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Resumo: O Vehicle Routing Problem with Time
Windows (VRPTW) é um problema de otimizacao
combinatorial complexo que pertence a classe de pro-
blemas N P — Completo [Joh79], e que vem sendo bas-
tante estudado nos iltimos anos. Este artigo apresenta
o estado da arte dos métodos exatos e heuristicas para
encontrar solucoes exatas ou proximas ao 6timo para
este problema. Apds a descricdo dos métodos existen-
tes, este artigo concentra-se no estudo de um proble-
ma real de roteamento de veiculos e apresenta uma

solucdo aproximada utilizando algoritmos genéticos
(GA) [Hol75].

1 Introducao

Nos tempos atuais, muitas empresas tém se preocupa-
do cada vez mais com problemas de transporte, geran-
do uma crescente demanda por solucbes tecnologicas
que sejam capazes de minimizar os custos com este
setor.

A resolucao de problemas deste tipo, que envolvem
principalmente roteamento e itinerario de veiculos, é
uma importante sub-area do campo da Pesquisa Ope-
racional, mais especificamente da otimizacdo combi-
natorial, onde os problemas podem ser basicamente
classificados como mazimizacdo ou minimizacao de
uma funcgao objetivo. Desta maneira, a aplicagao de
métodos de otimizacio capazes de tornar uma frota de
veiculos otimizada, minimizando a distancia percorri-
da por exemplo, traz muitos beneficios, pois evita gas-
tos desnecessérios, garante entregas nos perlodos esti-
pulados, diminui a polui¢ao causada por estes veiculos,
entre outras vantanges.

Problemas de roteamento de veiculos, mais conheci-
dos como VRP - Vehicle Routing Problems, tém sido
amplamente estudados nas sua mais diversas formas e

variagoes [Lim00, Des88, Tai97, Lar99, Tom03]. Mode-
los mais realisticos deste tipo de problema, consideram
nao apenas o problema geografico, ou seja, distancia,
mas também, a restricdo de tempo. Assim, este tipo
de problema é denominado VRPTW - Vehicle Routing
Problems with Time Windows, onde cada veiculo pos-
sui uma “janela de tempo”, na qual o trabalho deve
ser realizado.

Na Secdo 2 deste artigo, uma breve descricdo do
VRPTW é apresentada. Na Secao 3, alguns métodos
exatos e abordagens nao exatas , mais utilizadas na
literatura para resolver o problema, sao descritas.
Na Secao 4, apresenta-se uma modelagem para um
problema real, utilizando o algoritmo genético, uma
heuristica ndo exata para resolver problemas de busca
por solugoes proximas ao 6timo. Finalmente, na Secao
5, alguns resultados e trabalhos futuros sao discutidos.

2 Vehicle Routing Problem with
Time Windows - VRPTW

Segundo [Jue91], o VRPTW envolve o roteamento de
frotas de veiculos com limitacoes de capacidade e tem-
pos de viagem, partindo de um depésito central para
um conjunto de clientes dispersos geograficamente, ca-
da qual com suas demandas e “janelas de tempo” es-
peciﬁcas. Assim, um veiculo deixa seu depésito, viaja
para pontos de carga especificos até que a capacida-
de de carga do veiculo se esgote, finalmente o veiculo
retorna para o depédsito dentro do prazo de tempo es-
tipulado. O VRPTW pode ser simples, onde o prazo
estipulado de chegada do veiculo nio pode ser ultra-
passado, mas nada impede que o véiculo chegue antes
do prazo. No VRPTW duplo, as rotas impoe prazos
de chegada minimos e maximos, para evitar que um



veiculo fique em tempo ocioso de espera, pois se es-
te tempo for longo, pode prejudicar o atendimento a
outros clientes.

Os problemas de roteamento de veiculos, da classe
VRP ou VRPTW, sao geralmente problemas “dificeis”
de ser resolvidos, pois o nimero de clientes, veiculos
e restrices pode variar bastante em cada problema,
tornando uma solucdo exata invidvel na maioria dos
casos. Segundo [Qil], VRPTW, com um veiculo, per-
tence a classe NP — Completo. No caso mais comum,
onde o nimero de veiculos é sempre maior que um, o
problema se torna NP — Hard [Joh79]. Isto significa
que a solucao 6tima para a maioria das instancias do
VRPTW podem ser obtidas apenas em tempo expo-
nencial.

Com o custo proibitivo para encontrar a so-
lucdo Otima, a alternativa resume-se em utilizar
heuristicas ou aproximacoes capazes de encontrar so-
lucbes proximas ao 6timo nestas situagoes. Existem
uma série de abordagens para resolver o VRPTW na
literatura. Na Secao 3 deste artigo, algumas aborda-
gens nao exatas sao evidenciadas.

3 Solucionando o VRPTW

Nesta secdo, apresenta-se uma revisdo bibliografica de
alguns dos principais métodos abordados na literatura
para encontrar solugoes 6timas ou préximas ao 6timo

para o VRPTW.

3.1 Meétodos exatos

Os métodos exatos procuram encontrar a solucdo
6tima para o VRPTW. As principais publicacbes que
tratam desse método contemplam trés principios:

3.1.1 Programacgao dindmica

A programagao dindmica baseia-se na técnica de
branch-and-bound para alcangar o 6timo. Um limite
inferior para o 6timo é verificado para cada né incluido
na solucdo. Quando algum novo né propicia um limite
inferior ao atual, esse limite inferior torna-se o novo
limite inferior. Cada né referente ao cliente é visitado
somente uma vez. Esse algoritmo é implementando em
[Kaa87] e resolvido para até 15 clientes.

3.1.2 Relaxacao de Lagrange

O modelo matemético do VRPTM [Lar99], com suas
restri¢oes, como por exemplo garantir que todo clien-
te s6 é visitado uma tnica vez, sofre um relaxamento

através de relaxacio de Lagrange. A partir desse rela-
xamento um limite inferior global é calculado. A partir
desse limite inferior a técnica do branch-and-bound, é
aplicada. A cada novo cliente visitado verifica-se se o
limite inferior global, ndo estd sendo ultrapassado pe-
la rota estabelecida caso esse novo cliente seja incluido
na, solucao.

3.2 Meétodos aproximados por heuristicas

Nesse tipo de solugao encontramos na bibliografia con-
sultada os seguintes principais métodos:

3.2.1 Heuristica de construcgao de rotas

[Sch86] é o primeiro artigo sobre heuristica de cons-
trucao de rotas para o VRPTW. O algoritmo comega
com todas as rotas simples possfveis com apenas um
cliente (depésito-cliente-depésito). E cada interagao
calcula-se quais duas rotas podem ser combinadas com
a maior economia de recursos.

3.2.2 ”"Time-oriented-nearest-neigbour heu-

ristic”

Proposta em [Sol86]. Toda rota nesta heuristica ¢ ini-
ciada por um cliente ainda nao roteado mais préximo
do depdsito. Essa relacdo de proximidade é tanto ge-
ografica quanto temporal. A cada interacao o cliente
mais préximo, geogrifica e temporalmente, ao tltimo
cliente adicionado é considerado para insercao da rota
em questdo. Quando a pesquisa por um novo cliente é
feita, e um cliente nao é encontrado, uma nova rota é
iniciada.

3.3 Heuristicas baseada em melhoria de ro-
tas

A base para quase todas heuristicas de melhoria de
rota é a nocao de vizinhanca. A vizinhanca da solucao
S é um conjunto N(S) que pode ser gerado com uma
simples "modificacdo”de S.

A idéia é, a partir dos vizinhos, alterar rotas até
chegar na melhor solugao. Como as pesquisas sao ba-
seadas em melhorias localizadas em um rota, esse tipo
de técnica é chamada de busca local ”local search”.

3.3.1 Heuristica r-Opt

Uma das mais usadas em roteamento é a heuristica
r-Opt. Aqui r arcos sdo removidos e trocados por ou-
tros r arcos. Usualmente o r é 3, mas 2 é outro valor
bastante referenciado.



3.3.2 Heuristica shift-sequence

Proposta por Schulze e Fahle em [uSF99]. Nela um
cliente é movido de um rota para outra entao, che-
cando todas as possi’veis posicoes de inser¢ao. Se uma
insercao é vidvel, o cliente é entao inserido em outra ro-
ta. Esse procedimento se repete até que a viabilidade
das rotas alteradas seja atingida.

3.4 Métogios
Heuristicas

baseados em Meta-

As meta-heuristicas sao tipicamente baseadas em bus-
cas locais ”local search”, mas com outros métodos pa-
ra encontrar as melhores solugoes avaliando outros es-
pacos de busca, ou técnicas.

3.4.1 Simulate anneling

Essa foi a primeira meta-heuristica desenvolvida.
Quando se usa essa heuristica nio se busca pela me-
lhor solugdo na vizinhanca a partir da solugdo corrente.
Ao invés disso, simplesmente, escolhe-se uma solugao
aleatéria a partir dessa vizinhanca. A partir dessa
configuracao inicial verifica-se se ela é aceitavel a par-
tir de uma certa probabilidade (temperatura) [Lar99].
Pequenas variagoes sdo feitas nessa configuracao, de
acordo com um numero de tentativas ou com o al-
cance da estabilidade, encontra-se a melhor solugao
apés algumas tentativas. A probabilidade que citamos
aqui é equivalente a ”temperatura”de processos ter-
modindmico e metalirgico. Nesses processos quando
um metal em fusdo é resfriado lentamente ele tende a
se solidificar em um estrutura de energia minima sob
uma determinada temperatura.

3.4.2 TABU Seach

Assim como a heuristica ”Simulated Annealing”, a
"TABU Search”é antiga. Ela foi introduzida por Glo-
ver em 1989 [Lau94]. Nela cada interacdo a partir da
vizinhanca da solucdo corrente é explorada e a me-
lIhor solugao é selecionada com a nova solugao corren-
te. [Via98]. Para evitar ciclos, a visita & solugoes
recentemente visitadas é proibida. Essa proibicao é
possivel gracas a uma lista "TABU”, que armazena as
solugoes proibidas ou que ja foram melhores em outras
interagoes. O critério mais usado para parar a busca
?TABU”é quando se chega a um nimero constante de
interacoes sem qualquer ganho na melhor solucao até
entao encontrada.

Como solucdo inicial a heuristica de inser¢ao de So-
lomon [Sol86] é utilizada. As duas heuristicas de me-

lhoria, 2-opt e Or-opt, sdo usadas para explorar a vizi-
nhanga e gerar solugdes locais. O algoritmo da meta-
heuristica alterna as duas estratégias, quando uma nao
gera melhoria na solugao global, a partir de um deter-
minado nimero de interacoes.

3.4.3 Algoritmo Genético - GA

Devido & complexidade do problema de roteamento
de veiculos, métodos baseados em inteligéncia artifi-
cial sd3o os mais promissores na tentativa de se encon-
trar boas solucoes. Um dos métodos mais utilizados é
o algoritmo genético (GA), uma classe de algoritmos
de busca heuristica adaptativa baseados na genética da
populagdo [Hol75], mais especificamente, nas regras da
teoria de reproducao, selecao e evolugao, proposta por
Darwin [Dar59].

O GA é baseado nos cromossomos ou individuos de
uma populacio , onde cada individuo representa uma
possi'vel solucdo. Quando novos individuos sdo cria-
dos, novas propostas de solugao sao geradas, através da
combinacdo dos cromossomos presentes nos individuos
atuais. Os individuos sdo agrupados em geracoes. Um
conjunto de individuos resulta em uma populacdo. A
propriedade mais importante do individuo é o “fit-
ness” , baseado na fungao objetivo. Este valor determi-
na a habilidade relativa de um individuo de sobreviver
e repassar seus genes para a proxima geracdo. Ge-
ragoes sucessivas sao realizadas até que algum critério
de parada seja alcangado, normalmente, o tempo com-
putacional gasto ou o niimero de individuos gerados. O
Programa 1 mostra o fluxo do algoritmo genético, que
possui os seguintes componentes: uma populaciao de
strings bindrias, parametros de controle, uma funcao
fitness, operadores genéticos (cruzamento e mutagao),
um mecanismo de sele¢gao e um mecanismo para codi-
ficar as solugbes como strings de bits.

Geracao = 0;

Inicializa populacao inicial;

Avalia populacao;

LOOP (condicao de termino)
Geracao = Geracao + 1;
Seleciona;

Cruzamento;
Mutacao;
Avalia populacao;

FIM DO LOOP

Programa 1. Fluxo do algoritmo genético.

De fato, cada etapa do GA pode utilizar métodos
ou heuristicas diferentes. Assim, a forma como o GA é



implementado, depende da natureza do problema. Na
Secao seguinte, uma modelagem de uma instancia real
do VRPTW é apresentada.

3.5 Heuristicas hibridas

A partir da combinacio de diferentes caracteristicas
das metas-heuristicas obtém-se um heuristica hibrida.
Uma tendéncia bastante usada na comunidade que li-
da com meta-heuristicas [Larsen99] é utilizar a meta-
heuristica TABU Search com outras meta-heuristicas,
tais como ”Simulated Anneling”e mecanismos de me-
lhoria de rotas, como A-interchange que troca um sub-
conjunto de A clientes de um rota para outra [Sun94].
A meta-heuristica ”Simulated Anneling”, quan-
do usada sozinha, também utiliza o mecanismo A-
interchange para gerar solucdes locais utilizadas nas
tentativas de melhoria por essa meta-heuristica.

4 TUma instancia VRPTW real

Nesta se¢ao, um problema real VRPTW é identificado,
e uma solucdo utilizando GA apresentada. O GA foi
escolhido para resolver esta instancia do VRPTW por
ter demonstrado sucesso na resolugao de outros com-
plexos problemas de roteamento de veiculos e alocao de
hordrios, como pode ser verificado em [Des88, Nyg93].
Além disso, o algoritmo é relativamente simples, como
mostrado no Programa 1.

Um problema VRPTW real, pode ser observado na
operacao de extracdo de minério em mineracoes de
ferro de céu aberto em geral [Alv97]. Nestas mine-
ragoes, OS veiculos (caminhoes) sdo despachados pa-
ra rotas pré-definidas, que possuem pontos de carga
e descarga de material, no caso, minério extraido da
mina. Além disso, como em todo problema VRPTW,
os caminhdes recebem um prazo para carregamento e
basculamento (descarga) que devem ser respeitados,
para evitar tempo ocioso de caminhdes e falta de aten-
dimento de demanda de material para os depésitos,
no caso, dos britadores, onde o material extraido é
processado. Desta maneira, o problema de roteamen-
to de veiculos em mineracdes configura um problema,
VRPTW cléassico, mas os veiculos precisam respeitar
outras restricoes, além da capacidade de transporte,
tempo para cumprimento da rota e distancia percorri-
da.

Nas mineragioes, os pontos de carga (frentes de la-
vra) possuem caracteristicas proprias, como quanti-
dade de material disponi'vel e qualidade do material
(entende-se por qualidade a porcentagem da concen-
tracio de elementos quimicos no material). Pode exis-

tir mais de um ponto de descarga (britadores), mas
geralmente existe um tnico ponto central de proces-
samento de minério. Desta maneira, a operacao de
extracdo de minério consiste em definir as rotas e a
quantidade de caminhoes, para atingir as metas de pro-
ducdo (quantidade) e qualidade estipuladas para cada
deposito (britador). Para um descricao mais detalha-
da do processo de operacdo de um mineraciao, veja
[Alv97].

Conhecento-se a produgao e qualidade desejada nos
depésitos, os tempos médios das possi’veis rotas, as
distancias médias entre pontos de carga e descarga, os
tempos médios de carregamento e basculamento dos
caminhoes, a quantidade de caminhoes disponiveis e
as caracteristicas de cada ponto de carga, O processo
de otimizacao visa atender os seguintes objetivos:

1. obter o menor tempo de fila, ou seja, tempo de es-
pera para carregamento ou basculamento dos ca-
minhoes;

2. obter o menor desvio de qualidade do minério ex-
traido;

3. obter o méximo de produc¢ao (quantidade de ma-
terial).

Pela descricao do processo, o problema consiste em
determinar o nimero de caminhdes a serem despacha-
dos em cada rota. Assim, um dos mais importantes
fatores para o processo de otimizacado, é a determi-
nacdo de uma nova rota (ou a mesma rota) para cada
término de carregamento ou basculamento dos cami-
nhdes, ou seja, determinar um novo despacho. Este
trabalho consiste em determinar qual a melhor rota
possi'vel, visando atender as metas estipuladas.

4.1 Solucionando o VRPTW em mineragao

utilizando o GA

A modelagem de um problema VRPTW real utilizan-
do o GA, deve-se concentrar em representar as va-
ridveis do problema, por exemplo, como 0s individos
serao representandos, e informar como cada etapa do
algoritmo genético representando no Programa 1, de-
vera proceder. Mais especificamente, as etapas de
selecao, cruzamento, mutacdo etc, podem utilizar os
métodos tradicionais encontrados na literatura, ou po-
dem propor novos métodos que melhor se adequem
ao problema em questao. Existem varias métodos
hibridos para solucionar o VRPTW utilizando ou-
tras heuristicas conhecidas em uma das etapas do GA
[Tom03, Lim00].



4.1.1 Funcgao Objetivo

Geralmente a funcdo objetivo consiste em maximizar
a producao, garantir a qualidade programada no desti-
no e minimizar a fila de carregamento e basculamento
dos caminhoes. Estes objetivos devem ser trabalhados
de forma concomitante pelo GA e nido de forma con-
corrente, pois se algum destes objetivos for focalizado
pode-se nao atingir um forma de operacao adequada
sob o ponto de vista global. No entanto, esta modela-
gem permite que sejam definidas prioridades para ca-
da um dos objetivos citados, tornando o resultado da
otimizacao mais real. Isto significa que em certos mo-
mentos da operacdo, é necessario focalizar um dos ob-
jetivos de forma prioritaria, para refletir as realidades
da operacao. Por exemplo, ds vezes se faz necessario
garantir totalmente a qualidade do material extraido,
mesmo que isto implique em uma diminuicdo da pro-
ducdo ou aumento das filas. A prioridade pode ser
“alta” ,”média” ou “baixa” para cada um dos objeti-
vos, que na verdade, é apenas um fator para avaliacdo
dos individuos do GA.

4.1.2 Representagao dos individuos e cromos-
somos

Um individuo no GA significa uma possivel solucao
para o problema em questdo. Assim, no contexto das
mineracoes, um individuo é composto por um conjunto
de cromossomos, no qual cada cromossomo represen-
ta um decis@o de despacho para um caminhdo. As-
sim, o individuo é representado por um vetor de de-
cisdes de despacho (rotas) de caminhées s, no qual
S = dl,dQ,...,dn.

O significado de d; dependerd do ponto onde, para
uma dada simulagao, houver a i-ésima necessidade de
se optar por uma entre varias rotas disponiveis. Os va-
lores possiveis para d; sdo nimeros entre 0 e 255. Cada
byte corresponde a uma decisao de despacho. A rota
escolhida dependera do valor deste byte e o niimero de
rotas disponiveis no ponto onde ser4 realizada a esco-
Iha.

4.1.3 Populacao Inicial

O GA necessita de uma populacao inicial para comecar
o processo de selecio dos individuos para cruzamen-
to. Nesta modelagem, a populacdo inicial é gerada de
forma totalmente randoémica, para garantir a diversi-
ficacio de individuos na primeira geracio. Na litera-
trua, a heuristica PFTH proposta por [Des88], tem sido
frequentemente utilizada.

4.1.4 Avaliacdo dos individuos

A avaliacdo dos individuos consiste em calcular a adap-
tabilidade (fitness) de cada individuo de acordo com a
funcao objetivo. Esta adaptabilidade é utilizada como
principal caracteristica no processo de selecio dos in-
dividuos. Neste trabalho, de acordo com a funcao ob-
jetivo descrita anteriormente, o processo de avaliacao
consiste em realizar um simulagdo da mineragao em
questao, para a préxima hora. Neste processo, uma
“foto” da situacao atual da mina é obtida, ou seja,
dados como tempo de ciclo dos caminhoes, rotas, ca-
minhoes disponiveis, estado atual dos caminhdes (por
exemplo: carregando, deslocando cheio, basculando,
manutengio etc), sdo obtidos. Entdo, através de uma
matriz de simulagdo, todos os estados por caminhao
sao simulados para a préoxima hora. Ao fim deste pro-
cesso, cada individuo recebe uma “nota” fitness, de
acordo com o tempo de fila, producao e qualidade ob-
tidos para este individuo, levando em consideracgao as
prioridades definidas pela fun¢ao objetivo.

4.1.5 Selegao

Na etapa de selecdo, pares de individuos sio selecio-
nados para cruzamento. Na literatura, duas técnicas
de selecdo sdo amplamente utilizadas [Hol75]: roulet-
te wheel e tournament. No primeiro método, a pro-
babilidade de um individuo participar do cruzamento
estd diretamente relacionada com a sua adaptabilida-
de (fitness) relativa. Este método é bastante sensivel
a fungao de avaliacao, e quase sempre alguns controles
extras sdo necessdrios. No método torneio (tourna-
ment), k individuos sdo selecionados randomicamente.
Aqueles que apresentarem maior adapatabilidade (fit-
ness) sao os escolhidos. Este processo é repetido até
que o nimero necessario de individuos para cruzamen-
to seja atingido. Este trabalho utiliza a técnica tourna-
ment e a quantidade & de individuos é um parametro
configuravel.

4.1.6 Cruzamento

O cruzamento (crossover) é a operagao mais impor-
tante do GA, onde informacoes de individuos diferen-
tes sdo trocadas para se formar um novo individuo.
Neste trabalho, a forma mais simples de cruzamento
foi utilizada. De acordo com uma taxa de cruzamen-
to (probabilidade), um ponto de “quebra” da string
de bits que representa o individuo é selecionado ran-
domicamente. Assim, a partir deste ponto, todas os
cromossomos que estiverem antes do ponto de quebra
serdo trocados entre os dois individuos, formando um



novo individuo, ou seja, uma nova, possivel solugao pa-
ra o problema.

4.1.7 Mutagao

O processo de mutacdo é uma operacao importante no
GA, pois é capaz de inserir novas caracteristicas nao
presentes em todos os individuos atuais, diversificando
o espaco de busca, e evitando que a solucao se con-
centre nos minimos locais. No entanto, esta operagao
deve ser feita com cuidado para evitar a modificagao
do individuo a ponto de inutilizi-lo. Neste trabalho,
a mutacao é realizada de acordo com um taxa de mu-
tagdo (probabilidade), na qual alguns cromossomos de
um individuo sdo selecionados de forma randdmica e
modificados. A modificagdo de um cromossomo, ou
seja, de uma rota para um caminhdo, é realizada de
forma cuidadosa, para evitar gerar uma rota incoeren-
te, resultando em um cromossomo “defeituoso”.

4.2 Fluxo de otimizacao

Para que o processo de otimizagao da operacdo nas
mineracdo seja eficiente, os dados necessirios para o
GA devem refletir, o mais fiel possivel, a situacio em
que se encontra a mina naquele instante. Desta ma-
neira, a otimizacio é um processo ciclico, como pode
ser observado na Figura 1.

O processo de otimizacdo utiliza dados estati'sticos,
como tempos médios de ciclo dos caminhées, distancias
entre os pontos de carga e descarga, dados estéticos,
como numero de caminhGes, pontos de carga dis-
poniveis, e dados em tempo real, como posi¢ao real
de cada caminhdo, estado em que se encontra cada
caminhdo (operando, disponivel, manutencao, abaste-
cendo), produgéo até o momento etc. Com todas estas
informagoes disponiveis, o GA §é iniciado e sugere uma
nova rota para cada caminhao de acordo com a funcgao
objetivo especificada.

|Dadus Estatisticos |4—

+

| Dados em Tempo Real |

+

| Algoritmo Genético |

| Sugestiies de Rotas |

Figura 1: Fluxo do processo de otmizacao

Assim, a cada 10 segundos, o processo de otimizagao
realiza uma nova simulagdo, refletindo todas as mu-
dangas que podem ocorrer ao longo da operacao da
mina, melhorando cada vez mais a solugdo. Desta for-
ma, os dados em tempo real sao fundamentais para a
tomada de decisao correta no instante adequado. Por
exemplo, se um caminhdo apresenta algum problema
e nao pode mais operar, um outro caminhao pode ser
enviado instantaneamente para substituir este cami-
nhdo. Com a posi¢io real de cada caminhao, pode-se
troca-lo de rota a qualquer instante, para evitar por
exemplo, fila de carregamento em um dos pontos de
carga que esteja com problemas de operagao.

O processo de otimizacao deste trabalho, assume que
todos 0s caminhdes da mineracao possuam um compu-
tador de bordo capaz de enviar informacoes via rede
wireless e possuam um GPS (Global Positioning Sys-
tem), para informar posigdo geogréfica real no mundo
a cada instante.

5 Resultados

A maioria dos trabalhos encontrados na literatu-
ra, que trabalham com heuristicas para resolver o
VRPTW, utilizam uma série de benchmarks propos-
tos por [Des88] para comparar a eficiéncia de suas
heuristicas, em relagao aos resultados 6timos conhe-
cidos até o momento para algumas instanciass desta
classe de problemas.

Neste trabalho, estes benchmarks nao foram uti-
lizados para verificar a eficiéncia do GA, pois esta
heuristica foi totalmente adaptada para o contexto do
problema de roteamento de veiculos em mineragoes de
minério de ferro. O processo de otimizacao aqui descri-
to, encontra-se em implantagao na mineragao “Corrego
do Feijao” da Ferteco e na mineragao “Capitao do
Mato” da MBR (Mineragoes Brasileiras Reunidas), na
presente data.

Em um ambiente real, pode-se avaliar de forma
acertada a eficiéncia da otimizacdo através do GA,
medindo-se os ganhos de produtividade e qualidade
nas mineracoes apés a implantacdo do processo de oti-
mizacio. Na situacio atual, ainda nio é possivel medir
os ganhos em termos de diminui¢do de custos e aumen-
to de producao.

Apesar disso, pode-se observar que o modelo de ope-
racdo destas mineragoes tém sofrido grandes modifi-
cacoes devido ao processo de otimizacao, pois a ope-
racdo manual, realizada por um controlador de trifego,
nao é capaz de lidar com a quantidade de variacoes que
ocorrem durante a operagao destas mineracoes, preju-



dicando o resultado final. O processo manual, é reali-
zado com base apenas nos dados estatisticos, ou seja,
no inicio da operagdo calcula-se a quantidade de ca-
minhoes necessarios por rota para se atingir as metas
de producao e qualidade, e estes caminhoes entao sao
fixados nestas rotas. Este modelo é incapaz de se adap-
tar as mudancas do ambiente. Um método de busca
adaptativo como o GA, lida muito bem com este tipo
de situagdo. No pior caso, se o0 GA nao convergir para
encontrar uma, solucdo vidvel, a operacdo continua a
ser como a operagao manual, ou seja, fixa.

Apesar da medicao dos resultados ndo ser uma ta-
refa trivial, alguns resultados preliminares foram obti-
dos, baseados em simulagoes. Os resultados a seguir
foram obtidos a partir de simulacées com o algorit-
mo genético e comparando com resultados de operagao
com caminhées fixos por rota, denominada frente fixa.

No grafico da Figura 2, pode-se observar os resul-
tados obtidos pelo GA na simulagiao para quatro ca-
minhoes e trés rotas possiveis, sendo a prioridade da
funcdo objetivo a qualidade. Pode-se constatar que a
qualidade desejada foi obtida logo nas primeiras ge-
racoes, enquanto ao tempo de fila a reducdo nao foi
imediata, e mesmo apds trinta geracbes, ela ndo foi
completamente eliminada. Nao se sabe se a situagao
de fila zero existe. Para verificar é necessirio gerar
todas as combinacdes possiveis, de custo proibitivo.

com um valor aceitavel.
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Figura 3: Redugao percentual de cada termo da fungao
objetivo com prioridade para fila.

No grafico da Figura 4, a prioridade da funcao obje-
tivo foi o termo producdo. Pode-se perceber que para
se conseguir ganhos de produgao foi necessirio aumen-
tar o tempo de fila e piorar o fator qualidade.

Apesar de cada fator de prioridade implicar em rela-
tiva piora para os termos nio priorizados, ocorreu uma,
reducdo dos termos em todos os testes realizados em
relagao a frente fixa. Logo nas primeiras geragoes, esta
diminuicdo pode ser observada. Isto comprova que até
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esmo um resultado préximo do aleatério obtido pelo
A (fato ocorrido nas primeiras geragoes, onde os in-
ividuos ainda nio evoluiram o suficiente), provou ser
elhor do que a operacgao frente fixa.
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Figura 2: Evolucao do tempo em fila e do erro na
qualidade, com o avancgo nas geracoes do GA, para a
operacao da mina com 4 caminhos, sendo a prioridade
a qualidade

No grafico da Figura 3, os mesmos dados foram ana-
lisados, sendo que a prioridade da funcao objetivo foi o
fator fila. Pode-se notar que ocorreu uma diminuicao
do tempo de fila, o que sacrificou um pouco o termo
qualidade, em relagao ao grafico da Figura 2. O ter-
mo produgao se manteve praticamente constante, mas
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Figura 4: Redugao percentual de cada termo da fungao
objetivo com prioridade para producao.

Outro fato que pode ser comprovado, foi que
aumentando-se o nimero de caminhoes e o nimero de



rotas, o tempo de resposta do algoritmo piora bastan-
te, devido ao aumento exponencial de possibilidades
de solucao a serem analisados pelo GA. No entanto,
para um problema real com cinquenta caminhdes, o
tempo de resposta do algoritmo ficou em torno de dez
segundos, com um total de trinta geracoes.

6 Conclusao

O VRPTW é um problema da classe NP — Completo
amplamente estudado na literatura. Este trabalho
apresentou os principais métodos utilizados para re-
solver problemas computacionais de custo proibitivo.
A tendéncia atual para resolucao deste tipo de proble-
ma, tem se concentrado na modelagem de heuristicas
hibridas, utilizando uma ou mais heuristicas conhe-
cidas de forma conjunta, como pode ser visto em
[Tom03, Lim00]. Além disso, métodos paralelos pa-
ra resolver o VRPTW também tém sido utilizados
[Lar99], bem como a utilizacdo de heuristicas distri-
buidas [Alv97].

A escolha do GA para modelar o problema real de
roteamento de veiculos em mineracoes, foi devida &
grande utilizagao desta heurstica na literatura para
resolver problemas da classe VRP e suas variagoes.
Na pratica, pode-se observar que o GA é bastante
versatil, permitindo uma implementacao facilitada e o
aperfeicoamento continuo do método. Por exemplo, se
for necessario modificar a operacdo de mutagdo acres-
centando mais operadores, basta alterar apenas esta
parte do algoritmo, sem modificar a representacao dos
individuos, cruzamento etc.

O GA apresentou bons resultados nas simulagoes re-
alizadas, mas ainda nio podemos avaliar os beneficios
que este método pode trazer para as mineracoes estu-
dadas. Espera-se um aumento de produtividade de 5%
a 15% em relacdo & produtividade obtida atualmente,
ou seja, com operagao manual.

Pode-se perceber que o problema de roteamento
de veiculos nas mineracdes é um problema muito es-
peciﬁco, pois apresenta muitas restrigoes a mais, do
que o VRTPW padrao. Questdoes como qualidade,
capacidade de combustivel, formato das rotas (dificil
acesso por exemplo) etc, devem ser consideradas além
da capacidade do veiculo e a janela, de tempo para
que este cumpra a rota. Assim, pode-se perceber uma
grande quantidade de trabalhos futuros a serem reali-
zados para otimizacdo de frota de veiculos em mine-
racoes.

Este trabalho nao abordou a questao da capacida-
de de combustivel do equipamento, o que pode ser um

fator decisivo para se conseguir atingir os objetivos da
operacao. Por exemplo, a decisdo de enviar um cami-
nh3do para abastecimento pode evitar uma sobrecarga
em um ponto de carga, diminuindo o tempo de fila
para todos os equipamentos.

Este trabalho também nao aborda a questao de tro-
car o caminhao de rota quando este estiver deslocan-
do. A troca de rota é feita apenas nos pontos de carga
e descarga. Com a posicao real do equipametno via
GPS, pode-se decidir trocar o caminhao de rota, mes-
mo que este ja esteja chegando em algum ponto de car-
ga, para refletir as mudacas de objetivo da operacao.

Enfim, existem muitas caracteristicas a serem acres-
centadas no modelo proposto. Além disso, convém im-
plementar e testar outras heuristicas para resolver o
VRPTW em mineracoes, pois existem poucos traba-
lhos na literatura que abordam este problema.
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