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Abstract. O problema de reconhecimento de padrões recai sobre a identificação de padr̃oes que tenham sido alter-
ados por uma variedade de transformações permitidas. Os padrões no mundo real podem apresentar transformações
geoḿetricas lineares (rotação, escala e translação), deformaç̃oes ñao lineares e variâncias de iluminaç̃ao eback-
ground, entre outros. Dessa forma, os métodos tradicionais de reconhecimento de padrões precisam ter a habili-
dade de reconhecer um mesmo padrão com certo tipo de variância. Portanto, a pesquisa e o desenvolvimento de
técnicas e sistemas de extração de caracterı́sticas invariantes dos padrões s̃ao importantes tanto para fins teóricos
quanto pŕaticos. Entre as principais técnicas de extração de caracterı́sticas invariantes podemos citar os momentos
estat́ısticos, as transformadas de Fourier, as transformadas de wavelets, o casamento de grafos e as redes neu-
rais, onde se enquadram as redes de pulso acoplado. Este projeto tem como objetivo desenvolver um modelo
de reconhecimento de padrões invariantes. O modelo proposto reconhece eficientemente padrões sem levar em
consideraç̃ao as posśıveis variaç̃oes de posiç̃ao, escala e rotação.

1 Introduç ão

O reconhecimento de padrõesé o estudo sobre as for-
mas com as quais as máquinas observam seu entorno, apren-
dem a distinguir padrões de interesse e tomam decisões
razóaveis sobre as categorias dos padrões [6]. Umpadrão
é uma descriç̃ao de um objeto, que pode ser classificado
como concreto (espaciais: caracteres, imagens; e tempo-
rais: formas de onda, séries) ou abstrato (raciocı́nio, solu-
ções de problemas, etc) [13]. Um computador consegue re-
conhecer padrões, convertendo-os em sinais digitais e com-
parando-os com outros sinais já armazenados na memória.

Um sistema de reconhecimentoé geralmente composto
por tr̂es fases principais: pré-processamento, extração de
caracteŕısticas e classificação. Na etapa de pré-processa-
mento, os dados de entrada são manipulados por uma var-
iedade de ḿetodos que realizam operações de remoç̃ao de
rúıdo, segmentaç̃ao e melhoria de qualidade dos mesmos.
Na extraç̃ao de caracterı́sticas, o objetivóe representar os
dados de entrada em termos de medidas quantificáveis, que
possam ser utilizados facilmente na etapa de classificação.
Já na etapa de classificação, os padr̃oes s̃ao agrupados em
função de caracterı́sticas comuns entre eles.

O problema do reconhecimento de padrõesé reconhe-
cer padr̃oes que sejam, em algum sentido, “os mesmos”
apesar de terem experimentado uma variedade de transfor-
maç̃oes permitidas. Os padrões no mundo real apresentam
transformaç̃oes geoḿetricas lineares (rotação, translaç̃ao e
escala), deformações ñao-lineares e variância de iluminaç̃ao
ebackground, entre outros. Dessa forma, os métodos tradi-
cionais de reconhecimento de padrões precisam ter a ha-
bilidade de reconhecer um mesmo padrão com certo tipo

de varîancia. Portanto, a pesquisa e o desenvolvimento de
técnicas de Reconhecimento de Padrão Invariante (RPI) s̃ao
importantes tanto para fins teóricos quanto pŕaticos. En-
tre as principais t́ecnicas de extração de caracterı́sticas in-
variantes temos os momentos de Hu [5], os momentos de
Zernike [9], as transformadas de Fourier [10], as transfor-
madas dewavelets[8], o casamento de grafos e as redes
neurais em que estão inseridas as redes de pulso acoplado
(PCNN:Pulse Coupled Neural Network) [2].

Museran [11] combina as transformadas de Fourier com
as PCNNs com o objetivo de atingir a invariância de escala
e translaç̃ao, mas devidòa forma de acoplamento, as PC-
NNS já s̃ao invariantes̀a translaç̃ao. Cheng [14] baseia seu
trabalho na t́ecnica de padrões bińarios locais, obtendo as-
sim a invarîancia de rotaç̃ao. No entanto esta técnica ap-
resenta uma limitaç̃ao, j́a que as rotaç̃oes devem ser de 45
graus. Mauro [1] prop̃oe uma t́ecnica baseada em redes
neurais e na representação das imagens através de grafos.
Como a identificaç̃ao de igualdade de duas imagens (grafos)
depende da prova de que os grafos são isoḿorficos, essa
técnica apresenta um alto custo computacional. Sendo que
duas imagens (grafos) são iguais se s̃ao isomorfas, o prob-
lema desta t́ecnicaé o alto custo computacional. Zhang
[15] faz uma revis̃ao de v́arias t́ecnicas de extração de ca-
racteŕısticas.

Os ḿetodos para extração de caracterı́sticas invariantes
existentes possuem certas limitações, sendo a principal de-
las o alto custo computacional. Com isso surge a neces-
sidade de desenvolvimento de um sistema de extração de
caracteŕısticas invariantes. As redes de pulso acoplado bi-
dimensionais possuem uma estrutura semelhanteà orga-



nizaç̃ao natural de padrões a serem reconhecidos, tais como
por exemplo imagens, onde existe uma correspondência di-
reta entre um neurônio e um pixel de uma imagem, facil-
itando a representação de padr̃oes originais. No presente
trabalho objetiva-se investigar redes de pulso acoplado para
extraç̃ao de caracterı́sticas invariantes de padrões.

Este trabalho está organizado como segue: Na seção 2,
seŕa apresentada a rede de pulso acoplado seqüencial como
técnica de reconhecimento de padrões invariantes. Na seção
3, ser̃ao apresentados os momentos de Zernike. Na seção 4,
seŕa apresentada a rede neuralfuzzyART (Adaptive Res-
onance Theory), que seŕa usada como classificadora. Na
seç̃ao 4, seŕa apresentado o modelo proposto. Na seção 5,
ser̃ao apresentados os resultados. E na seção 6, ser̃ao apre-
sentadas as conclusões e futuros trabalhos.

2 Rede de pulso acoplado seqüencial (PCNN)

Em PCNNs [7], os elementos evoluem de forma pa-
ralela. Existe uma outra forma de geração de pulsos, onde
os pulsos s̃ao transmitidos seqüencialmente (horizontal ou
verticalmente). Esse tipo de redeé chamado de rede de
pulso acoplado seqüencial, proposto por Dodwell [12].

2.1 Esquema de codificaç̃ao do Dodwell

O modelo de Dodwell inclui uma matriz bi-dimensio-
nal de unidades. Estas unidades estão conectadas em cadeias,
de tal forma que uma unidade tem, no máximo, dois vizin-
hos. De um deles receberá a excitaç̃ao e a transmitiŕa ao
outro vizinho. Cada cadeia horizontal (vertical) está or-
ganizada de tal forma que, quando uma borda horizontal
(vertical) est́a projetada sobre a grade, as unidades da grade
que s̃ao relacionadas com as unidades ativadas terminam
em umaúnica cadeia [12].

Na Figura 1 representa-se uma grade de codificação
tı́pica, sendo que somente cadeias horizontais são mostradas
explicitamente. Sejaml×c as dimens̃oes da grade de codifi-
caç̃ao, ondel representa o ńumero de linhas ec as colunas.
Sejam as unidades pertencentesà coluna mais a esquerda da
grade (representado porA na Figura 1) chamadas de con-
junto final da grade. As unidades do conjunto final da grade
possuem as seguintes propriedades:

• Elas s̃ao as geradoras das excitações. Elas transmitem
a excitaç̃ao, mas ñao recebem estı́mulo de nenhuma
unidade.

• A direção de transmissão começa no conjunto final e
vai at́e a sáıda do codificador (representado por uma
seta na Figura 1).

• O conjunto final dispara os estı́mulo simultaneamente.

As outras unidades transmitem a excitação aos seus re-
spectivos vizinhos ao longo do sentido de transmissão aṕos

um tempo constante, queé definido como

(a) Tp segundos, se a excitação ñao tiver sido ativada pelas
projeç̃oes das bordas, e

(b) Ta(> Tp) segundos caso contrário.

Considere o caso em que nenhuma das unidades do
codificadoré ativada pelas projeções das bordas. Neste
caso, o envio do sinal de excitação partindo do conjunto
final da gradeA induz uma varredura da matriz, sendo este
um valor constante e cada cadeia atingirá a sáıda simulta-
neamente. A saı́da seŕa ent̃ao umúnico pulso del unidade
de amplitude, no tempo constantec ∗ Tp aṕos o disparo do
sinal pelo conjunto final.

Figura 1: Grade de codificação.

2.2 Varreduras perpendiculares

Incorporar apenas a varredura horizontal na grade de
codificaç̃ao pode ñao ser vantajoso, já queé posśıvel a gera-
ção de sáıdas semelhantes para padrões diferentes. O pro-
blema pode ser resolvido usando cadeias verticais, as quais
são ativadas por bordas verticais. Essas cadeias são per-
pendiculares̀as cadeias horizontais. Dessa forma o codifi-
cador possui duas saı́das separadas, que correspondemàs
varreduras verticais e horizontais, respectivamente.

Na Figura 2 est́a ilustrado o funcionamento da grade
de codificaç̃ao. A Figura 2 (a)́e uma t́ıpica grade de codi-
ficaç̃ao, onde as unidades ativadas (escuras) correspondem
à presença de pontos nas bordas; a Figura 2 (c) corresponde
aos pulsos, tanto no sentido horizontal quanto no vertical.
Na Figura 2 (b) s̃ao mostradas as unidades ativadas da grade
de codificaç̃ao de uma borda rotacionada e a Figura 2 (d)
correspondèas seq̈uências de pulsos. Como pode ser perce-
bido atrav́es dos gŕaficos, existem consideráveis diferenças
entre as seq̈uências da Figura 2 (c) e (d), confirmando que
a presente grade de codificação ñao é invarianteà rotaç̃ao
dos pontos das bordas [12].

Como podemos ver, a grade de codificaçãoé invariante
à translaç̃ao, mas apresenta algumas caracterı́sticas ñao de-
sej́aveis, tais como:

1. Nãoé invariantèa rotaç̃ao e escala.



(a) (b)

(c)
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Figura 2: (a) Codificador de grade com unidades ativadas
(escuras). (b) Codificador de grade com unidades ativadas
(escuras) para um contorno rotacionado. (c) Ilustração da
função do codificador de grade: pulsos correspondentesàs
varreduras horizontais e verticais de (a). (d) Ilustração da
função do codificador de grade: pulsos correspondentesàs
varreduras horizontais e verticais de (b).

2. Uma pequena variação na borda de entrada dará como
resultado sáıdas diferentes, ou seja, possui baixa tole-
rância a rúıdo.

3. Como a bordáe alimentada diretamente sobre o codifi-
cador, o tamanho da matriz de codificação seŕa grande,
produzindo um pulso comprido.

Como pode ser visto, trabalhar com estas técnicas se-
paradamente ñaoé suficiente para atingir o objetivo. A fim
de evitar as desvantagens associadasà grade de codifiç̃ao
de Dodwell, Rishikesh [12] prop̃oe um modelo onde obtêm
a invarîancia utilizando a transformadalog-polar, conver-
tendo a imagem em coordenadas polares. Para isso, o cen-
tróide é inicialmente encontrado tornando-se a origem do
mapeamento. Desta forma,é posśıvel garantir a invarîancia
de translaç̃ao e rotaç̃ao. Como tamb́emé utilizado um ma-
peamento logaritmo, a imagem torna-se invarianteà escala.

3 Momentos de Zernike

Os Momentos de Zernike (MZ) pertencemà classe de
momentos ortogonais invariantesà rotaç̃ao. Para obter in-
variância de escala e translação, a imageḿe mapeada em
um ćırculo unit́ario de coordenadas polares sendo as carac-
teŕısticas invariantes̀a rotaç̃ao extráıdas [9].

Os momentos de Zernike pertencemà classe dos mo-
mentos ortogonais invarianteà rotaç̃ao.

Zpq =
n + 1

π

∫ 2π

0

∫ 1

0

f(ρ cos θ, ρ sin θ).

.V ∗
pq(ρ, θ)dρdθ (1)

Vpq(ρ, θ) = Rpq(ρ)ejqθ (2)

Rpq(ρ) =
p−|q|/2∑

s=0

(p− s)!

s!(p+|q|
2 − s)!(p+|q|

2 − s)!
.

.(−1)sρp−2s (3)

p é um numero inteiro positivo ou zero,q é um numero
inteiro positivo ou negativo tal quep− |q| = par e |q| ≤ p,
j = 2

√
−1

4 Rede neural fuzzy ART (Adaptive Resonance The-
ory)

A fuzzyART foi criada por Carpenter e Grossberg [3]
em 1991. Esta rede incorpora as caracterı́sticas b́asicas de
todos os sistemas ART1 [4], casamento de padrões entre
a entradabottom-upe o vetor prot́otipo top-downapren-
dido. Este processo de casamento conduz tanto a um es-
tado de resson̂ancia que focaliza a atenção no processo de
aprendizado e coloca em funcionamento o protótipo est́avel
aprendido quanto a uma busca na memória paralela auto-
regulada. Se a busca termina na seleção de uma categoria
(cluster) estabelecida, então o prot́otipo da categoria sele-
cionada seŕa refinado, incorporando uma nova informação
ao padr̃ao de entrada. Se a busca termina na seleção de um
nó pŕevio ñao rotulado, uma nova classeé criada.

A fuzzyART possui uma estrutura e mecanismo de
funcionamento muito semelhante a ART1 e incorpora opera-
ções da teoria de conjuntosfuzzy, permitindo a classificação
de padr̃oes com valores contı́nuos. A Figura 3 apresenta um
resumo das operadores da ART1 e sua correspondência na
fuzzyART.

Na Figura 4́e apresentada a arquitetura básica dafuzzy
ART. Cada padr̃ao de entradaI é um vetor m-dimensional
(I1, I2, I3, . . . , Im). Cada cluster tem como correspondente
um vetorWj = (Wj,1,Wj,2,Wj,3, . . . ,Wj,n) de pesos adap-
tativos. O ńumero de possı́veis clustersn (j = 1, 2, . . . , n)
é arbitŕario. O vetor de pesos dafuzzyART é o equiva-
lente, em uḿunico vetor, aos vetores de pesostop-downe
bottom-upda ART1 [3].



ART1 FuzzyART
(Binário) (Cont́ınuo)

Seleç̃ao da Categoria

Tj =
|I ∩Wi|
α + |Wi|

Tj =
|I ∧Wi|
α + |Wi|

Critério de Semelhança
|I ∩Wi|
|I|

≥ ρ
|I ∧Wi|
|I|

≥ ρ

Aprendizado Ŕapido
Wj(new) = I ∩Wi(new) Wj(new) = I ∧Wi(new)

∩ = AND lógico ∧ = fuzzyAND

Figura 3: Analogia entre ART1 e fuzzy ART.

Figura 4: Arquitetura dafuzzyART.

5 Modelo Proposto

O modelo proposto neste trabalho visa reconhecer pa-
drões que tenham sofrido transformações geoḿetricas (esca-
la, translaç̃ao e rotaç̃ao). Ele visa ainda reduzir o custo com-
putacional de extração de caracterı́sticas.

A rede de pulso acoplado proposto por Rishikesh [12]
extrai caracterı́sticas invariantes̀a rotaç̃ao de imagens bińa-
rias (bordas). Com o modelo proposto, além de extrair car-
acteŕısticas invariantes de imagens binárias, tamb́em seŕa
posśıvel extrair essas mesmas caracterı́sticas de imagens
em ńıveis de cinza.

5.1 Normalizaç̃ao em escala e translaç̃ao

Os momentos regulares são utilizados para atingir a
normalizaç̃ao em escala e translação. A invarîanciaà transla-

ção é alcançada transformando a imagem originalf(x, y)
em outra uma outra imagemf(x + x, y + y), ondex e
y são as localizaç̃oes do centŕoide da imagem. Em outras
palavras, a origeḿe movida ao centróide da imagem. O
centŕoide pode ser calculado através dos momentos regu-
lares.

Os momentos regularessão definidos em termos das
integrais de Reimann como [5]:

mpq =
∫ ∞

−∞

∫ ∞

−∞
xp yq f(x, y) dx dy (4)

parap, q = 0, 1, 2, . . . empq é o momento 2D para a função
f(x, y). A ordem do momentóe (p + q).

Os momentos de primeira ordem são usados para en-
contrar o centŕoide(xc, yc) da imagem:

xc =
m10

m00
, yc =

m01

m00
(5)

ondem00 representa a massa ouárea da imagem,m10 é
m01 são as projeç̃oes emx ey respectivamente.

A invariânciaà escaláe atingida quando o momento de
ordem zero (m00) da imagem atinge o valor pré-determinado
β atrav́es do aumento e diminuição da imagem.

Dessa forma a imagemf(x, y) pode ser normalizada
em escala e translação transformando-se emg(x, y), onde

g(x, y) = f(
x

a
+ x,

y

a
+ y),

tal que (x, y) é o centŕoide def(x, y) ea =
√

β
m00

, ondeb

é um valor pŕe-determinado.
Com o objetivo de atingir a invariânciaà rotaç̃ao, a

imagemé transformada em coordenadas polares, tal que a
imagem seŕa representada pelo raioρ e oânguloθ formado
entre raio e o eixo das abscissas. A transformação deve ser
feita tendo como origem o centróide da imagem.

Uma vez que a imagem tenha sido transformada em
coordenadas polares (ver figura 5), os vetores serão extráıdos
a partir das varreduras horizontal e vertical.É posśıvel
perceber que os vetores de varredura horizontal serão sim-
ilares, j́a que as rotaç̃oes em coordenadas polares são sim-
plesmente deslocamentos circulares (circular shift). Por ex-
emplo, quando existe uma rotação, a imageḿe transladada
horizontalmente e aquela parte que sai da janela pela parte
direita apareceria pelo lado esquerdo da janela. A diferença
entre as duas imagens estaria no vetor de varredura vertical.
No lugar em que acontece o mesmo fenômeno na imagem,
o vetor tamb́em possui um deslocamento circular, ver figura
6.

Até agora, encontramos um vetor de caracterı́sticas
queé invarianteà rotaç̃ao. No entanto, quando duas ima-
gens s̃ao parecidas mas pertencem a classes diferentes, elas
ser̃ao consideradas como sendo do mesmo cluster, o que



(a) (b)

Figura 6: Vetores de varredura da imagem “araras”, em (a) vemos o vetor de varredura horizontal e vertical de imagem com
zero graus de rotação e em (b) da imagem com 90 graus de rotação.

(a) (b)

(c) (d)

Figura 5: Representação polar da imagem “araras” com
diferentes graus de rotação. Na primeira linha estão as im-
agens em coordenadas cartesianas e na segunda linha a re-
spectiva representação polar.

pode representar um problema. Dessa formaé necesśario o
segundo vetor para atuar como discriminante entre imagens
semelhantes, sendo importante encontrar uma maneira de
representar o vetor de varredura vertical. Sendo que o his-
tograma desse vetor fornece um vetor que tambémé invari-
anteà rotaç̃ao, ver figura 7.

A Figura 8 mostra o modelo que está sendo proposto
neste projeto.

6 Resultados

Nesta seç̃ao ser̃ao apresentados os resultados de classi-
ficaç̃ao das caracterı́sticas invariantes usando a rede neural
Fuzzy ART como classificador.

Foram utilizadas duas bases de dados para testar a qual-
idade das caracterı́sticas extráıdas com o ḿetodo proposto

Figura 7: Histograma do vetor de varredura vertical da im-
agem “araras” com rotações de0◦, 45◦ e90◦ graus.

neste trabalho. A primeira base consta de dez imagens
binárias de ńumeros, e a segunda base esta formadas por 13
grupos de texturas diferentes, as quais foram coletadas da
base de dados de texturas Vistex1. Em ambas as bases, cada
imagem sofreu um conjunto de transformações geoḿetricas,
sendo que foram geradas 50 versões diferentes (rotacionadas
e escaladas) de cada imagem, resultando em um total de 650
padr̃oes. As rotaç̃oes foram de0◦, 7◦, 14◦, 21◦, 28◦, 35◦, 42◦,
49◦, 56◦ e 63◦ graus enquanto que as variações em escala
foram de 0.5, 0.8, 1, 1.5 e 2.

Algumas texturas da base de dados são mostradas na
Figura 9.

Os testes feitos com o modelo proposto visam avaliar

1(http://www-white.media.mit.edu/vismod/imager/



Figura 8: Modelo proposto.

Figura 9: Exemplos de imagens da base de texturas.

a qualidade das caracterı́sticas invariantes extraı́das. Nesta
primeira etapa, serão usadas imagens em nı́veis de cinza.
Essas imagens sofreram variações geoḿetricas, como pode
ser visto no exemplo da Figura 10. Elas estão rotacionadas
em 37◦ 45◦ e 90◦. Este modelo tamb́em é totalmente in-
varianteà translaç̃oes.

0◦ 37◦ 45◦ 90◦

Figura 10: Transformaç̃oes geoḿetricas da imagem
“araras”sendo rotacionada em0◦, 37◦, 45◦ e 90◦ respec-
tivamente.

Dois vetores s̃ao usados para armazenar as caracterı́sti-

VisionTexture/vistex/html )

cas extráıdas. O primeiro, chamado “vetor de varredura
horizontal”, cont́em o somat́orio dos estados de cada linha
da rede e o segundo, chamado “vetor de varredura vertical”,
cont́em o somat́orio dos estados de cada coluna da rede (é
importante notar que este vetor nãoé invariantèa rotaç̃ao).
No entanto,́e necesśario calcular o histograma do vetor de
varredura vertical. Depois de várias tentativas a conclusão
foi que um histograma de 20 elementosé adequado.

A Figura 11 (a) mostra 4 vetores de varredura horizon-
tal, um para cada imagem “araras” rotacionada. No caso de
rotaç̃oes de90◦ o vetoré exatamente igual ao vetor gerado
para a imagem original (rotação0◦). No caso de rotaç̃oes
de 37◦ e 45◦, os vetores de varredura horizontal apare-
cem com uma pequena diferença em relação ao vetor de
estados da imagem original. Isso acontece devidoà carac-
teŕıstica discreta das imagens digitais. Ou seja, quando uma
imagem digitalé rotacionada, alguns pixels são perdidos
enquanto outros pixels são introduzidos. No entanto, como
as diferenças são pequenas os vetores continuam conser-
vando caracterı́sticas similares, permitindo que sejam clas-
sificados dentro do mesmo grupo.É posśıvel observar que
temos o mesmo comportamento para o histograma do vetor
de varredura vertical, como pode ser visto na Figura 11(b).

Na Tabela 1 s̃ao mostrados os valores dos parâmetros
da redefuzzyART, para o par̂ametro de escolhaα, a taxa de
aprendizadoβ e o par̂ametro de vigil̂anciaρ. Foram clas-
sificados tr̂es bases de texturas, sendo a primeira povoada
com imagens rotacionadas sem ruı́do, a segunda povoada
por imagens rotacionadas com ruı́do e a terceira por ima-
gens rotacionadas e escaladas.

Modelo Proposto Mom. Zernike
Números Texturas Números Texturas

α 10 100 40 30
β 1 1 1 1
ρ 0.73 0.89 0.95 0.82

Tabela 1: Valores dos parâmetros para a redefuzzyART.

Na Tabela 2, podem ser vistos os resultados da classi-
ficaç̃ao. No caso do modelo proposto, ele atinge99.85% na
base de ńumeros e99.39% na base de texturas enquanto que
utilizando os momentos de Zernike atinge-se90.2% na base
de ńumero e68.6% na base de texturas. Os resultados obti-
dos das simulaç̃oes demonstram que a técnica proposta ap-
resenta um desempenho razoável. Como as caracterı́sticas
extráıdas por nosso modelo não dependem do classificador,
é posśıvel utilizar outras t́ecnicas para classificá-los.

7 Conclus̃oes

O uso de t́ecnicas de extração de caracterı́sticas invari-
antes como momentos estatı́sticos, transformada de Fourier,
entre outras j́a foram estudadas amplamente, mas apresen-



(a)

(b)

Figura 11: Vetores de caracterı́sticas da imagem
“araras”,(a) vetores de varredura horizontal e (b) his-
tograma do vetor de varredura vertical com rotações de0◦,
37◦, 45◦ e90◦.

Modelo Proposto Momentos de Zernike
Números 99.85% 90.2%
Texturas 99.39% 68.6%

Tabela 2: Resultado da classificação.

tam certos problemas como a pouca tolerância ao rúıdo,
além de exigirem um grande número de iteraç̃oes conforme
a complexidade da técnicaé aumentada. Dessa forma surge
a necessidade de se buscar um novo modelo capaz de re-
alizar essa atividade de forma simples, conseguindo atingir
os mesmos objetivos e com eficiência compaŕavel ou me-
lhor.

As redes de pulso acoplado seqüencial s̃ao uma fe-
rramenta promissora para resolver problemas de reconhec-

imento de padr̃oes invariantes. Os resultados obtidos tanto
para imagens bińarias quanto para imagens em nı́veis de
cinza foram aceit́aveis. Portanto este modelo mostra ser
uma tentativa interessante para extração de caracterı́sticas
invariantes, merecendo um estudo mais profundo.
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