqiientemente, contribuir
para a precisdo dos resultados de uma pesquisa.

Com este objetivo, os principais artigos encontrados sobre o assunto foram estudados e
comparados, permitindo algumas conclusdes que servirdo de base para a escolha de futuros caminhos.

Apresentaremos um breve apanhado de cada um dos artigos abordando suas caracteristicas mais
marcantes, 0s principais avancos e limitagdes, seguido de um quadro comparativo. E fechando o presente
trabalho apresentaremos nossas conclusdes e uma proposta para trabalhos futuros.

Artigo [1] - Searching Text-rich XML Documents with Relevance Ranking

Assumindo o compromisso de utilizar o maximo possivel as técnicas convencionais de
Recuperacdo de Informacdo, seu principal objetivo é permitir a recuperagdo de documentos XML
ordenados por relevancia, em contraposi¢do as diversas linguagem que tratam apenas as pesquisas
exatas. As consultas serdo genéricas, e os resultados ndo serdo exatos, permitindo a ordenagdo por
relevancia, calculada a partir do grau de similaridade entre a consulta e o documento.

O Artigo considera intratdvel a recuperagdo de documentos XML com estruturas arbitrarias e
impde restricdes aos tipos de sub-estruturas dos documentos que poderdo ser especificadas na consulta. E
definido o conceito de “campos de pesquisa “ mapeados em sub-estruturas dos documentos.A partir
dessa decis@o de projeto, somente sub-estruturas especificas, chamadas de tag-path, poderdo ser
apontadas por uma consulta.

Os trechos em negrito na figura 1.0 correspondem a tag-paths.

DoC

TITLE AUTHOR SUBIECT JSUBIECT 7ENTS\

SECTION SECTION
.-. -l. ..‘ --'
& KEYWORD™, KE#HORD .,
: J s, = J 5
;- - .‘ ..
F A F o

Sccumiatad o @ singla saarch faid

Fig 1.0

Os principios basicos do projeto séo:

e O sistema indexa e pesquisa documentos XML bem-formados, sem considerar as DTDs;

¢ Um ndmero finito de sub-estruturas pesquisaveis serdo definidas previamente a indexagfo . A
associacdo entre campos de pesquisas e fag-paths sera definida em um arquivo chamado Format
File;

¢ O indexador verifica o Format File e cria um arquivo para cada ‘campo de pesquisa’”;

e Um servico de aplicacdo deverd formular uma consulta aceitdvel pela miquina de busca a partir da
informacgd@o requisitada pelo usudrio. Para isso, este servico deverd conhecer os ‘campos de
pesquisa‘“ e sua associacdo semantica com as sub -estruturas dos documentos XML.

A implementacdo da maquina de busca possui a arquitetura mostrada na figura 2.0 , cujos médulos

funcionais detalhamos a seguir:
’\g XML Documents

‘ I Query Engine I

Search/Retrieval

o Protocal
f|e|d¥ ’ _-‘ | Apoplication Sarvice |
field- Information

e f|e|d—3 Request

bEex Rarked Results
Files

User
Fig 2.0

Format File - Este arquivo destina-se a definir os indices que serdo criados para um conjunto de
documentos da colec@o. Em sua estrutura ele traz o nome e o formato dos arquivos de indices, as
associagdes entre tag-paths e ‘campos de pesquisas” e a localizacio de processadores especificos para o
idioma dos documentos.

Indexer — E o médulo responsavel pela interpretacio do Format File e posterior criagio dos indices nele
definidos. Os termos contidos em cada campo de um documentos receberdo pesos utilizando a férmula
tradicional de TFXIDF. Neste médulo ocorrera a leitura, extracdo dos termos e o cdlculo de seus pesos .

Query Engine - A méaquina de pesquisa foi implementada acrescentando-se extensdes a uma maquina de
busca de texto ja existente. Ela permite a busca por termos ou fags.

Aplication Service — E o médulo responsavel pela interpretacdo da estrutura da consulta proposta pelo
usudrio, para identificar o ‘campo de pesquisa” e o respectivo arquivo de indice.

N3ao ha esclarecimentos sobre como o Format File serd criado, nem como consultas sem indicacdo
de sub-estrutura serdo tratadas. Os resultados apresentados referem-se apenas ao tempo de processamento
necessdrio a geracdo dos indices e ao tamanho dos mesmos, mas nenhuma andlise sobre a precisdo dos
resultados é apresentada.

A grande limitagdo desta proposta é a pré-definicdo da estrutura dos indices através dos Format
Files, diminuindo a flexibilidade das pesquisas, mas representa a primeira tentativa de explorar a estrutura
XML em beneficio da recuperagio de informacao.

Artigo [2] — Generating Vector Spaces On-the-fly for Flexible XML Retrieval

O foco dessa proposta é criar mecanismos que permitam ao usudrio de uma mdaquina de busca
compor consultas que explorem a estrutura dos documentos XML, obtendo resultados ordenados por
relevancia de acordo com uma granularidade desejada. Em busca deste objetivo, rompe as barreiras da
maquina de busca tradicional que enxergam os documentos de forma plana e também as limitagcdes das
linguagens de consulta de XML que efetuam basicamente pesquisas exatas.

A ordenagdo por relevancia leva em conta a estrutura do documento e as restricdes que a consulta
impde sobre esta estrutura. Mais especificamente, os conteidos em diferentes niveis da arvore que
representam o documento terdo importancia diferente para consultas diferentes. Os autores utilizam a
idéia de Fuhr [4] que introduz pesos chamados de augmentation weights atribuidos a estatisticas como
TFxIDF de cada termo, conforme a sua posi¢cdo na arvore. Os elementos presentes na estrutura de cada
documento sao agrupados em nds de indexagdo que implementam as listas invertidas (vide fig 3.0)

axample

chapter

Fig 3.0

As consultas sdo agrupadas em trés tipos diferentes, conforme o escopo da arvore que pretendem
abranger:

Single_category — consultas que buscam termos em apenas uma sub-arvore. Por exemplo consultas
interessada apenas em livros de medicina, na arvore mostrada na fig 3.

Multi-category — consultas que buscam termos em mais de uma sub-drvore. Por exemplo consultas
interessadas em livros sobre medicina e biologia.

Nested- category — consultas que buscam termos em toda uma sub-arvore mas cujos elementos possuem
diferentes relevancias para uma mesma consulta. Por exemplo o elemento titulo e pardgrafo no exemplo.
(a presenca de um termo no titulo certamente serd mais relevante que a presenga do mesmo termo num
paragrafo.)

Para cada uma das trés categorias de consulta os termos terdo pesos diferentes, dependendo da
estrutura da consulta. Estes pesos deverdo ser calculados dinamicamente a partir de um indice basico pré-
calculado.

Os indice basicos serdo criados para cada elemento da arvore que possuem conteudo textual ,
sendo que o artigo ndo detalha como isso ocorrerd, mas apenas sugere que poderdo ser criados a partir de

técnicas padrdes de RI como extragdo de termos e eliminacdo de stop words. Partindo destes indices
basicos ,cada tipo de consulta terd uma féormula especifica obtidas a partir do Modelo Vetorial.

RSV{:Q,Q) - E!f(r,e] iefc‘.:.'r (r:lz {:IF(I: "-?:I .
= Eq.1.0 — Single-category

REVie,g) = if(t.e) ief e (T Zifit,g)
(e19) rt—‘za (,¢) () (,9) Eq. 2.0 - Multi-category

RSV(e,q) = E Et_f(r,se)(H fmnrj:ieﬁ.m:sf)(r)z if(z,q)

seESE(e) 159 {Epath(e,se)

V2 . 9 \

= L (C I aw)” Lflrse) iefoutse) 1) (1,))
se€SE(e) I€pathie,se) =

Eq. 3.0 — Nested_category

Em todas as equagdes observa-se que as estatisticas sdo calculadas para cada elemento na estrutura
do documento e néo para cada documento, como na férmula original do Modelo Vetorial. Na equagéo 2.0
a freqiiéncia do elemento na colecdo serd a somatéria da freqiiéncia do elemento nas diversas categorias
abrangidas pela consulta (ief ,..). Para a consulta aninhada (equacdo 3.0) a relevancia serd a soma
ponderada da relevancia para uma categoria simples, onde os pesos serdo os augmentation weights

O grande avanco deste artigo € a flexibilidade admitida no processo de indexagéo, criando indices
especificos para cada documento sem restricdes em sua estrutura. Em contrapartida o processamento da
consulta torna-se mais demorado tendo em vista a maior complexidade das férmulas especialmente para
consultas em multi-categorias e categorias aninhadas.

A intencdo de tratar diferentes granularidades de consulta, por outro lado, exigem do usuério um
conhecimento da estrutura do documento ou a sua deducdo. Nao hd a possibilidade de uma busca
integrada em documentos XML ou ndo, uma vez que os indices trazem estatisticas a nivel de elemento e
nido de documento. Destina-se portanto, exclusivamente a recuperacdo de informag¢do em documentos
XML.

Artigo [3] — An Extension of the Vector Space Model for Querying XML Documents via XML
Fragments

Esta proposta busca criar uma ferramenta de pesquisa mais amigdvel, onde usudrios possam
expressar suas consultas na forma de texto livre ou através de consultas mais complexas dependendo do
conhecimento que possuem das DTDs. O resultado também serd ordenado por relevincia colocando no
topo do ranking documentos cuja estrutura mais se aproxime daquela proposta na consulta.

O ranking sera gerado a partir de uma extensdo do modelo vetorial que utilizara como unidades de
indexacdo ndo apenas termos, mas pares da forma (tj,c;), onde os termos serdo qualificados pelo contexto
onde aparecem. Na equacdo 4.0, o peso de termos individuais serd substituido pelo peso dentro de uma
contexto, wd(t,c). Mas além disso o modelo vetorial deixa de ter dimensdes ortogonais entre t e c,
passando a considerar diferentes niveis de semelhanca entre os contexto da consulta e do documento,
representada pelo fator cr(ci,ck), conforme equacao 5.0.

RVS(q,d) = ¥ wq(t)*wd(t;)/ 1QI*DI Eq. 4.0
RVS(q,d) = Yo Yok Wq(tici)*wd(tick)*er(ci,cr)/ 1QI*IDI Eq. 5.0

Durante a indexagio os documentos XML serdo percorridos e um vetor de pares (t,c) serd extraido
para criar o perfil de cada documento. Armazenando os termos e seus contextos, a lista invertida do

termo t, contendo todos os documentos onde t aparece, serd divida em diversas listas, uma para cada
contexto, permitindo assim a recuperag@o do termo em determinado contexto. A estrutura dos
indexadores armazenard t € ¢ como uma Unica chave t#c e no momento da recuperagéo o sistema podera
identificar ocorréncias precisas de t dentro de um contexto c. Poderda, também, recuperar todos os
contextos onde t aparece fazendo uma juncdo de todas as listas através do sufixo t#. As consultas poderdo
ser formuladas contendo os termos dentro de contextos ou apenas termos, como numa maquina de busca
tradicional, ou podera também conter uma mistura das duas situa¢des, como por ex:

<article><title> XML tutorial <title><article> relating to XPath XQquery.
Gerando o seguinte conjunto (t,c) , para pesquisa:
{(xml,article/title), (tutorial, article/title), (relating, null), (Xpath, null), (XQuery, null)}

O Algoritmo de ordenacgéo levard em conta o peso do termo no contexto, bem como a semelhanca
entre os contextos.O Calculo de wd(t,c) é trivial e utiliza as estatisticas da chave t#c , t#c’, etc. Para o
célculo de cr foram definidos alguns critérios e para cada um foi criado um fator. Observe o efeito de
cada um deles para a consulta Q=/book/chapter/title:

LCS(Q,A): Longest Common Subsequence - Maior seqii€ncia comum entre os contextos Q e A

A LCS POS | GAPS | LD CR
media/book/chapter/title/number 3 3 0 2 0.84
media/chapter/book/title/number 2 3 0 3 0.53
media/title/chapter/book/number 1 2 0 4 0.29
magazine/volume/article/title/number 1 4 0 4 0.19
POS(Q,A): Average Optimal Position — Posi¢cdo média 6tima

A LCS POS | GAPS | LD CR
/book/chapter/title/subtitle/number 3 2 0 2 0.92
media/book/chapter/title/number 3 3 0 2 0.84
media/catolog/book/chapter/title 3 4 0 2 0.75

GAPS(Q,A): Numero de saltos existentes entre os elementos comuns aos contextos Q e A

A LCS POS | GAPS | LD CR
Media/catalog /book/chapter/title/subtitle/number | 3 4 0 4 0.78
catolog/book/chapters/chapter/section/title/numbe | 3 4 2 4 0.68
r

LD(Q,A): Length Difference — diferenca de tamanho entre os contextos Q e A

A LCS POS | GAPS | LD CR
/book/chapter/title/subtitle/subtitle/number/bulle | 3 2 0 4 0.88
t

book/chapter/title/subtitle 3 2 0 1 0.95

A férmula final de er € dada por: cr(Q,A) = aLCS(Q,A) + BPOS(Q,A) - 2GAPS(Q,A) — dLD(Q,A)
Cujos valores poderao variar entre O e 1.

Os documentos recuperados serdo mostradas de forma semelhante a uma maquina de busca
tradicional exceto pelo fato de permitir ao usudrio a escolha de elementos dos documento que deseja
mostrar no ranking.

O artigo também ndo apresenta curvas de precisdo e revocacdo, apesar de ter utilizado a colecdo
INEX [http//qmir.dcs.qmw.ac.uk/inex] para testes.

Constata-se aqui um avango ao permitir que sejam pesquisados documentos XML ou ndo. Ha um
tratamento dindmico da semelhanca entre os diversos contextos. Mas para que a estrutura dos documentos
possam contribuir para a ordenacdo, as consultas deverdo informar os elementos desejados, caso
contrario todas as listas de um termo, em todos os contextos, serdo aglutinadas constituindo-se assim um
caso especial de consulta do Modelo Vetorial tradicional. Ou seja, a estrutura do documento ndo é
avaliada para contribuir para a ordenacdo dos documentos a menos que o usudrio tenha uma nogdo da
estrutura dos mesmos e resolva explorar isso na formulagdo da consulta.

Conclusao

Concluindo o trabalho apresentamos abaixo um quadro comparativo das trés propostas,
enfatizando aspectos de funcionalidade de cada um:

dtem | Artigo[l] Artigo[2] Artigo[3]

Usudrio deve conhecer a
estrutura dos documentos

Ha restricdo na estrutura dos
Documentos

Pesquisa documentos ndo XML

Ordenacdo por relevancia

Explora a estrutura do
documento independente da
consulta

Observamos que todas ordenam os documentos por relevancia, ou seja, propiciam a busca
aproximada, enquadrando-se como uma alternativa para as linguagens que trabalham apenas com busca
exata.

A primeira proposta restringe a estrutura dos documentos da colecdo aquela prevista no Format
File, ja as outras duas alternativas trabalham amplamente com qualquer estrutura de documento da
colecdo.

A proposta 3 permitem a busca em documentos ndo XML podendo, portanto, ser implementadas
em madaquinas de busca de uso geral.

Nenhuma das alternativas exige que o usudrio conheca a estrutura do documento. A primeira
identifica os campos de pesquisa a partir da requisicdo do usuério, no médulo Servigo de Aplicacdo. Nas
demais alternativas, caso o usudrio nfo insira elementos da estrutura dos documentos na formulacio da
consulta a pesquisa recaira no Modelo Vetorial tradicional.

Trabalhos futuros

Estudando as trés alternativas e observando os aspectos de funcionalidade que seriam desejaveis
em uma maquina de busca para documentos XML, consideramos que uma ferramenta com este prop6sito
deveria explorar a estrutura dos documentos independente de estar explicito na formulacdo da consulta ,
ou seja, explorar esta estrutura como uma fonte adicional de evidéncia, sem exigir do usudrio qualquer
nog¢ao sobre a mesma.

Analisando o problema , dividimos o universo de busca em trés componentes basicos:

O termo (t), o elemento (e) e o documento (d). A partir dai podemos seguir trés linhas basica:

e Combinamos termos e elementos, e calculamos TF e IDF sobre esta combinagdo como-se os

termos do Modelo Vetorial fossem na verdade um termo composto, t#c;

e Consideramos o elemento como uma subdivisdo do documento e calculamos as estatisticas do

Modelo Vetorial sobre o elemento, ao invés de trata-la sobre o documento;

e Combinarmos as duas op¢des anteriores, e trabalharmos com todas as estatisticas envolvendo t , e
ed.

No primeiro caso o ranking de um documento serd dado pela somatdria das contribuicdes de cada
contexto onde os termos da pesquisa aparecem.

No segundo caso o ranking de um documento serd dado pela somatdria dos rankings de cada
elemento. Documentos com elementos raros na colecio e documentos com elementos onde o termo
aparece com maior freqiiéncia terdo maior ranking. Mas documentos com maior nimero de elementos
contendo os termos da pesquisa também serdo favorecidos.

As propostas anteriores assemelham-se ao terceiro e segundo artigo respectivamente, exceto pelo
fato de trabalhar sem a especificagdo de contexto na consulta.

No terceiro caso o ranking de um documento serd dado pela somatéria da contribuicdo de cada
termo, que levara em conta a freqiiéncia de cada termo nos elementos, de cada elemento nos documentos,
e também da freqiiéncia dos elementos na cole¢@o e dos documentos que contem os elementos na colecao.
Casos especiais onde termos e elementos sé aparecem juntos deverdo ser favorecidos no ranking,
caracterizando um acréscimo de seméantica ao termo, devido a um contexto bem definido.

Acreditamos que uma formulagdo correta das estatisticas envolvendo t, e e d poderdo levar a
resultados interessantes, sem a necessidade de especificacdo de contexto pelo usudrio, como acontece
nas trés propostas apresentadas.

Referéncias

[1] Y. Hayashi, J. Tomita e G. Kikul, ‘Searching Text -rich XML Documents with Relevance Ranking”,
ACM SIGIR 2000 Workshop on XML and Information Retrieval, Atenas, Grécia , 28 de Julho de 2000 .

[2]T. Grabs e H. J. Schek, ‘Generating Vector Spaces On -the-fly for Flexible XML Retrieval”, ACM
SIGIR 2002 Workshop on XML and Information Retrieval, Tampere, Finlandia, Agosto 2002.

[3] D. Carmel, N. Efraty, G. Landau, Y. Maarek e Y. Mass, “An Extension of the Vector Space Model for
Querying XML Documents via XML Fragments”, ACM SIGIR 2002 Whorkshop on XML and
Information Retrieval, Tampere, Finldndia, Agosto de 2002.

[4] N. Fuhr e K. Grojohann. ‘XIRQL: A Query Language for Information Retrieval in XML documents”,
ACM SIGIR Conference on Research and Development in Information Retrieval, paginas 172-180 ACM
Press , 2001.

