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Resumo

Apresenta-se resultados de experimentos computacionais com um algoritmo para deter-
minagao de alocac@o 6tima de servios e capacidades em redes de filas do tipo M/G/C/C
dependentes do estado, muito utilizadas para modelar o fenomeno de congestionamento.
Diversas demandas, tamanhos de redes e configuraes foram consideradas, tendo sido ob-
tidos padroes surpreendentes de alocao. Em geral, o algoritmo produziu solugoes de boa
qualidade, conforme demonstrado pelos nossos estudos de simulagao, inclusive em relagao
ao tempo de execucao, o qual foi constatado que dependia do nimero de nés e da taxa
de chegada. Embora a metodologia tenha sido aqui aplicada a redes de pedestres, ela
é geral o bastante para ser utilizada em muito outros sistemas nos quais o fenémeno de
congestionamento significativo.
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Introducao

do modelo aqui tratado é o decaimento da taxa

Ultimamente, os sistemas de redes de filas tém
alcancado uma substancial valorizacao na mai-
oria das aplicagoes praticas via, principalmente,
métodos de simulacgao intensiva. H4, entretanto,
um grande interesse em se investigar o compor-
tamento de um particular conjunto de modelos
de filas conhecido como M/G/C/C dependentes
do estado [8], apropriado para avaliar o conges-
tionamento em sistemas de trafego de veiculos e
pedestres [7, 4], assim como outros sistemas de
servigo e manufatura [9].

Nesse trabalho, sera adotada a notacao de
Kendall [12] na qual M indica que a chegada é
um processo Markoviano, G representa um ser-
vico com distribuicao geral e dependente do es-
tado, C se refere ao ntimero de servidores e, por
fim, assume-se que a capacidade do sistema esta
restrita a C usudrios. A principal caracteristica

de servigo com o aumento do niimero de usuarios
no sistema.

Muitos estudos sobre a velocidade de cami-
nhada de pedestres foram conduzidos, sendo a
maioria destes sobre o fluxo de pedestres. Um
bom exemplo de tais estudos, em interiores de
prédios, diz respeito a definicdo das rotas para
as saidas de incéndio. Varios fatores podem ser
associados a diferentes velocidades de caminha-
da. Por exemplo, adultos tendem a andar mais
rapido do que criangas, e analogias semelhantes
podem ser encontradas em diferentes grupos.

Quando a densidade do trafego aumenta, es-
tes fatores tém um efeito grande sobre a velo-
cidade de caminhada de pedestres individuais.
Portanto, dentro de um corredor, o movimento
mais rapido de pedestres tende a tornar-se mais
lento & medida em que o espaco do corredor é
ocupado por mais pedestres.



Na Secdo 2 s@o descritos modelos ma-
teméticos de redes de filas M/G/C/C depen-
dentes do estado que avaliam fenémenos de flu-
X0s sujeitos a congestionamentos, enfatizando o

Método da Expansao. Ja a Secao 3 apresenta
o algoritmo utilizado e uma anélise do seu de-
sempenho em relacao ao tempo de execugao. A
Secao 4, com algumas observacoes finais.

série

Figura 1: Rede de filas em topologia genérica.

2 Modelo de Otimizacao

2.1 Formulagcao do Matematica

Assuma que a topologia de rede conhecida de an-
temao e é definida como um grafo G(N, A), onde
N é o niimero de nés (corredores) e A é o niimero
de arcos (conexoes entre os pares de nds). O
problema de alocacao de servigos e capacidades
(SCA) preocupa-se com o quanto de capacidade
deveria ser alocada aos nés para que as probabi-
lidades de bloqueio estejam abaixo de um limiar
especificado. Em outras palavras, o problema
SCA ¢ encontrar o menor inteiro C; > 0 para
que p;(C) < g;, para todo i € N. Note que a
taxa de servigo depende da capacidade do vetor
C, tanto para um modelo linear, Eq. (10) quanto
para um exponencial, Eq. (11). Para simplificar,
somente o modelo exponencial serd usado neste
trabalho.

A formulagdo matemaética proposta para o
problema SCA é a seguinte:

(SCA):
z = min |g(C) = Zflc'l , (1)
VieN
s.t.
pi(ci) < e VieN, (2)
¢ e {0,1,...}, YieN, (3)

que minimiza o custo da alocagao total >, f;C;,
restrito a uma probabilidade de bloqueio méxima
€ para todos os nés.

2.2 Modelo Analitico de um Unico
Corredor

Para o modelo de fila de um corredor, o tempo
de ocupagao ¢ igual ao tempo gasto para que um
pedestre o atravesse e a taxa de servigo f(n) de-
pende do ntmero de ocupantes n e segue uma
distribui¢ao geral G dependente do estado.

Considera-se, ainda, que a densidade de aglo-
meracao de pedestres dentro do sistema esta
aproximadamente distribuida de maneira unifor-
me e que essa densidade determina a velocidade
média de um individuo. Assim, se existirem n
pedestres dentro de um corredor, esses terao uma
taxa de servigo f(n), enquanto que numa deter-
minada chegada ou saida, essa taxa de servigo
sera alterada para f(n+ 1) ou f(n — 1), respec-
tivamente.

Sob esse ponto de vista, pode-se expressar a
probabilidade do ntimero de pedestres P, num
modelo de fila M/G/C/C dependentes do estado
por:




n=12,...,C,
sendo
p(0) =1/ {1 + ZC: - [/\(E(S) i ] } , (5)
=L@ f2)F(1)

em que Py é a probabilidade de nao ter pedestre
esperando na fila; E(S) = L/V; é o tempo de
atendimento esperado considerando-se um tnico
pedestre e f(n) =V, /Vi é a taxa de servigo.

Utilizando-se a Equacao (4) para o mode-
lo de fila M/G/C/C dependentes do estado, é
possivel calcular medidas de desempenho. Essas
medidas incluem, entre outras, a probabilidade
de bloqueio, a taxa de atendimento (do inglés th-
roughput), o nimero médio de usudrios e o tempo
médio no sistema (work-in-process). O bloqueio
ocorre quando n for igual a capacidade maxima
C do corredor. A taxa de atendimento pode ser
denotada por:

0=M\1- Pbloq)' (6)
O numero médio de usudrios no sistema é:

C
Q=) nP,. (7)
n=1

O tempo médio no sistema pode ser dado por:

=2 (®)

2.3 Modelos de Congestionamento
para Corredores

Precisa-se definir as taxas de servigo f(n). Serd
utilizada a seguinte notacao:

V,, — velocidade média para uma ocupacao
de n pedestres;
V1 — velocidade média de um pedestre so-

zinho que corresponde a 1,5 m/s;

V., — velocidade média quando a densida-
de de aglomeracio é de 2 ped/m?;

V, — velocidade média quando a densida-
de de aglomeracio é de 4 ped/m?;

~ e B sao parametros de forma e escala pa-
ra o modelo exponencial;

a=2xLxW,

b=4xLxW.

Utilizando-se do modelo de filas M/G/C/C
dependentes do estado, um corredor pode ser
considerado como servidores para seus ocupan-
tes. O nuimero em paralelo de servidores é igual
a capacidade do corredor que também representa
o numero total de pedestres permitidos simulta-
neamente no sistema e é dado por:

c=|bxl*w), 9)

na qual |z] representa o maior inteiro nao su-
perior a x, | é o comprimento do corredor, w
é a largura e C, sua capacidade. Nota-se, de
acordo com estudos realizados por Tregenza [11],
que 5 ped/m? representa a densidade méxima
de aglomeracao admissivel em uma area de cir-
culagdo. Desta forma, o tempo de servico espe-
rado para um unico usudrio presente no siste-
ma, vide Equagoes (1) e (2),pode ser dado por
E(Ty) =1/V1 .

No modelo de congestionamento, o fluxo de
trafego uni-direcional através de corredores se-
gue uma velocidade média de caminhar de um
pedestre V,,, como uma fungao do nimero de in-
dividuos, n, que ocupam o corredor e sua capaci-
dade, C. Baseado nessa e em outras observacoes
empiricas, modelos analiticos, linear e exponen-
cial, foram desenvolvidos para essa velocidade
(uni-direcional) em fungao do nimero de pedes-
tres em um corredor [13].

De acordo com Tregenza [11], a velocidade
de um tnico ocupante no corredor, Vi, é cerca
de 1,5 m/s. Assumindo que uma populacao de
n = C + 1 nao é possivel, V,, é zero para todo
n > C + 1. Uma relacao linear que satisfaz a
essas condicoes é como segue:

V;
Vi = —l(c—i—l—n).

. (10)



Um modelo exponencial parece fornecer uma
aproximagao mais exata para a média da veloci-
dade de um pedestre versus a densidade de aglo-
meracao, conforme o formato das curvas apre-
sentadas por Tregenza [11], Figura 2. O modelo
exponencial de fluxo uni-direcional, proposto por
Yuhaski e Smith [13] é o seguinte:

o[-

(11)

no qual:
B In(V,/V1) a—1
fyln[iln(%/vl)}/ln<b—l>’ (12)
5= a—1 _ b—1 (13)
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Figura 2: Curvas Empiricas de Tregenza

2.4 O Método de Expansao

O problema de determinacao das medidas de de-
sempenho em redes de filas fica significativamen-
te mais complexo. Note que na topologia apre-
sentada na Figura 1, a probabilidade de bloqueio
do i-ésimo né depende de todo o fluxo anteri-
or e também das probabilidades de bloqueio dos
nos seguintes. O Método da Expansao Gene-

A Figura 3 mostra o comportamento da taxa
de servigo, f(n) = V,,/Vi, de um pedestre, com
o aumento da densidade, para fluxos unidirecio-
nais.

Analisando as vérias propriedades de flu-
x0 de pedestres através de um tunico corredor,
comprova-se a existéncia de trés fatores que afe-
tam significativamente o trafego e suas corres-
pondentes medidas de desempenho, quais sejam
o comprimento, a largura e a taxa de chegada.
Dessa forma, variando-se um deles e mantendo-
se os outros constantes, pode-se avaliar o efeito
desse fator no fluxo. Entretanto, Mitchell e Mac-
Gregor Smith [10] mostraram que a largura do
corredor parece ter um efeito mais significativo
sobre a taxa de atendimento do que seu compri-
mento.
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Figura 3: Taxa de Servigo f(n) = V,,/Vi ver-
sus Ntimero de Usuéarios n para um Corredor
de 8 x 2,5 m

ralizado (GEM) é um algoritmo que permite li-
dar com tais redes [5]. O GEM é uma com-
binacao de métodos de aproximagoes sucessivas
e decomposio né-a-né. Este método tem como
caracteristica chave a colocacaoo de um né arti-
ficial antes de cada fila finita no sistema, a fim
de registrar os pedestres bloqueados que tentam
entrar num corredor finito quando este estd em



seu limite. Desta forma, a rede de filas ”expan-
dida”em uma equivalente rede Jackson, na qual
cada nd pode ser decomposto e analisado sepa-
radamente. O método de expansao é composto
por trés estagios, a saber:

Estagio I - reconfiguragao da rede: antes de
cada um dos nés com capacidade finita, é adi-
cionado um né artificial. Os usudrios sao redi-
recionados para esse compartimento, quando o
préximo né estiver na sua capacidade.

Estagio II - estimacao dos parametros: essa
fase é dedicada ao calculo das estimativas dos

3 Algoritmo de Resolugao

A Figura 4-a mostra o algoritmo principal que
implementa uma variacao do método de busca
por coordenadas. Assim o algoritmo 1é as confi-
guragcoes iniciais e entao é alocada uma capacida-
de inicial que satisfaca as restrigoes, ou seja, que
dé uma probabilidade de bloqueio bem inferior
ao limiar dado. Por conveniéncia, a capacidade
inicial é dada na forma 2™ para auxiliar o algo-
ritmo de busca, que sera descrito a seguir.

A busca local é apresentada na Figura 4-b.
O algoritmo escolhe o primeiro né (corredor) e
para ele aloca dois limites referentes a sua capa-
cidade, que para facilitar a busca do algoritmo é
sempre poténcia de 2 . O primeiro valor é deno-
minado limite inferior (C™™) e é dado pelo valor
da menor capacidade, ou seja C'™f = 2{”. Ja o
limite superior (C*"P) é dado pelo valor de capa-
cidade (C5'? = 2M) que atende & restrigio que a
probabilidade de bloqueio seja menor que o limi-
ar dado. Dai o algoritmo comeca a reducao do
intervalo da seguinte forma. Tira a média dos
dois limites ((C™f + C)/2).Se a probabilidade
de bloqueio da média for menor que a probabi-
lidade dada na restricao, esta média assume o
valor de capacidade superior (C*"P). Se nao, de
capacidade inferior (C™). E assim é feito até
que a diferenca entre os dois limites seja menor
ou igual a um. Entao, o valor dado para o li-
mite superior é a menor capacidade que tem a
probabilidade de bloqueio inferior ou igual a do
limiar.

parametros envolvidos na analise.

Estagio III - eliminacdo do retorno: nesse
momento, é realizada uma reconfiguracao do no
artificial, de maneira que as dependéncias nos
processos de chegada causadas por visitas repe-
tidas a esses ambientes sejam retiradas.

O GEM pode ser estendido para qualquer to-
pologia, como por exemplo, para a anlise de to-
pologias complexas como a apresentada na Figu-
ra 1. Adaptagoes do GEM a topologias genéricas
de redes M/G/C/C podem ser encontradas no
trabalho em [14].

3.1 Estudo de Desempenho para To-
pologias Basicas

Nessa secao, alguns resultados computacionais
sao apresentados para as topologias bésicas, is-
so é, série, divisao e fusao. O principal objetivo
destes experimentos é determinar uma alocacao
Otima para a capacidade dos varios segmentos de
fluxos e verificar o seu desempenho em relagao
ao tempo de execucao . Os experimentos foram
efetuados para 3, 5 e 7 nds. As taxas de che-
gadas (\) consideradas foram 1, 2 e 4 pessoas/s,
enquanto o comprimento dos corredores assumiu
apenas o valor de 8,0 m. A probabilidade de blo-
queio usado como limiar foi de 0,1% (0,001) e
um custo unitdrio por capacidade alocada (f;)
considerado.

Apesar de existirem outras linguagens de
programacao, preferiu-se utilizar o ambiente
C + +, devido principalmente a sua capacida-
de de abstracao de dados, bem como a pratici-
dade de possuir cédigos facilmente modificaveis
sem alteracoes de seu nicleo. Adicionalmen-
te, trabalhou-se no sistema operacional Win-
dows Millenium, numa maquina com 256 MB de
memoria RAM, usando um processador AMD -
K7 com frequéncia de 1.2 GHz.

Com o objetivo de obter indicagbes iniciais
sobre o efeito que a topologia, a taxa de chegada
e o nimero de nés exercem sobre o tempo de pro-
cessamento, foram feitos diversos experimentos
considerando varias taxas de chegada, nimero
de nos e topologias e com base nos resultados ob-



algoritmo
leta G(N, A)
leia as probabilidades da rotina pij, V (i,7) € A
leia as taxas de chegadas \; e c;, Vi € N
/* encontre um vetor inicial mazimizado C */
for Vie N do
C;:’Pt — 2]\/[
end for
/* encontre uma solugéo otima */
iter < 0
repeat
iter «— iter + 1
/* otimize a i-esima fila */
for Vie N do
OptQueue(s,C3"P)
end for
/* atualize para a melhor solugao */
if g(CsuP) < g(C°P') then
Copt « Csup
desmarque todos os nos
else
exit
end if
end repeat
write COP*
end algoritmo

a) otimizacao da rede

algoritmo OptQueue(i,CSUP)
/* passo de rotulagdo recursiva */
for V (j,7) € A do
if no j e desmarcado then
OptQueue(j,C3UP)
marque o no j
end if
end for
/* isole o otimo */
J—M;
C;“f — O — 27
while p;(C%"P) £ &;,Vi e N
J—=j+1
oy
end while
/* reduzir o intervalo */
Ccan — Csup
while (C;'P — Cinf) > 1
cean'— (cint 4 o3Py /2
if p;(C") < &;,Vi € N then
CisuP — C;:an;
else
C;nf — C;:an;
end if
end while
end algoritmo

b) otimizagao de uma tnica fila

Figura 4: Algoritmo de Resolugao do Problema SCA

tidos foram construidos box-plots estratificados
por estes fatores. A partir da andlise da Figu-
ra 6 j& é possivel notar que o tempo de proces-
samento parece ser afetado pela topologia, uma
vez que a topologia série parece se diferir das de-
mais, tendendo a consumir um tempo maior de
execucao, isto pode ocorrer pelo fato que todos
os nés tem a mesma taxa de chegada, enquan-
to as topologias divisao e fusao em alguns nods a
taxa de chegada é reduzida. Pode ser observado
através da Figura 7 que a taxa de chegada pare-
ce influenciar o tempo de processamento, sendo
que quanto maior essa taxa, maior o tempo de
processamento. O numero de nés (Figura 8 )
tambin parece afetar o tempo de processamento,
o qual possui um comportamento ascendente a

4 Conclusoes

Um metodologia baseada em redes de filas
M/G/C/C dependentes do estado, apropriada
para andlise e sintese de sistemas sujeitos a
congestionamento foi apresentada, enfocando-se

medida que aumenta o nimero de nds. Nao se
nota entretanto um crescimento exponencial que
pudesse comprometer a utilizacao do algoritmo
em instancias com um maior niimero de nés.

Infelizmente nao se pode determinar exa-
tamente a complexidade do algoritmo utiliza-
do, devido a impossibilidade de se determinar o
nimero de passos necessarios em uma topologia
genérica visto que quando esta se alocando capa-
cidades aos nés o critério de parada é dependente
da probabilidade de bloqueio, que consequente-
mente depende da taxa de chegada. No entando
pode-se perceber que os fatores que mais influem
no seu temo de execugao sao: o nimero de nés e
a taxa de chegada.

aplicagoes em redes de pedestres. Ressaltou-se
a importancia do modelo e fez-se uma breve re-
visao dos resultados recentes na area. Discutiu-
se em detalhes a aplicacao do modelo ao proble-
ma de planejamento de redes de circulagao de
pedestres. Resultados computacionais apresen-
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Figura 5: Topologias basicas consideradas, para cinco nés

Tabela 1: Tempos de Execucao

A Topologia N6s ucp(s) A Topologia N6s ucp(s) A Topologia N6s  ucp(s)
1 Série 3 0,66 2 Série 3 0,99 4 Série 3 1,59
5 231 5 335 5 511
7 4,89 7 687 710,22
Divisao 3 0,49 Divisao 3 0,60 Divisao 3 0,88
5 143 5 1,98 5 280
7 291 7 4,07 7 5,49
Fusao 3 0,44 Fusao 3 0,55 Fusao 3 0,82
5 1,37 5 1,92 5 275
7 297 7 401 7 577

tados atestaram a qualidade da abordagem.
Assim, esses modelos possibilitaram a ava-
liagdo do problema de alocagao 6tima das ca-
pacidades, cujo objetivo resumiu-se em otimizar
a taxa de atendimento. Desse modo, através
de um algoritmo de busca pelas coordenadas,
determinou-se a capacidade étima de varios cor-
redores configurados em topologias série, divisao
e fusao. Esses resultados revelaram que os fa-
tores fundamentais na determinagdo da taxa de
atendimento sao a largura do corredor e a taxa
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