

Recuperação de informação em documentos XML

Desde 2000, quando aconteceu o primeiro workshop sobre XML e Recuperação de Informação,

este tema tem estado presente nas conferências ACM SIGIR, mostrando o interesse da comunidade de
Recuperação de Informação em explorar melhor as informações semi-estruturadas, dando a estas um
enfoque de RI, em contrapartida ao enfoque de Banco de Dados que sempre receberam. Esta abordagem é
importante para estender o papel do XML além do objetivo de troca de dados na Web , tornando-o
interessante para troca de informação, dentro de toda a flexibilidade e liberdade que caracterizam a Web.
 Em 2002, na Finlândia, durante o 2° workshop sobre o tema, debates sobre o sentido da
recuperação de documentos XML, levaram a conclusão de que é importante trata-la desvinculada de
operações de Banco de Dados.
 Tendo estudado a Web Semântica anteriormente, e concluído ser uma proposta ambiciosa demais
para a diversidade da Web e pouco disseminada até o momento, optamos por recuar um passo atrás e
estudar de que forma as informações semi-estruturadas, e mais especificamente o XML, podem contribuir
para melhorar a precisão e revocação das máquinas de busca. Fomos motivados pelo entendimento de que
as tags ajudam a definir o significado dos termos que delimitam, podendo, conseqüentemente, contribuir
para a precisão dos resultados de uma pesquisa.
 Com este objetivo, os principais artigos encontrados sobre o assunto foram estudados e
comparados, permitindo algumas conclusões que servirão de base para a escolha de futuros caminhos.
 Apresentaremos um breve apanhado de cada um dos artigos abordando suas características mais
marcantes, os principais avanços e limitações, seguido de um quadro comparativo. E fechando o presente
trabalho apresentaremos nossas conclusões e uma proposta para trabalhos futuros.

Artigo [1] - Searching Text-rich XML Documents with Relevance Ranking

Assumindo o compromisso de utilizar o máximo possível as técnicas convencionais de
Recuperação de Informação, seu principal objetivo é permitir a recuperação de documentos XML
ordenados por relevância, em contraposição às diversas linguagem que tratam apenas as pesquisas
exatas. As consultas serão genéricas, e os resultados não serão exatos, permitindo a ordenação por
relevância, calculada a partir do grau de similaridade entre a consulta e o documento.

O Artigo considera intratável a recuperação de documentos XML com estruturas arbitrárias e
impõe restrições aos tipos de sub-estruturas dos documentos que poderão ser especificadas na consulta. É
definido o conceito de “campos de pesquisa “ mapeados em sub-estruturas dos documentos.A partir
dessa decisão de projeto, somente sub-estruturas especificas, chamadas de tag-path, poderão ser
apontadas por uma consulta.
Os trechos em negrito na figura 1.0 correspondem a tag-paths.

 Fig 1.0

Os princípios básicos do projeto são:

• O sistema indexa e pesquisa documentos XML bem-formados, sem considerar as DTDs;
• Um número finito de sub-estruturas pesquisáveis serão definidas previamente à indexação . A

associação entre campos de pesquisas e tag-paths será definida em um arquivo chamado Format
File;

• O indexador verifica o Format File e cria um arquivo para cada “campo de pesquisa”;
• Um serviço de aplicação deverá formular uma consulta aceitável pela máquina de busca a partir da

informação requisitada pelo usuário. Para isso, este serviço deverá conhecer os “campos de
pesquisa“ e sua associação semântica com as sub -estruturas dos documentos XML.

A implementação da máquina de busca possui a arquitetura mostrada na figura 2.0 , cujos módulos

funcionais detalhamos a seguir:

Fig 2.0

Format File - Este arquivo destina-se a definir os índices que serão criados para um conjunto de
documentos da coleção. Em sua estrutura ele traz o nome e o formato dos arquivos de índices, as
associações entre tag-paths e “campos de pesquisas” e a localização de processadores específicos para o
idioma dos documentos.

Indexer – É o módulo responsável pela interpretação do Format File e posterior criação dos índices nele
definidos. Os termos contidos em cada campo de um documentos receberão pesos utilizando a fórmula
tradicional de TFxIDF. Neste módulo ocorrerá a leitura, extração dos termos e o cálculo de seus pesos .

Query Engine - A máquina de pesquisa foi implementada acrescentando-se extensões a uma máquina de
busca de texto já existente. Ela permite a busca por termos ou tags.

Aplication Service – É o módulo responsável pela interpretação da estrutura da consulta proposta pelo
usuário, para identificar o “campo de pesquisa” e o respectivo arquivo de índice.

Não há esclarecimentos sobre como o Format File será criado, nem como consultas sem indicação
de sub-estrutura serão tratadas. Os resultados apresentados referem-se apenas ao tempo de processamento
necessário à geração dos índices e ao tamanho dos mesmos, mas nenhuma análise sobre a precisão dos
resultados é apresentada.

A grande limitação desta proposta é a pré-definição da estrutura dos índices através dos Format
Files, diminuindo a flexibilidade das pesquisas, mas representa a primeira tentativa de explorar a estrutura
XML em benefício da recuperação de informação.

Artigo [2] – Generating Vector Spaces On-the-fly for Flexible XML Retrieval

 O foco dessa proposta é criar mecanismos que permitam ao usuário de uma máquina de busca
compor consultas que explorem a estrutura dos documentos XML, obtendo resultados ordenados por
relevância de acordo com uma granularidade desejada. Em busca deste objetivo, rompe as barreiras da
máquina de busca tradicional que enxergam os documentos de forma plana e também as limitações das
linguagens de consulta de XML que efetuam basicamente pesquisas exatas.
 A ordenação por relevância leva em conta a estrutura do documento e as restrições que a consulta
impõe sobre esta estrutura. Mais especificamente, os conteúdos em diferentes níveis da árvore que
representam o documento terão importância diferente para consultas diferentes. Os autores utilizam a
idéia de Fuhr [4] que introduz pesos chamados de augmentation weights atribuídos a estatísticas como
TFxIDF de cada termo, conforme a sua posição na árvore. Os elementos presentes na estrutura de cada
documento são agrupados em nós de indexação que implementam as listas invertidas (vide fig 3.0)

Fig 3.0

 As consultas são agrupadas em três tipos diferentes, conforme o escopo da árvore que pretendem
abranger:

 Single_category – consultas que buscam termos em apenas uma sub-árvore. Por exemplo consultas
interessada apenas em livros de medicina, na arvore mostrada na fig 3.

Multi-category – consultas que buscam termos em mais de uma sub-árvore. Por exemplo consultas
interessadas em livros sobre medicina e biologia.

Nested- category – consultas que buscam termos em toda uma sub-árvore mas cujos elementos possuem
diferentes relevâncias para uma mesma consulta. Por exemplo o elemento título e parágrafo no exemplo.
(a presença de um termo no título certamente será mais relevante que a presença do mesmo termo num
parágrafo.)

 Para cada uma das três categorias de consulta os termos terão pesos diferentes, dependendo da
estrutura da consulta. Estes pesos deverão ser calculados dinamicamente a partir de um índice básico pré-
calculado.
 Os índice básicos serão criados para cada elemento da árvore que possuem conteúdo textual ,
sendo que o artigo não detalha como isso ocorrerá, mas apenas sugere que poderão ser criados a partir de

técnicas padrões de RI como extração de termos e eliminação de stop words. Partindo destes índices
básicos ,cada tipo de consulta terá uma fórmula especifica obtidas a partir do Modelo Vetorial.

 Eq.1.0 – Single-category

 Eq. 2.0 - Multi-category

Eq. 3.0 – Nested_category

 Em todas as equações observa-se que as estatísticas são calculadas para cada elemento na estrutura
do documento e não para cada documento, como na fórmula original do Modelo Vetorial. Na equação 2.0
a freqüência do elemento na coleção será a somatória da freqüência do elemento nas diversas categorias
abrangidas pela consulta (ief mcat). Para a consulta aninhada (equação 3.0) a relevância será a soma
ponderada da relevância para uma categoria simples, onde os pesos serão os augmentation weights
 O grande avanço deste artigo é a flexibilidade admitida no processo de indexação, criando índices
específicos para cada documento sem restrições em sua estrutura. Em contrapartida o processamento da
consulta torna-se mais demorado tendo em vista a maior complexidade das fórmulas especialmente para
consultas em multi-categorias e categorias aninhadas.
 A intenção de tratar diferentes granularidades de consulta, por outro lado, exigem do usuário um
conhecimento da estrutura do documento ou a sua dedução. Não há a possibilidade de uma busca
integrada em documentos XML ou não, uma vez que os índices trazem estatísticas a nível de elemento e
não de documento. Destina-se portanto, exclusivamente à recuperação de informação em documentos
XML.

Artigo [3] – An Extension of the Vector Space Model for Querying XML Documents via XML
Fragments

 Esta proposta busca criar uma ferramenta de pesquisa mais amigável, onde usuários possam
expressar suas consultas na forma de texto livre ou através de consultas mais complexas dependendo do
conhecimento que possuem das DTDs. O resultado também será ordenado por relevância colocando no
topo do ranking documentos cuja estrutura mais se aproxime daquela proposta na consulta.
 O ranking será gerado a partir de uma extensão do modelo vetorial que utilizará como unidades de
indexação não apenas termos, mas pares da forma (ti,ci), onde os termos serão qualificados pelo contexto
onde aparecem. Na equação 4.0, o peso de termos individuais será substituído pelo peso dentro de uma
contexto, wd(t,c). Mas além disso o modelo vetorial deixa de ter dimensões ortogonais entre t e c,
passando a considerar diferentes níveis de semelhança entre os contexto da consulta e do documento,
representada pelo fator cr(ci,ck), conforme equação 5.0.

RVS(q,d) = ∑∑ wq(ti)*wd(ti)/ |Q|*|D| Eq. 4.0

RVS(q,d) = ∑∑ci ∑∑ck wq(ti,ci)*wd(ti,ck)*cr(ci,ck)/ |Q|*|D| Eq. 5.0

 Durante a indexação os documentos XML serão percorridos e um vetor de pares (t,c) será extraído
para criar o perfil de cada documento. Armazenando os termos e seus contextos, a lista invertida do

termo t, contendo todos os documentos onde t aparece, será divida em diversas listas, uma para cada
contexto, permitindo assim a recuperação do termo em determinado contexto. A estrutura dos
indexadores armazenará t e c como uma única chave t#c e no momento da recuperação o sistema poderá
identificar ocorrências precisas de t dentro de um contexto c. Poderá, também, recuperar todos os
contextos onde t aparece fazendo uma junção de todas as listas através do sufixo t#. As consultas poderão
ser formuladas contendo os termos dentro de contextos ou apenas termos, como numa máquina de busca
tradicional, ou poderá também conter uma mistura das duas situações, como por ex:

<article><title> XML tutorial <title><article> relating to XPath XQquery.
Gerando o seguinte conjunto (t,c) , para pesquisa:

{(xml,article/title), (tutorial, article/title), (relating, null), (Xpath, null), (XQuery, null)}

 O Algoritmo de ordenação levará em conta o peso do termo no contexto, bem como a semelhança
entre os contextos.O Cálculo de wd(t,c) é trivial e utiliza as estatísticas da chave t#c , t#c’, etc. Para o
cálculo de cr foram definidos alguns critérios e para cada um foi criado um fator. Observe o efeito de
cada um deles para a consulta Q=/book/chapter/title:

LCS(Q,A): Longest Common Subsequence - Maior seqüência comum entre os contextos Q e A

A LCS POS GAPS LD CR

media/book/chapter/title/number 3 3 0 2 0.84
media/chapter/book/title/number 2 3 0 3 0.53
media/title/chapter/book/number 1 2 0 4 0.29
magazine/volume/article/title/number 1 4 0 4 0.19

POS(Q,A): Average Optimal Position – Posição média ótima

A LCS POS GAPS LD CR

/book/chapter/title/subtitle/number 3 2 0 2 0.92
media/book/chapter/title/number 3 3 0 2 0.84
media/catolog/book/chapter/title 3 4 0 2 0.75

GAPS(Q,A): Número de saltos existentes entre os elementos comuns aos contextos Q e A

A LCS POS GAPS LD CR

Media/catalog /book/chapter/title/subtitle/number 3 4 0 4 0.78
catolog/book/chapters/chapter/section/title/numbe
r

3 4 2 4 0.68

LD(Q,A): Length Difference – diferença de tamanho entre os contextos Q e A

A LCS POS GAPS LD CR

/book/chapter/title/subtitle/subtitle/number/bulle
t

3 2 0 4 0.88

book/chapter/title/subtitle 3 2 0 1 0.95

A fórmula final de cr é dada por: cr(Q,A) = ααLCS(Q,A) + ββPOS(Q,A) - ?GAPS(Q,A) – dLD(Q,A)
Cujos valores poderão variar entre 0 e 1.

 Os documentos recuperados serão mostradas de forma semelhante a uma máquina de busca
tradicional exceto pelo fato de permitir ao usuário a escolha de elementos dos documento que deseja
mostrar no ranking.
 O artigo também não apresenta curvas de precisão e revocação, apesar de ter utilizado a coleção
INEX [http//qmir.dcs.qmw.ac.uk/inex] para testes.
 Constata-se aqui um avanço ao permitir que sejam pesquisados documentos XML ou não. Há um
tratamento dinâmico da semelhança entre os diversos contextos. Mas para que a estrutura dos documentos
possam contribuir para a ordenação, as consultas deverão informar os elementos desejados, caso
contrário todas as listas de um termo, em todos os contextos, serão aglutinadas constituindo-se assim um
caso especial de consulta do Modelo Vetorial tradicional. Ou seja, a estrutura do documento não é
avaliada para contribuir para a ordenação dos documentos a menos que o usuário tenha uma noção da
estrutura dos mesmos e resolva explorar isso na formulação da consulta.

Conclusão

Concluindo o trabalho apresentamos abaixo um quadro comparativo das três propostas,
enfatizando aspectos de funcionalidade de cada um:

Item Artigo [1] Artigo[2] Artigo[3]
Usuário deve conhecer a
estrutura dos documentos

Não

Não

Não

Há restrição na estrutura dos
Documentos

Sim

Não

Não

Pesquisa documentos não XML
Não

Não

Sim

Ordenação por relevância

Sim

Sim

Sim

Explora a estrutura do
documento independente da
consulta

Sim

Não

Não

Observamos que todas ordenam os documentos por relevância, ou seja, propiciam a busca

aproximada, enquadrando-se como uma alternativa para as linguagens que trabalham apenas com busca
exata.

A primeira proposta restringe a estrutura dos documentos da coleção àquela prevista no Format
File, já as outras duas alternativas trabalham amplamente com qualquer estrutura de documento da
coleção.

A proposta 3 permitem a busca em documentos não XML podendo, portanto, ser implementadas
em máquinas de busca de uso geral.

Nenhuma das alternativas exige que o usuário conheça a estrutura do documento. A primeira
identifica os campos de pesquisa a partir da requisição do usuário, no módulo Serviço de Aplicação. Nas
demais alternativas, caso o usuário não insira elementos da estrutura dos documentos na formulação da
consulta a pesquisa recaíra no Modelo Vetorial tradicional.

Trabalhos futuros

 Estudando as três alternativas e observando os aspectos de funcionalidade que seriam desejáveis
em uma máquina de busca para documentos XML, consideramos que uma ferramenta com este propósito
deveria explorar a estrutura dos documentos independente de estar explícito na formulação da consulta ,
ou seja, explorar esta estrutura como uma fonte adicional de evidência, sem exigir do usuário qualquer
noção sobre a mesma.
 Analisando o problema , dividimos o universo de busca em três componentes básicos:
O termo (t), o elemento (e) e o documento (d). A partir daí podemos seguir três linhas básica:

• Combinamos termos e elementos, e calculamos TF e IDF sobre esta combinação como-se os
termos do Modelo Vetorial fossem na verdade um termo composto, t#c;

• Consideramos o elemento como uma subdivisão do documento e calculamos as estatísticas do
Modelo Vetorial sobre o elemento, ao invés de trata-la sobre o documento;

• Combinarmos as duas opções anteriores, e trabalharmos com todas as estatísticas envolvendo t , e
e d.
No primeiro caso o ranking de um documento será dado pela somatória das contribuições de cada

contexto onde os termos da pesquisa aparecem.
 No segundo caso o ranking de um documento será dado pela somatória dos rankings de cada

elemento. Documentos com elementos raros na coleção e documentos com elementos onde o termo
aparece com maior freqüência terão maior ranking. Mas documentos com maior número de elementos
contendo os termos da pesquisa também serão favorecidos.

As propostas anteriores assemelham-se ao terceiro e segundo artigo respectivamente, exceto pelo
fato de trabalhar sem a especificação de contexto na consulta.
 No terceiro caso o ranking de um documento será dado pela somatória da contribuição de cada
termo, que levará em conta a freqüência de cada termo nos elementos, de cada elemento nos documentos,
e também da freqüência dos elementos na coleção e dos documentos que contem os elementos na coleção.
Casos especiais onde termos e elementos só aparecem juntos deverão ser favorecidos no ranking,
caracterizando um acréscimo de semântica ao termo, devido a um contexto bem definido.
 Acreditamos que uma formulação correta das estatísticas envolvendo t, e e d poderão levar a
resultados interessantes, sem a necessidade de especificação de contexto pelo usuário, como acontece
nas três propostas apresentadas.

Referências

[1] Y. Hayashi, J. Tomita e G. Kikul, “Searching Text -rich XML Documents with Relevance Ranking”,
ACM SIGIR 2000 Workshop on XML and Information Retrieval, Atenas, Grécia , 28 de Julho de 2000 .

[2]T. Grabs e H. J. Schek, “Generating Vector Spaces On -the-fly for Flexible XML Retrieval”, ACM
SIGIR 2002 Workshop on XML and Information Retrieval, Tampere, Finlândia, Agosto 2002.

[3] D. Carmel, N. Efraty, G. Landau, Y. Maarek e Y. Mass, “An Extension of the Vector Space Model for
Querying XML Documents via XML Fragments”, ACM SIGIR 2002 Whorkshop on XML and
Information Retrieval, Tampere, Finlândia, Agosto de 2002.

[4] N. Fuhr e K. Grojohann. “XIRQL: A Query Language for Information Retrieval in XML documents”,
ACM SIGIR Conference on Research and Development in Information Retrieval, páginas 172-180 ACM
Press , 2001.

