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Abstract. O problema de reconhecimento de [isk recai sobre a identificag de padies que tenham sido alter-

ados por uma variedade de transforfegpermitidas. Os padks no mundo real podem apresentar transfobesc
geonetricas lineares (rot@p, escala e translag), deforma@es rao lineares e vadincias de iluminggo eback-

ground entre outros. Dessa forma, o£iodos tradicionais de reconhecimento de pasliprecisam ter a habili-

dade de reconhecer um mesmo @adcom certo tipo de vancia. Portanto, a pesquisa e 0 desenvolvimento de
técnicas e sistemas de ex@lagde caractésticas invariantes dos pddrs §0 importantes tanto para findteos

guanto paticos. Entre as principaigétnicas de extrép de caractésticas invariantes podemos citar os momentos
estatsticos, as transformadas de Fourier, as transformadas de wavelets, o casamento de grafos e as redes neu-
rais, onde se enquadram as redes de pulso acoplado. Este projeto tem como objetivo desenvolver um modelo
de reconhecimento de pdds invariantes. O modelo proposto reconhece eficientement@egaskem levar em
considerago as podseis variaes de pos#o, escala e rotao.

1 Introducéo de varBncia. Portanto, a pesquisa e o desenvolvimento de

técnicas de Reconhecimento de Radnvariante (RPI)&o

importantes tanto para finstecos quanto paticos. En-

tre as principaisécnicas de extr&p de caractésticas in-

razcaveis sobre as categorias dos [iesr[6]. Umpadido varia.ntes temos os momentos de Hu [5], 0s momentos de
' Zernike [9], as transformadas de Fourier [10], as transfor-

& uma descri#o de um objeto, que pode ser classificado

como concre?g (es aciais! cargctergs imagens; e tem Omadas devavelets[8], o casamento de grafos e as redes
: paciais. ' gens, POheurais em gue &b inseridas as redes de pulso acoplado

rais: formas de ondagses) ou abstrato (raciotdo, solu-

~ (PCNN:Pulse Coupled Neural Network2].
¢oes de problemas, etc) [13]. Um computador consegue re- Museran [11] combina as transformadas de Fourier com

conhecer padres, convertendo-os em sinais digitais e com- o S
P 9 as PCNNs com o objetivo de atingir a inacia de escala

arando-os com outros sinaisgrmazenados na ména. ~ s
P a e translago, mas devid@ forma de acoplamento, as PC-

" tL{m ?lstemar?ne ireci()r?h,eifctnereigeﬁlr?]tente )c(:gmpgsto NNS ja 0 invariantes translago. Cheng [14] baseia seu
por les 1ases principais. piprocessamento, exte; de trabalho naé&cnica de padwes birarios locais, obtendo as-

fna;ifgeﬁgc(?; dgscgiszlzggpc@s%iritalﬁ: d?)i p;ﬁrﬁﬁfasiaa} sim a invaréncia de rota@o. No entanto est&tnica ap-
' P P resenta uma limitép, f que as rotdies devem ser de 45

Li?;:esgerféﬁggs guri(;ﬁ?grzi:ﬂeopiﬁa?ji r(jeg]sqrr?ecsj&os graus. Mauro [1] prope uma é&cnica baseada em redes
» S€J & q " neurais e na represenga;das imagens atras de grafos.

gadext:jago ?edcaract:stlcas,(;) obje(;!\éce repg‘i;ntar 95 cComoa identificago de igualdade de duas imagens (grafos)
acdos de entrada em lermos de medidas qu IS, que depende da prova de que os grafée ssondrficos, essa

ggizaztasea: gg“é; ig;if? cﬂn;;ant; dggse;)p: dri C;‘ZZS: me:;g técnica apresenta um alto custo computacional. Sendo que
P @, 0S p grup duas imagens (grafosqg iguais se@o isomorfas, o prob-

fungacc)) d;ggsgﬁgizzgﬁg Zinr?neer?tt(;edzle”s ) & reconhe lema destaécnicaé o alto custo computacional. Zhang
b izt .[15] faz uma reviao de \arias &cnicas de extr@p de ca-

cer padbes que sejam, em algum sentido, “0s mesmos’ L
de terem experimentado uma variedade de transforr-aCte'Stlcfas' = - . :
apesar it % ik q | Os netodos para extrap de caractésticas invariantes
mago?s per~m|t| as. Usp l.S no munco rea aprlefentam existentes possuem certas limitag, sendo a principal de-
ter:(r:];lg)rrgzgfr?n%?smr;g?ﬁ:eg;ngiaggtc?fagﬁg;?f%g Ia}s o alto custo computacional. Com iSSO surge a neces-
' sidade de desenvolvimento de um sistema de édrae

€ backgroundentre outros. Dessa forma, o&todos tradi- caracteisticas invariantes. As redes de pulso acoplado bi-

cionais de reconhecimento de pées precisam ter a ha- . S s
- P . dimensionais possuem uma estrutura semelhantega-
bilidade de reconhecer um mesmo fEalcom certo tipo

O reconhecimento de pabkesé o estudo sobre as for-
mas com as quais asaguinas observam seu entorno, apren-
dem a distinguir padres de interesse e tomam dées



nizago natural de pades a serem reconhecidos, tais como um tempo constante, qéedefinido como

por exemplo imagens, onde existe uma correspoaid di- o ) )

reta entre um nednio e um pixel de uma imagem, facil- (@) Tp s_egundos, se a excitagrio tiver sido ativada pelas
itando a representag de padies originais. No presente projedes das bordas, e

trabalho objetiva-se investigar redes de pulso acoplado para
extra@o de caractésticas invariantes de pdirs.

_ Este trabalho eatorganizado como segue: Na&eg, Considere o caso em que nenhuma das unidades do
sel apresentada a rede de pulso acopladoeserial como  ¢qgjficadoré ativada pelas projées das bordas. Neste
tecnica de reconhecimento de paes invariantes. Nas@¢ 350, 0 envio do sinal de exciteg partindo do conjunto
3, seko apresentados os momentos de Zemike. N&S€C  final da graded induz uma varredura da matriz, sendo este
sea apresentada a rede neuiazyART (Adaptive Res-  m valor constante e cada cadeia atiagirsada simulta-
onance Theory que sed usada como classificadora. Na paamente. A sda sed enfio uminico pulso dé unidade

se@o 4, se apresentado o modelo proposto. N&&se, e amplitude, no tempo constante 7, apbs o disparo do
seRo apresentados os resultados. E naség sefio apre- sinal pelo conjunto final.

sentadas as conclies e futuros trabalhos.

(b) To(> T,) segundos caso coatio.

2 Redede pUlSO aCOpIadO Sﬂs@nCial (PCN N) A excitagdo passa de unidade em unidade

Em PCNNSs [7], os elementos evoluem de forma pa-
ralela. Existe uma outra forma de geiiagde pulsos, onde
0s pulsos o transmitidos seémncialmente (horizontal ou >
verticalmente). Esse tipo de reéechamado de rede de Final
pulso acoplado ségncial, proposto por Dodwell [12].

2.1 Esquema de codificago do Dodwell Figura 1: Grade de codificag.

O modelo de Dodwell inclui uma matriz bi-dimensio-
nal de unidades. Estas unidade&esionectadas em cadeias,
de tal forma que uma unidade tem, né&ximo, dois vizin- 2.2 Varreduras perpendiculares

hos. De um deles recelgea excitago e a transmita ao | dura hori | de d
outro vizinho. Cada cadeia horizontal (vertical)aest- ncorporar apenas a varredura horizontal na grade de

ganizada de tal forma que, quando uma borda horizontalC0dificago pode o ser vantajosoajquee possvel a gera-

(vertical) esh projetada sobre a grade, as unidades da grad&2© de silas semelhantes para paels diferentes. O pro-

que o relacionadas com as unidades ativadas terminanplema pode ser resolvido usando cadeias verticais, as quais
em umalinica cadeia [12] sa0 ativadas por bordas verticais. Essas cad@iagpsr-

Na Figura 1 representa-se uma grade de coddizac pendicularess cadeias horizontais. Dessa forma o codifi-
tipica, sendo que somente cadeias horizongisostradas ~ cador possui duas Eas separadas, que correspondesm

explicitamente. Sejarhx c as dimendes da grade de codifi- varrel\(ljurlezl_s vert|;:a|§ e_lhorlzgntalsf, res_pectlvamer:jte. q
ca@o, ondd representa olmmero de linhas e as colunas. a Figura 2 est llustrado o funcionamento da grade

Sejam as unidades pertenceritesluna mais a esquerdada € codificago. A Figura 2 (af uma ipica grade de codi-
grade (representado pdrna Figura 1) chamadas de con- ficagdo, onde as unidades ativadas (escuras) correspondem

junto final da grade. As unidades do conjunto final da grade® Présenca de pontos nas bordas; a Figura 2 () corresponde
possuem as seguintes propriedades: aos pulsos, tanto no sentido horizontal quanto no vertical.

Na Figura 2 (b) 80 mostradas as unidades ativadas da grade
o Elas 0 as geradoras das exciiag. Elas transmitem de codifica@o de uma borda rotacionada e a Figura 2 (d)
a excita@o, mas &o recebem eshulo de nenhuma  correspondas segéncias de pulsos. Como pode ser perce-
unidade. bido atraes dos gaficos, existem considaveis diferencas
entre as sdtencias da Figura 2 (c) e (d), confirmando que
a presente grade de codifi@acrio € invariantea rota@o
dos pontos das bordas [12].
Como podemos ver, a grade de codiféoag invariante

e O conjunto final dispara os @stulo simultaneamente. & translago, mas apresenta algumas carastieas &o de-
sepveis, tais como:

e A direcdo de transmig® comeca no conjunto final e
vai a€ a sada do codificador (representado por uma
seta na Figura 1).

As outras unidades transmitem a exc@@os seus re-
spectivos vizinhos ao longo do sentido de transatisgds 1. Naoé invariantea rota@o e escala.
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Figura 2: (a) Codificador de grade com unidades ativadas
(escuras). (b) Codificador de grade com unidades ativadas

(escuras) para um contorno rotacionado. (c) llusivaga
funcdo do codificador de grade: pulsos correspondexges
varreduras horizontais e verticais de (a). (d) llusicada
funcdo do codificador de grade: pulsos correspondexges
varreduras horizontais e verticais de (b).

2. Uma pequena variap na borda de entrada daromo
resultado s@as diferentes, ou seja, possui baixa tole-
rancia a rido.

. Como a bord#& alimentada diretamente sobre o codifi-
cador, o tamanho da matriz de codifidgagea grande,
produzindo um pulso comprido.

Como pode ser visto, trabalhar com estsnicas se-
paradamented@o é suficiente para atingir o objetivo. A fim
de evitar as desvantagens associadgsade de codiftp
de Dodwell, Rishikesh [12] prd@e um modelo onde oin
a invarancia utilizando a transformadeg-polar, conver-

tendo a imagem em coordenadas polares. Para isso, o cemm vetoriV; = (W; 1, W, 2, W3, ...
trdide & inicialmente encontrado tornando-se a origem do tativos. O rfimero de pogseis clusters: (5 =1,2,...

mapeamento. Desta form@apossével garantir a invaéincia
de translago e rotago. Como tamémé utilizado um ma-
peamento logaritmo, a imagem torna-se invariangscala.

3 Momentos de Zernike

Os Momentos de Zernike (MZ) pertencentlasse de
momentos ortogonais invariantasota@o. Para obter in-
variancia de escala e transtay; a imagen& mapeada em
um drculo unitrio de coordenadas polares sendo as carac-
teristicas invariantea rotag@o extrédas [9].

Os momentos de Zernike pertencarnlasse dos mo-
mentos ortogonais invarianéerota@o.

1 27 1
Lpg = njr_ /O /o f(pcos, psinb).
Valp; 0)dpdo (1)
Voa(p,0) = Ryq(p)e’® (2)
qu(/)) - .
s=0 5!(%|q| - 8)!(p+2‘q‘ —s)!

(1) 3)
p € um numero inteiro positivo ou zerg,& um numero
inteiro positivo ou negativo tal que— |q| = par e|q| < p,

N 2

J=v-1

4 Rede neuralfuzzy ART (Adaptive Resonance The-
ory)

A fuzzyART foi criada por Carpenter e Grossberg [3]
em 1991. Esta rede incorpora as carastieas lasicas de
todos os sistemas ART1 [4], casamento de paslrentre
a entradabottom-upe o vetor praobtipo top-downapren-
dido. Este processo de casamento conduz tanto a um es-
tado de ressdmcia que focaliza a atefdg no processo de
aprendizado e coloca em funcionamento ogipb esavel
aprendido quanto a uma busca na mem paralela auto-
regulada. Se a busca termina na s&fte¢e uma categoria
(cluster) estabelecida, éut o probtipo da categoria sele-
cionada sex refinado, incorporando uma nova inforraag
ao padao de entrada. Se a busca termina na 8eleég um
nd prévio rAo rotulado, uma nova claséeriada.

A fuzzyART possui uma estrutura e mecanismo de
funcionamento muito semelhante a ART1 e incorpora opera-
¢Oes da teoria de conjuntbszzy permitindo a classificép
de paddes com valores caomuos. A Figura 3 apresenta um
resumo das operadores da ART1 e sua correspuia na
fuzzyART.

Na Figura 46 apresentada a arquitetuésita dduzzy
ART. Cada padio de entradh & um vetor m-dimensional
(I,1Is,1Is,...,1I,,). Cadacluster tem como correspondente
, W, ) de pesos adap-
) n)

é arbitério. O vetor de pesos dazzyART é o equiva-
lente, em urriinico vetor, aos vetores de pesop-downe
bottom-upda ART1 [3].
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5 Modelo Proposto

¢ao é alcancada transformando a imagem origif(@l, y)
em outra uma outra imagefi(z + Z,y + y), ondezT e
7 sa0 as localiza@ies do cenbide da imagem. Em outras
palavras, a origen@ movida ao cenbide da imagem. O
centibide pode ser calculado até dos momentos regu-
lares.

Os momentos regularesao definidos em termos das
integrais de Reimann como [5]:

:/_Z/_O; 2 y? f(x,y) dedy )

parap,q =0,1,2,...em,, &0 momento 2D para a fuag
f(z,y). A ordem do momenté (p + q).

Os momentos de primeira orde@osusados para en-
contrar o centride (z., y.) da imagem:

mio

mo1

Yo = —— (5)

LTe = P c
moo moo

ondemygo representa a massa avea da imagempng €
mg1 SA0 as projeg@es emr e y respectivamente.

A invarianciaa escala atingida quando o momento de
ordem zerofugg) da imagem atinge o valor@mdeterminado
g atrawes do aumento e dimin@g da imagem.

Dessa forma a imagerfiz, y) pode ser normalizada
em escala e translag transformando-se eafx, i), onde

g(z, y)—f( +7, *+y)

tal que (¢, 7) € o centbide def (z,y) ea = 4 /mioo, ondeb
€ um valor pe-determinado.

Com o objetivo de atingir a invarnciaa rota@o, a
imagemeé transformada em coordenadas polares, tal que a
imagem sei representada pelo raiee oangulod formado
entre raio e o eixo das abscissas. A transfofnaleve ser
feita tendo como origem o cebtde da imagem.

Uma vez que a imagem tenha sido transformada em
coordenadas polares (ver figura 5), os vetoressextrados

O modelo proposto neste trabalho visa reconhecer pa-2 partir das varreduras horizontal e verticdt possvel

drdes que tenham sofrido transforrag georatricas (esca-

perceber que os vetores de varredura horizontabsem-

la, translado e rotago). Ele visa ainda reduzir o custo com- ilares, p que as rotaies em coordenadas polaré® sim-

putacional de extra@p de caractésticas.

plesmente deslocamentos circulai@ec(lar shift). Por ex-

A rede de pulso acoplado proposto por Rishikesh [12] emplo, quando existe uma roéax; a imagene transladada

extrai caractésticas invariantea rota@o de imagens bat
rias (bordas). Com o modelo propostcralde extrair car-
actefsticas invariantes de imagens &iias, tambm sea
pos$vel extrair essas mesmas caractiitas de imagens
em riveis de cinza.

5.1 Normalizagio em escala e transl&io

Os momentos regularefi utilizados para atingir a
normalizag@o em escala e transk A invarainciaa transla-

horizontalmente e aquela parte que sai da janela pela parte
direita apareceria pelo lado esquerdo da janela. A diferenca
entre as duas imagens estaria no vetor de varredura vertical.
No lugar em que acontece 0 mesmodaeno na imagem,

o vetor tamém possui um deslocamento circular, ver figura
6.

Até agora, encontramos um vetor de caréstieas
gueé invariantea rota@o. No entanto, quando duas ima-
gens §o parecidas mas pertencem a classes diferentes, elas
sedo consideradas como sendo do mesmo cluster, 0 que
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vemos o vetor de varredura horizontal e vertical de imagem com

zero graus de roté@p e em (b) da imagem com 90 graus de ré@tag

Figura 5: Representag polar da imagem “araras” com
diferentes graus de rotag. Na primeira linha e&b as im-
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05

agens em coordenadas cartesianas e na segunda linha a ri

spectiva representag polar.

pode representar um problema. Dessa foemacesario o

Figura 7: Histograma do vetor de varredura vertical da im-
agem “araras” com rotées de)°, 45° e 90° graus.

segundo vetor para atuar como discriminante entre imagens

semelhantes, sendo importante encontrar uma maneira d
representar o vetor de varredura vertical. Sendo que o his
tograma desse vetor fornece um vetor que &mé invari-
antea rota@o, ver figura 7.

A Figura 8 mostra o modelo que astendo proposto
neste projeto.

6 Resultados

Nesta seg§o seéio apresentados os resultados de classi-
ficagdo das caractisticas invariantes usando a rede neural
Fuzzy ART como classificador.

Foram utilizadas duas bases de dados para testar a qual-

idade das caracfsticas extralas com o ratodo proposto

este trabalho. A primeira base consta de dez imagens
inarias de aameros, e a segunda base esta formadas por 13
grupos de texturas diferentes, as quais foram coletadas da
base de dados de texturas VisteEm ambas as bases, cada
imagem sofreu um conjunto de transforrdeg georatricas,
sendo que foram geradas 50 i@s diferentes (rotacionadas
e escaladas) de cada imagem, resultando em um total de 650
paddes. As rotages foram d@°, 7°,14°,21°,28°, 35°,42°,
49°,56° e 63° graus enquanto que as vaibas em escala
foramde 0.5,0.8,1,1.5e 2.

Algumas texturas da base de dadas mostradas na
Figura 9.
Os testes feitos com o0 modelo proposto visam avaliar

1(http://iwww-white.media.mit.edu/vismod/imager/
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Figura 8: Modelo proposto.

Figura 9: Exemplos de imagens da base de texturas.

a qualidade das caracisticas invariantes exfidas. Nesta
primeira etapa, sé@p usadas imagens eriveis de cinza.
Essas imagens sofreram vafag georatricas, como pode
ser visto no exemplo da Figura 10. Elasdestotacionadas
em37° 45° e 90°. Este modelo tanmém é totalmente in-
variantea translages.

37° 45° 90°

Figura 10: Transformdgs georatricas da imagem
“araras”sendo rotacionada ebf, 37°, 45° e 90° respec-
tivamente.

Dois vetores&o usados para armazenar as cargtter

VisionTexture/vistex/html )

cas extradas. O primeiro, chamado “vetor de varredura
horizontal”, coném o somdirio dos estados de cada linha
darede e o segundo, chamado “vetor de varredura vertical”,
coném o somdirio dos estados de cada coluna da réde (
importante notar que este vetd@ae invariantea rota@o).

No entantog necesario calcular o histograma do vetor de
varredura vertical. Depois dearias tentativas a conclas

foi que um histograma de 20 elemenéadequado.

A Figura 11 (a) mostra 4 vetores de varredura horizon-
tal, um para cada imagem “araras” rotacionada. No caso de
rotagdes ded0° o vetoré exatamente igual ao vetor gerado
para a imagem original (rotag 0°). No caso de rotdies
de 37° e 45°, os vetores de varredura horizontal apare-
cem com uma pequena diferenca em r&tago vetor de
estados da imagem original. Isso acontece de&idarac-
teristica discreta das imagens digitais. Ou seja, quando uma
imagem digitalé rotacionada, alguns pixel&a perdidos
enquanto outros pixel$is introduzidos. No entanto, como
as diferencas@ pequenas 0s vetores continuam conser-
vando caractésticas similares, permitindo que sejam clas-
sificados dentro do mesmo grupb.pos$vel observar que
temos 0 mesmo comportamento para o histograma do vetor
de varredura vertical, como pode ser visto na Figura 11(b).

Na Tabela 1 3o mostrados os valores dos @etros
da redduzzyART, para o pametro de escolha, a taxa de
aprendizadgs e o paametro de vigénciap. Foram clas-
sificados tés bases de texturas, sendo a primeira povoada
com imagens rotacionadas seniidaj a segunda povoada
por imagens rotacionadas conida e a terceira por ima-
gens rotacionadas e escaladas.

Modelo Proposto Mom. Zernike
NUmeros| Texturas| NUmeros| Texturas
o 10 100 40 30
3 1 1 1 1
P 0.73 0.89 0.95 0.82

Tabela 1: Valores dos pametros para a redazzyART.

Na Tabela 2, podem ser vistos os resultados da classi-
ficagdo. No caso do modelo proposto, ele atifg85% na
base de ameros €9.39% na base de texturas enquanto que
utilizando os momentos de Zernike atinge382% na base
de rimero €68.6% na base de texturas. Os resultados obti-
dos das simuldies demonstram que @chica proposta ap-
resenta um desempenho razel. Como as caracfeticas
extrddas por nosso model@n dependem do classificador,

& posével utilizar outrasé&cnicas para classifielos.

7 Concludes

O uso deécnicas de extré@p de caractésticas invari-
antes como momentos e$&dicos, transformada de Fourier,
entre outrasg foram estudadas amplamente, mas apresen-



0 50 100 150 200 250

0 50 100 150 200 250

(b)
Figura 11:

tograma do vetor de varredura vertical com roes;de)°,
37°,45° e 90°.

Momentos de Zernike
90.2%
68.6%

Modelo Proposto
99.85%
99.39%

NOmeros
Texturas

Tabela 2: Resultado da classifiéac

tam certos problemas como a pouca taeia ao rido,

alem de exigirem um grandéimero de iterages conforme
a complexidade d&tnicaé aumentada. Dessa forma surge
a necessidade de se buscar um novo modelo capaz de r¢il]

Vetores de caracisticas da imagem
“araras”,(a) vetores de varredura horizontal e (b) his-

imento de padies invariantes. Os resultados obtidos tanto
para imagens barias quanto para imagens envais de
cinza foram acedtveis. Portanto este modelo mostra ser
uma tentativa interessante para exi@gle caractésticas
invariantes, merecendo um estudo mais profundo.
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