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Resumo

Apresenta-se resultados de experimentos computacionais com um algoritmo para deter-
minação de alocação ótima de servios e capacidades em redes de filas do tipo M/G/C/C
dependentes do estado, muito utilizadas para modelar o fenômeno de congestionamento.
Diversas demandas, tamanhos de redes e configuraes foram consideradas, tendo sido ob-
tidos padrões surpreendentes de alocao. Em geral, o algoritmo produziu soluções de boa
qualidade, conforme demonstrado pelos nossos estudos de simulação, inclusive em relação
ao tempo de execução, o qual foi constatado que dependia do número de nós e da taxa
de chegada. Embora a metodologia tenha sido aqui aplicada a redes de pedestres, ela
é geral o bastante para ser utilizada em muito outros sistemas nos quais o fenômeno de
congestionamento significativo.

Palavras-chave: Teoria de filas; sistemas estocsticos; redes de filas dependentes do estado

1 Introdução

Ultimamente, os sistemas de redes de filas têm
alcançado uma substancial valorização na mai-
oria das aplicações práticas via, principalmente,
métodos de simulação intensiva. Há, entretanto,
um grande interesse em se investigar o compor-
tamento de um particular conjunto de modelos
de filas conhecido como M/G/C/C dependentes
do estado [8], apropriado para avaliar o conges-
tionamento em sistemas de tráfego de véıculos e
pedestres [7, 4], assim como outros sistemas de
serviço e manufatura [9].

Nesse trabalho, será adotada a notação de
Kendall [12] na qual M indica que a chegada é
um processo Markoviano, G representa um ser-
viço com distribuição geral e dependente do es-
tado, C se refere ao número de servidores e, por
fim, assume-se que a capacidade do sistema está
restrita a C usuários. A principal caracteŕıstica

do modelo aqui tratado é o decaimento da taxa
de serviço com o aumento do número de usuários
no sistema.

Muitos estudos sobre a velocidade de cami-
nhada de pedestres foram conduzidos, sendo a
maioria destes sobre o fluxo de pedestres. Um
bom exemplo de tais estudos, em interiores de
prédios, diz respeito à definição das rotas para
as sáıdas de incêndio. Vários fatores podem ser
associados a diferentes velocidades de caminha-
da. Por exemplo, adultos tendem a andar mais
rápido do que crianças, e analogias semelhantes
podem ser encontradas em diferentes grupos.

Quando a densidade do tráfego aumenta, es-
tes fatores têm um efeito grande sobre a velo-
cidade de caminhada de pedestres individuais.
Portanto, dentro de um corredor, o movimento
mais rápido de pedestres tende a tornar-se mais
lento à medida em que o espaço do corredor é
ocupado por mais pedestres.
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Na Seção 2 são descritos modelos ma-
temáticos de redes de filas M/G/C/C depen-
dentes do estado que avaliam fenômenos de flu-
xos sujeitos a congestionamentos, enfatizando o

Método da Expansão. Já a Seção 3 apresenta
o algoritmo utilizado e uma análise do seu de-
sempenho em relação ao tempo de execução. A
Seção 4, com algumas observações finais.
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Figura 1: Rede de filas em topologia genérica.

2 Modelo de Otimização

2.1 Formulação do Matemática

Assuma que a topologia de rede conhecida de an-
temão e é definida como um grafo G(N,A), onde
N é o número de nós (corredores) e A é o número
de arcos (conexões entre os pares de nós). O
problema de alocação de serviços e capacidades
(SCA) preocupa-se com o quanto de capacidade
deveria ser alocada aos nós para que as probabi-
lidades de bloqueio estejam abaixo de um limiar
especificado. Em outras palavras, o problema
SCA é encontrar o menor inteiro Ci ≥ 0 para
que pi(C) ≤ εi, para todo i ∈ N . Note que a
taxa de serviço depende da capacidade do vetor
C, tanto para um modelo linear, Eq. (10) quanto
para um exponencial, Eq. (11). Para simplificar,
somente o modelo exponencial será usado neste
trabalho.

A formulação matemática proposta para o
problema SCA é a seguinte:

(SCA):

z = min



g(C) =
∑

∀ i∈N

fiCi



 , (1)

s.t.

pi(ci) ≤ ε, ∀ i ∈ N, (2)

ci ∈ {0, 1, . . .}, ∀ i ∈ N, (3)

que minimiza o custo da alocação total
∑

i fiCi,
restrito a uma probabilidade de bloqueio máxima
ε para todos os nós.

2.2 Modelo Anaĺıtico de um Único

Corredor

Para o modelo de fila de um corredor, o tempo
de ocupação é igual ao tempo gasto para que um
pedestre o atravesse e a taxa de serviço f(n) de-
pende do número de ocupantes n e segue uma
distribuição geral G dependente do estado.

Considera-se, ainda, que a densidade de aglo-
meração de pedestres dentro do sistema está
aproximadamente distribúıda de maneira unifor-
me e que essa densidade determina a velocidade
média de um indiv́ıduo. Assim, se existirem n
pedestres dentro de um corredor, esses terão uma
taxa de serviço f(n), enquanto que numa deter-
minada chegada ou sáıda, essa taxa de serviço
será alterada para f(n+ 1) ou f(n− 1), respec-
tivamente.

Sob esse ponto de vista, pode-se expressar a
probabilidade do número de pedestres Pn num
modelo de fila M/G/C/C dependentes do estado
por:

P (C = n) = p(n) =

[

[λ(E(S))]n

n!f(n) . . . f(2)f(1)

]

p(0),

(4)
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n = 1, 2, . . . , C,

sendo

p(0) = 1/

{

1 +
C
∑

i=1

[

[λ(E(S))]i

i!f(i) . . . f(2)f(1)

]}

, (5)

em que P0 é a probabilidade de não ter pedestre
esperando na fila; E(S) = L/V1 é o tempo de
atendimento esperado considerando-se um único
pedestre e f(n) = Vn/V1 é a taxa de serviço.

Utilizando-se a Equação (4) para o mode-
lo de fila M/G/C/C dependentes do estado, é
posśıvel calcular medidas de desempenho. Essas
medidas incluem, entre outras, a probabilidade
de bloqueio, a taxa de atendimento (do inglês th-

roughput), o número médio de usuários e o tempo
médio no sistema (work-in-process). O bloqueio
ocorre quando n for igual à capacidade máxima
C do corredor. A taxa de atendimento pode ser
denotada por:

θ = λ(1− Pbloq). (6)

O número médio de usuários no sistema é:

Q =
C
∑

n=1

nPn. (7)

O tempo médio no sistema pode ser dado por:

tw =
Q

θ
. (8)

2.3 Modelos de Congestionamento

para Corredores

Precisa-se definir as taxas de serviço f(n). Será
utilizada a seguinte notação:

Vn → velocidade média para uma ocupação
de n pedestres;

V1 → velocidade média de um pedestre so-
zinho que corresponde a 1,5 m/s;

Va → velocidade média quando a densida-
de de aglomeração é de 2 ped/m2;

Vb → velocidade média quando a densida-
de de aglomeração é de 4 ped/m2;

γ e β são parâmetros de forma e escala pa-
ra o modelo exponencial;

a = 2 ∗ L ∗W ;

b = 4 ∗ L ∗W .

Utilizando-se do modelo de filas M/G/C/C
dependentes do estado, um corredor pode ser
considerado como servidores para seus ocupan-
tes. O número em paralelo de servidores é igual
à capacidade do corredor que também representa
o número total de pedestres permitidos simulta-
neamente no sistema e é dado por:

c = b5 ∗ l ∗ wc, (9)

na qual bxc representa o maior inteiro não su-
perior a x, l é o comprimento do corredor, w
é a largura e C, sua capacidade. Nota-se, de
acordo com estudos realizados por Tregenza [11],
que 5 ped/m2 representa a densidade máxima
de aglomeração admisśıvel em uma área de cir-
culação. Desta forma, o tempo de serviço espe-
rado para um único usuário presente no siste-
ma, vide Equações (1) e (2),pode ser dado por
E(Ts) = 1/V1 .

No modelo de congestionamento, o fluxo de
tráfego uni-direcional através de corredores se-
gue uma velocidade média de caminhar de um
pedestre Vn, como uma função do número de in-
div́ıduos, n, que ocupam o corredor e sua capaci-
dade, C. Baseado nessa e em outras observações
emṕıricas, modelos anaĺıticos, linear e exponen-
cial, foram desenvolvidos para essa velocidade
(uni-direcional) em função do número de pedes-
tres em um corredor [13].

De acordo com Tregenza [11], a velocidade
de um único ocupante no corredor, V1, é cerca
de 1,5 m/s. Assumindo que uma população de
n = C + 1 não é posśıvel, Vn é zero para todo
n ≥ C + 1. Uma relação linear que satisfaz a
essas condições é como segue:

Vn =
V1

c
(c+ 1− n). (10)
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Um modelo exponencial parece fornecer uma
aproximação mais exata para a média da veloci-
dade de um pedestre versus a densidade de aglo-
meração, conforme o formato das curvas apre-
sentadas por Tregenza [11], Figura 2. O modelo
exponencial de fluxo uni-direcional, proposto por
Yuhaski e Smith [13] é o seguinte:

Vn = V1 exp

[

−

(

n− 1

β

)γ]

, (11)

no qual:

γ = ln

[

ln(Va/V1)

ln(Vb/V1)

]

/ ln

(

a− 1

b− 1

)

, (12)

e

β =
a− 1

[ln(V1/Va)]1/γ
=

b− 1

[ln(V1/Vb)]1/γ
. (13)

A Figura 3 mostra o comportamento da taxa
de serviço, f(n) = Vn/V1, de um pedestre, com
o aumento da densidade, para fluxos unidirecio-
nais.

Analisando as várias propriedades de flu-
xo de pedestres através de um único corredor,
comprova-se a existência de três fatores que afe-
tam significativamente o tráfego e suas corres-
pondentes medidas de desempenho, quais sejam
o comprimento, a largura e a taxa de chegada.
Dessa forma, variando-se um deles e mantendo-
se os outros constantes, pode-se avaliar o efeito
desse fator no fluxo. Entretanto, Mitchell e Mac-
Gregor Smith [10] mostraram que a largura do
corredor parece ter um efeito mais significativo
sobre a taxa de atendimento do que seu compri-
mento.
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Figura 2: Curvas Emṕıricas de Tregenza
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Figura 3: Taxa de Serviço f(n) = Vn/V1 ver-

sus Número de Usuários n para um Corredor
de 8 × 2,5 m

2.4 O Método de Expansão

O problema de determinação das medidas de de-
sempenho em redes de filas fica significativamen-
te mais complexo. Note que na topologia apre-
sentada na Figura 1, a probabilidade de bloqueio
do i-ésimo nó depende de todo o fluxo anteri-
or e também das probabilidades de bloqueio dos
nós seguintes. O Método da Expansão Gene-

ralizado (GEM) é um algoritmo que permite li-
dar com tais redes [5]. O GEM é uma com-
binação de métodos de aproximações sucessivas
e decomposio nó-a-nó. Este método tem como
caracteŕıstica chave a colocaçãoo de um nó arti-
ficial antes de cada fila finita no sistema, a fim
de registrar os pedestres bloqueados que tentam
entrar num corredor finito quando este está em
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seu limite. Desta forma, a rede de filas ”expan-
dida”em uma equivalente rede Jackson, na qual
cada nó pode ser decomposto e analisado sepa-
radamente. O método de expansão é composto
por três estágios, a saber:

Estágio I - reconfiguração da rede: antes de
cada um dos nós com capacidade finita, é adi-
cionado um nó artificial. Os usuários são redi-
recionados para esse compartimento, quando o
próximo nó estiver na sua capacidade.

Estágio II - estimação dos parâmetros: essa
fase é dedicada ao cálculo das estimativas dos

parâmetros envolvidos na análise.
Estágio III - eliminação do retorno: nesse

momento, é realizada uma reconfiguração do nó
artificial, de maneira que as dependências nos
processos de chegada causadas por visitas repe-
tidas a esses ambientes sejam retiradas.

O GEM pode ser estendido para qualquer to-
pologia, como por exemplo, para a anlise de to-
pologias complexas como a apresentada na Figu-
ra 1. Adaptações do GEM a topologias genéricas
de redes M/G/C/C podem ser encontradas no
trabalho em [14].

3 Algoritmo de Resolução

A Figura 4-a mostra o algoritmo principal que
implementa uma variação do método de busca
por coordenadas. Assim o algoritmo lê as confi-
gurações iniciais e então é alocada uma capacida-
de inicial que satisfaça as restrições, ou seja, que
dê uma probabilidade de bloqueio bem inferior
ao limiar dado. Por conveniência, a capacidade
inicial é dada na forma 2M para auxiliar o algo-
ritmo de busca, que será descrito a seguir.

A busca local é apresentada na Figura 4-b.
O algoritmo escolhe o primeiro nó (corredor) e
para ele aloca dois limites referentes a sua capa-
cidade, que para facilitar a busca do algoritmo é
sempre potência de 2 . O primeiro valor é deno-
minado limite inferior (C inf) e é dado pelo valor
da menor capacidade, ou seja C inf = 2Mi . Já o
limite superior (Csup) é dado pelo valor de capa-
cidade (Csup = 2M ) que atende à restrição que a
probabilidade de bloqueio seja menor que o limi-
ar dado. Dáı o algoritmo começa a redução do
intervalo da seguinte forma. Tira a média dos
dois limites ((C inf +Csup)/2).Se a probabilidade
de bloqueio da média for menor que a probabi-
lidade dada na restrição, esta média assume o
valor de capacidade superior (Csup). Se não, de
capacidade inferior (C inf). E assim é feito até
que a diferença entre os dois limites seja menor
ou igual a um. Então, o valor dado para o li-
mite superior é a menor capacidade que tem a
probabilidade de bloqueio inferior ou igual a do
limiar.

3.1 Estudo de Desempenho para To-

pologias Básicas

Nessa seção, alguns resultados computacionais
são apresentados para as topologias básicas, is-
so é, série, divisão e fusão. O principal objetivo
destes experimentos é determinar uma alocação
ótima para a capacidade dos vários segmentos de
fluxos e verificar o seu desempenho em relação
ao tempo de execução . Os experimentos foram
efetuados para 3, 5 e 7 nós. As taxas de che-
gadas (λ) consideradas foram 1, 2 e 4 pessoas/s,
enquanto o comprimento dos corredores assumiu
apenas o valor de 8,0 m. A probabilidade de blo-
queio usado como limiar foi de 0, 1% (0, 001) e
um custo unitário por capacidade alocada (fi)
considerado.

Apesar de existirem outras linguagens de
programação, preferiu-se utilizar o ambiente
C ++, devido principalmente à sua capacida-
de de abstração de dados, bem como a pratici-
dade de possuir códigos facilmente modificáveis
sem alterações de seu núcleo. Adicionalmen-
te, trabalhou-se no sistema operacional Win-
dows Millenium, numa máquina com 256 MB de
memória RAM, usando um processador AMD -
K7 com frequência de 1.2 GHz.

Com o objetivo de obter indicações iniciais
sobre o efeito que a topologia, a taxa de chegada
e o número de nós exercem sobre o tempo de pro-
cessamento, foram feitos diversos experimentos
considerando várias taxas de chegada, número
de nós e topologias e com base nos resultados ob-
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algoritmo

leia G(N,A)
leia as probabilidades da rotina pij , ∀ (i, j) ∈ A
leia as taxas de chegadas λi e ci, ∀ i ∈ N

/* encontre um vetor inicial maximizado C */
for ∀ i ∈ N do

Copt

i
← 2M

end for

/* encontre uma solução otima */
iter← 0
repeat

iter← iter + 1
/* otimize a i-esima fila */

for ∀ i ∈ N do

OptQueue(i,Csup)
end for

/* atualize para a melhor solução */
if g(Csup) < g(Copt) then

Copt ← Csup

desmarque todos os nos

else

exit

end if

end repeat

write Copt

end algoritmo

a) otimização da rede

algoritmo OptQueue(i,Csup)
/* passo de rotulação recursiva */

for ∀ (j, i) ∈ A do

if no j e desmarcado then

OptQueue(j,Csup)
marque o no j

end if

end for

/* isole o otimo */
j ←Mi

Cinf
i ← Csup

i
← 2j

while pi(C
sup) 6≤ εi, ∀ i ∈ N

j ← j + 1
Csup

i
← 2j

end while

/* reduzir o intervalo */
Ccan ← Csup

while (Csup

i
− Cinf

i ) > 1
Ccan

i ← (Cinf
i + Csup

i
)/2

if pi(C
can) ≤ εi, ∀ i ∈ N then

Csup

i
← Ccan

i ;
else

Cinf
i ← Ccan

i ;
end if

end while

end algoritmo

b) otimização de uma única fila

Figura 4: Algoritmo de Resolução do Problema SCA

tidos foram constrúidos box-plots estratificados
por estes fatores. A partir da análise da Figu-
ra 6 já é posśivel notar que o tempo de proces-
samento parece ser afetado pela topologia, uma
vez que a topologia série parece se diferir das de-
mais, tendendo a consumir um tempo maior de
execução, isto pode ocorrer pelo fato que todos
os nós tem a mesma taxa de chegada, enquan-
to as topologias divisão e fusão em alguns nós a
taxa de chegada é reduzida. Pode ser observado
através da Figura 7 que a taxa de chegada pare-
ce influenciar o tempo de processamento, sendo
que quanto maior essa taxa, maior o tempo de
processamento. O número de nós (Figura 8 )
tambḿ parece afetar o tempo de processamento,
o qual possui um comportamento ascendente à

medida que aumenta o número de nós. Não se
nota entretanto um crescimento exponencial que
pudesse comprometer a utilização do algoritmo
em instâncias com um maior número de nós.

Infelizmente não se pode determinar exa-
tamente a complexidade do algoritmo utiliza-
do, devido a impossibilidade de se determinar o
número de passos necessários em uma topologia
genérica visto que quando está se alocando capa-
cidades aos nós o critério de parada é dependente
da probabilidade de bloqueio, que consequente-
mente depende da taxa de chegada. No entando
pode-se perceber que os fatores que mais influem
no seu temo de execução são: o número de nós e
a taxa de chegada.

4 Conclusões

Um metodologia baseada em redes de filas
M/G/C/C dependentes do estado, apropriada
para análise e śıntese de sistemas sujeitos a
congestionamento foi apresentada, enfocando-se

aplicações em redes de pedestres. Ressaltou-se
a importância do modelo e fez-se uma breve re-
visão dos resultados recentes na área. Discutiu-
se em detalhes a aplicação do modelo ao proble-
ma de planejamento de redes de circulação de
pedestres. Resultados computacionais apresen-
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Tabela 1: Tempos de Execução

λ Topologia Nós ucp(s) λ Topologia Nós ucp(s) λ Topologia Nós ucp(s)
1 Série 3 0,66 2 Série 3 0,99 4 Série 3 1,59

5 2,31 5 3,35 5 5,11
7 4,89 7 6,87 7 10,22

Divisão 3 0,49 Divisão 3 0,60 Divisão 3 0,88
5 1,43 5 1,98 5 2,80
7 2,91 7 4,07 7 5,49

Fusão 3 0,44 Fusão 3 0,55 Fusão 3 0,82
5 1,37 5 1,92 5 2,75
7 2,97 7 4,01 7 5,77

tados atestaram a qualidade da abordagem.
Assim, esses modelos possibilitaram a ava-

liação do problema de alocação ótima das ca-
pacidades, cujo objetivo resumiu-se em otimizar
a taxa de atendimento. Desse modo, através
de um algoritmo de busca pelas coordenadas,
determinou-se a capacidade ótima de vários cor-
redores configurados em topologias série, divisão
e fusão. Esses resultados revelaram que os fa-
tores fundamentais na determinação da taxa de
atendimento são a largura do corredor e a taxa

de chegada à rede.
Uma análise foi feita tendo como base o tem-

po de execução do algoritmo. Observou-se então
que os fatores que mais influentes são a taxa de
chegada e o número de nós.

Questões ainda permanecem em aberto. Tes-
tes adicionais devem ser feitos para diferentes
topologias e probabilidades de bloqueio. Outra
possibilidade estender a utilizao destes modelos
ao problema de alocao de capacidades em redes
de trfego de veculos [4].

Referências

[1] J. Cheah.

Modeling traffic as M/G/C/C state depen-
dent queues.

Master’s thesis, University of Massachu-
setts, Amherst, MA, 1990.

[2] J. Cheah e J. MacGregor Smith.

Generalized M/G/C/C state dependent
queueing models and

pedestrian traffic flows.

Queueing Systems and their Applications,
15:365–386, 1994.

[3] J. J. Fruin.

Pedestrian Planning and Design.

Metropolitan Association of Urban Desig-
ners and Environmental

Planners, Inc., New York, N.Y.,1971.

[4] R. Jain e J. MacGregor Smith.

Modeling vehicular traffic flow using
M/G/C/C state dependent

queueing models.

7



1 2 3

Topologia

0

10

20

30

40

T
em

po

Figura 6: Box-plot por Topologias

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Lambda

0

10

20

30

40

T
em

po

Figura 7: Box-plot por Número de Nós
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