
Indexing Internal Memory with
Minimal Perfect Hash Functions

Fabiano C. Botelho1,2, Hendrickson R. Langbehn1,
Guilherme Vale Menezes1, and Nivio Ziviani1

1Department of Computer Science, Federal Univ. of Minas Gerais, Belo Horizonte, Brazil

2Computing Department, Federal Center for Technological Education, Belo Horizonte, Brazil

{fbotelho,reiter,gmenezes,nivio}@dcc.ufmg.br

Abstract. A perfect hash function (PHF) is an injective function that maps keys
from a set S to unique values, which are in turn used to index a hash table. Since
no collisions occur, each key can be retrieved from the tablewith a single probe.
A minimal perfect hash function (MPHF) is a PHF with the smallest possible
range, that is, the hash table size is exactly the number of keys in S. MPHFs
are widely used for memory efficient storage and fast retrieval of items from
static sets. Differently from other hashing schemes, MPHFscompletely avoid
the problem of wasted space and wasted time to deal with collisions. In the
past, the amount of space to store an MPHF description wasO(log n) bits per
key and therefore similar to the overhead of space of other hashing schemes.
Recent results on MPHFs by [Botelho et al. 2007] changed thisscenario: in
their work the space overhead of an MPHF is approximately 2.6bits per key.
The objective of this paper is to show that MPHFs are a good option to index
internal memory when static key sets are involved and both successful and un-
successful searches are allowed. We have shown that MPHFs provide the best
tradeoff between space usage and lookup time when compared with linear hash-
ing, quadratic hashing, double hashing, dense hashing, cuckoo hashing and
sparse hashing. For example, MPHFs outperforms linear hashing, quadratic
hashing and double hashing when these methods have a hash table occupancy
of 75% or higher (if the MPHF fits in the CPU cache the same happens for hash
table occupancies greater than or equal to 55%). Furthermore, MPHFs also
have a better performance in all measured aspects when compared to sparse
hashing, which has been designed specifically for efficient memory usage.

1. Introduction

Some types of databases are updated only rarely, typically by periodic batch updates. This
is true, for example, for most data warehousing applications (see [Seltzer 2005] for more
examples and discussion). Another interesting phenomenonwas the web popularization,
which created various new challenges related to the huge growth of data volume and the
need to process it in order to get useful information. Searchengines are responsible for
collecting, representing, processing and disseminating this useful information according
to the information need of their users. Besides the quality of the information provided,
it is essential to satisfy the user information need in an efficient way despite the huge
amount of data to be processed and the huge amount of users issuing queries all the time.
Therefore, in such scenarios, it is necessary to construct data structures that permit to

represent this data volume as compactly as possible, and to process queries in an efficient
way over it.

In this paper we study data structures that are suitable for indexing internal mem-
ory in an efficient way in terms of both space and lookup time, specially when memory
intensive applications are involved. Indeed, we are interested in applications where a
key set is fixed for a long period of time and each key is associated with satellite data.
For example, this happens in On-Line Analytical Processing(OLAP) and search engine
applications, which use extensive preprocessing of data toallow very fast evaluation of
certain types of queries. More formally, given astatickey setS ⊆ U of sizen from a key
universeU of sizeu, where each key is associated with satellite data, the question we are
interested in is: what are the data structures that provide the best tradeoff between space
usage and lookup time?

An efficient way to represent a vocabulary in terms of lookup time is using a
table indexed by a hash function. Ahash functionh : U → M is a function that maps
the keys fromU to a given interval of integersM = [0, m − 1] = {0, 1, . . . , m − 1}.
ConsideringS ⊆ U and given a keyx ∈ S, the hash functionh computes an integer in
[0, m− 1] for the storage or retrieval ofx in ahash table. Hashing methods fornon-static
key setscan be used to construct data structures storingS and supporting membership
queries of the type “x ∈ S?” in expected timeO(1). However, they involve a certain
amount of wasted space owing to unused locations in the tableand wasted time to resolve
collisions when two keys are hashed to the same table location.

In the aforementioned scenarios, the key set is fixed for a long period of time (i.e.,
might be consideredstatic key sets), hence it is possible to compute a function as part of
the preprocessing phase to find any key in a table in one probe;such hash functions are
calledperfect. Given a key setS, we shall say that a hash functionh : U → M is a
perfect hash function(PHF) forS if h is an injection onS, that is, there are nocollisions
among the keys inS: if x andy are inS andx 6= y, thenh(x) 6= h(y). Since no collisions
occur, each key can be retrieved from the table with a single probe. Ifm = n, that is, the
table has the same size asS, thenh is a minimal perfect hash function (MPHF). MPHFs
completely avoid the problem of wasted space and time. Better still, it was observed in
[Manegold et al. 2000] that MPHFs also avoid cache misses that arise due to collision
resolution schemes like open addressing and chaining [Knuth 1973].

The objective of this paper is to show that MPHFs provide the best tradeoff be-
tween space usage and lookup time when compared to other hashing schemes. It was
not the case in the past because the space overhead to store MPHFs wasO(log n) bits per
key for practical algorithms [Czech et al. 1992, Majewski etal. 1996]. Therefore, a better
performace in terms of time and space was obtained by using a single hash function and
resolving collisions with linear probing [Ho 1994, Knuth 1973]. However, new results on
MPHFs by Botelho, Pagh and Ziviani [Botelho et al. 2007] havemotivated this work. In
their work, MPHFs require approximately2.6 bits per key of space overhead and can be
evaluated inO(1) time.

We obtained interesting results in two scenarios: (i) when the MPHF description
fits in the CPU cache and (ii) when it cannot be entirely placedin the CPU cache. In the
first scenario we show that the other hashing schemes cannot outperform minimal perfect

hashing, even when the hash table occupancy is lower than55%. An MPHF requiring
just 2.6 bits per key of storage space permits to store sets onthe order of 10 million keys
in a 4 MB CPU cache, which is enough for a large range of applications. In the second
scenario, other hashing schemes require a hash table occupancy lower than75% to obtain
the same performance attained by minimal perfect hashing. For both scenarios, the space
overhead of minimal perfect hashing is within a factor ofO(log n) bits lower than other
hashing schemes.

2. The Algorithms

In this section we describe the hashing methods we used to compare minimal perfect
hashing with, namely, linear hashing, quadratic hashing, double hashing, dense hashing,
cuckoo hashing and sparse hashing. The hash table entries store items, and each item is
composed by a key and possibly some data, i.e., a pair< k, d >. All the methods analyzed
use collision resolution by open addressing, that is, they look at various positions of the
hash table one by one until it either finds the keyk being searched for or it finds an empty
position [Knuth 1973]. In contrast, collision resolution could also be made by chaining,
in which a linked list is used to store items that collided in the same table position. Open
addressing is preferred over chaining if we are interested in lookup time, since it has a
better locality of reference and reduces the number of cachemisses.

The hash table structure used by linear hashing, quadratic hashing, double hash-
ing, dense hashing and cuckoo hashing is shown in Figure 1. Every table position has
a pointer, initially pointing to an empty value. When an itemis inserted in the table,
the pointer of the corresponding position starts to refer toit. The hash table structures
for sparse hashing and minimal perfect hashing are presented in Sections 2.5 and 2.6,
respectively.

K 1 D 1 D 2 D 3 K n D nK 2 K 3

1
0

Hash Table

NULL

Item Set

i+1
i

m−1

Figure 1. Hash table used for linear hashing, quadratic hash ing, double hashing,
dense hashing and cuckoo hashing.

Note that we should not insert the item itself in the table, since the allocated empty
positions would cause an expressive waste of memory space, especially if the item occu-
pies several bytes. Hence, the wasted space is reduced by using only one pointer per
empty position. If we definep as the pointer size in bits, the space overhead for methods
that use the structure in Figure 1 isp × m bits for a hash table of sizem. For a 64 bits
architecture,p = 64 bits.

Throughout this section we shall use⊕m as a notation for an addition modulusm.
For instance, we may describe the operation(a + b) mod m asa ⊕m b.

2.1. Linear Hashing

Linear hashing is considered one of the simplest open addressing schemes available. It
uses a hash functionh : S → [0, m−1] and tests positionsh(k), h(k)⊕m 1, h(k)⊕m 2, ...
sequentially until it finds the termk being searched. Otherwise, if it finds an empty
position, or if the sequential search reaches positionh(k) after running over all other
positions, the item being searched does not exist in the hashtable [Knuth 1973].

The pseudocode shown below represents how this method works:

1. Calculatei = h(k).
2. If the i-th position is empty orh(k) is reached again after running over all table

positions, then the search is concluded and the item relative tok is not in the hash
table.

3. If the i-th position contains the item with keyk, then the search is concluded and
the item relative tok is in positioni.

4. Else,i = i ⊕m 1. Go to step 2.

The efficiency of a search for a given keyk ∈ S in the linear hashing method
depends on the number of probes performed during the search.This is highly sensitive
to the hash table load factorα = n/m (i.e., the ratio between the number of items and
the number of entries in the hash table.) The higher isα, the larger is the number of
probes. According to Knuth [Knuth 1973] the expected numberof probes performed for

successful and unsuccessful searches are1
2

(

1 + 1
1−α

)

and 1
2

(

1 +
(

1
1−α

)2
)

, respectively.

The main problem with this method is that it degenerates in a sequential search when the
number of termsn gets closer to the table sizem, which causes a waste of time. Another
issue is the waste of space caused by empty positions in the hash table.

2.2. Quadratic Hashing

Quadratic hashing is very similar to linear hashing, however, it uses two additional pa-
rameters,r andq, besides the hash functionh(k) : S → [0, m− 1]. Parameterr indicates
how many positions ahead the current position the next search for the termk will be per-
formed, and parameterq indicates the value which parameterr will be added to after each
iteration. Quadratic hashing is expected to have a better performance when compared to
linear hashing for higher load factors, since it prevents the production of clusters which
delay the search for items. However, this method shares someproblems found in linear
hashing, e.g., the waste of space due to empty positions and the waste of time due to suc-
cessive collisions whenn gets closer tom [Hopgood and Davenport 1972]. The quadratic
hashing method may also have a smaller locality of referencewhen compared to linear
hashing, as the pacer may become much larger than one.

The period of search is defined as the number of entries that appear in a sequence
from a particular initial position before an entry is encountered twice. The period of
search should preferably be the same as the table sizem or, at least, as large as possible.
Otherwise, the table may appear to be full when there is stillspace available. Ifm is a
prime number then the period of search for the quadratic hashmethod ism/2.

The pseudocode shown below represents how this method works:

1. Calculatei = h(k).

2. If the i-th position is empty orh(k) is reached again after running over all reach-
able positions, then the search is concluded and the item relative tok is not in the
hash table.

3. If the i-th position contains the item with keyk, then the search is concluded and
the item relative tok is in positioni.

4. Else,i = i ⊕m r, r = r ⊕m q. Go to step 2.

Given a hash table load factorα = n/m, the expected number of probes in
quadratic hashing is1− ln(1−α)− α

2
for successful searches and1

1−α
− ln(1−α)−α for

unsuccessful searches, according to [Knuth 1973]. Furthermore, in [Knuth 1973] it was
proposed a variation of quadratic hashing, which was also compared with perfect hashing
in our experiments. We used an implementation available in [Silverstein 2007], which is
called dense hashing.

2.3. Double Hashing

Double hashing also works in a way very similar to linear hashing, but with the difference
that, instead of one function, it uses two:h1(k) andh2(k). The first one produces values
in the range[0, m − 1], mapping the term into its position in the hash table, the same
way as the hash function in linear hashing does. The additional functionh2(k) produces
values in the range[1, m − 1], which are used as steps in the process of finding empty
positions. Values produced byh2(k) are relatively primes to the table sizem. This is
necessary to ensure that the period of search will be of the same size as table sizem,
which guarantees that any given item can be inserted in any table position (see, e.g.,
[Knuth 1973]). Furthermore, we can check if the table is fullby counting the number of
collisions, sincem successive collisions indicates a full structure.

This method tests positions using a distanceh2(k), i.e., it tests positions
h1(k), h1(k) ⊕m h2(k), h1(k) ⊕m 2h2(k), ..., until it finds an empty position or until it
finds the termk being searched for.

The method is described bellow:

1. Calculatei = h1(k), d = h2(k).
2. If the i-th position is empty orh1(k) is reached again after running over all table

positions, then the search is concluded and the item relative tok is not in the table.
3. If the i-th position contains the item with keyk, then the search is concluded and

the item relative tok is in positioni.
4. Else,i = i ⊕m d. Go to step 2.

Double hashing reduces the problem of clustering in a betterway than quadratic
hashing does. This is because functionh2(k) provides a different stepd for each key
k, and the multiple step sizes produce a more uniform distribution of the used positions.
This method still shares some problems with previously cited methods, such as the waste
of space due to unused positions and the possibility of successive collisions when the
structure is almost full. Knuth [Knuth 1973] estimated the expected number of successful
probes in searches for double hashing as−

(

1
α

ln(1 − α)
)

, and the number of unsuccessful
probes in searches as1

1−α
.

2.4. Cuckoo Hashing

Cuckoo hashing uses two hash functions,h1(k) andh2(k), to get two possible table posi-
tions for a given term. When a termx has to be inserted in the structure, one of the two

possible positions (h1(x) or h2(x)) is chosen. If the chosen position is already occupied,
the termy contained there will be removed from the structure, yielding an empty position
to the termx being inserted. Termy, in turn, has two possible positions, given byh1(y)
andh2(y). Consequently,y can be inserted in a position different from its former one.
However, that position can be occupied too. Thus, this process must continue until all
terms are inserted in one of their possible positions, or until some item can not be inserted
[Zukowski et al. 2006, Pagh and Rodler 2004].

In case we need to search for a termk, the two possible positions fork (namely
h1(k) and h2(k)) are checked. If neither one contains the term, then it is notin the
structure. Insertion in cuckoo hashing is better describedbellow:

1. Calculatei = h1(k)
2. If the i-th position is empty, insert the termk in that position
3. Else,

Swap the termk with the termx contained in thei-th position
If h1(x) == i, theni = h2(x)
Else,i = h1(x)
Go to step 2

A problem with this method is that it is possible that it gets into an infinite loop
during the insertion of a term, since it can cause a sequence of items to be expelled indef-
initely in a cyclical manner. We may prevent this by allowingonly a maximum amount of
iterations during term insertion. Notwithstanding, cuckoo hashing still will not be able to
insert the term with the same hash function values, and the table needs to be rebuilt with
different functions if the term is to be inserted.

2.5. Sparse Hashing

Sparse hashing is based on a sparse array structure which uses little memory space. It
is implemented as an array of groupsA, where the number of groups in a sparse array
of m entries is calculated asG = ⌈m/M⌉. Each group stored inA[g], 0 ≤ g < G, is
responsible forM indexes of the hash table, i.e.,A[0] is responsible for the items in the
range[0, M − 1], A[1] for the items in the range[M, 2M − 1], and so on. Each groupg
contains an arrayRg that stores the actual items and a bitmapBg of sizeM . The bitmap
Bg indicates the assigned indexes in the range[0, M − 1]. If Bg[f] = 1, 0 ≤ f < M ,
then indexf has a corresponding value stored inRg. Note that an item in groupg with
an offsetf is not necessarily placed in positionf of Rg, but in the positionRg[j], wherej
is the number of bits set fromBg[0] to Bg[f − 1]. Therefore, the arrayRg is dynamically
reallocated when new items are inserted in it. Thus, the sizeof Rg can differ among
groups. Figure 2 illustrates these data structures.

A lookup for an item with keyk is performed by first calculating its position
i = h(k), in which h(k) : S → [0, m − 1]. The groupg to which the item belongs is
defined asg = ⌊i/M⌋, and its offset insideg is f = i mod M . In this way, we need to
check the value ofBg[f]. If it is set to0, then the item is not present in the hash table.
Otherwise, it is possibly present in groupg and we need to check if there is a collision.
This can be done by checking if the item with keyk is present inRg. The positionj of
the item in this array is calculated by counting the number ofbits set betweenBg[0] and
Bg[f − 1]. If the item in positionj is not the one with keyk, then there is a collision,
which will be resolved by quadratic probing oni (see Section 2.2).

0100

0000

0110 K G−1, 1 D G−1, 1 K G−1, 2 D G−1, 2

D 1, 2

1101 K 0, 0 D 0, 0 K 0, 2 D 0, 2 K 0, 3 D 0, 3

K 1, 2

0111

Hash Table

Bitmaps

(0, 1, 2, 3)

1

0

G−1

NULL

Items

K i, 0

i + 1

D i, 0 K i, 1 D i, 1 K i, 2 D i, 2i

Figure 2. Hash table used in the sparse hashing method.

Insertion is performed in a similar fashion. First, we must check if the item is
present with a lookup. If not, we shall insert the item inRg in the position calculated by
counting the number of bits set betweenBg[0] andBg[f −1], in the same way it is done in
the lookup. An insertion may require the displacement of allitems with internal offsetj
such thatj ≥ f . Let us take Figure 2 as an example. Suppose we want to insert acertain
item with keyk for whichg = 0 andf = 1. Then the item must be inserted in position1
of group0, but that position is already occupied. To solve this, we need to move the items
with key K0,2 andK0,3 one position ahead of their current position. The item withK0,3

will be moved to the position allocated for the new term, i.e., the forth position. The item
with key K0,2 will be moved to the position just left of the item with keyK0,3, i.e., the
third position. Finally, the position calculated for the item with keyk will be free and we
can place the new item there. Figure 3 shows the situation of group0 after the insertion
of the item with keyK0,1.

1111 K 0, 0 D 0, 0 K 0, 1 D 0, 1 K 0, 2 D 0, 2 K 0, 3 D 0, 3

Hash Table

Bitmaps

(0, 1, 2, 3)

0

Items

Figure 3. Group 0 after an insertion.

This method differs from the others in the sense that it prioritizes efficient memory
usage. It allocates as little space as possible to representunassigned positions, and the
arrays containing the actual items grow only when it is needed. If each pointer has a size
of p bits, the space overhead of sparse hashing for a hash table ofsizem andG groups is
m + G × p. That is,m bits to represent the bitmaps, andG pointers, one for each group.

Although being very efficient in memory usage, sparse hashing is not designed to
be efficient in time: each lookup needs to perform a sequential search throughBg to find
the position of an itemRg.

2.6. Minimal Perfect Hashing

The hash table structure used by minimal perfect hashing is shown in Figure 4. In this
structure there is no need for pointers, i.e., all the items are inserted directly in the table.
This is only possible because there are no empty entries in the hash table, and therefore
we will not lose any space if we increase the capacity of the table entries to fit the items
themselves. This is not the case for the other methods, in which any increase in the

capacity of the table entries would cause even more space to be wasted. Moreover, the
minimal perfect hashing avoids the use of memory space to keep the pointers, which is an
additional advantage. However, there is still the need to store the MPHF representation in
main memory, and the space overhead for this method is approximately2.62n bits for a
set ofn keys, as can be seen in [Botelho et al. 2007].

7K 7D

nK nD

1K 1D

2K 2D

Hash Table

1

0

i

n−1

Figure 4. Hash table used in the perfect hashing method.

The minimal perfect hash functionh : S → [0, n − 1] used to index
the hash table presented in Figure 4 is taken from the family of MPHFs proposed
in [Botelho et al. 2007]. Their MPHFs are generated based on randomr-partite hyper-
graphs where each edge connectsr ≥ 2 vertices1. In our experiments we used a version
that employs hypergraphs withr = 3, since it generates the fastest and most compact
MPHFs. However, for simplicity of exposition, we will now illustrate the MPHF con-
struction whenr = 2.

Figure 5 gives an overview of the MPHF construction forr = 2, taking as input a
key setS ⊆ U containing the first four month names abbreviated to the firstthree letters,
i.e.,S = {jan, feb, mar, apr}. The mapping step in Figure 5(a) assumes that it is possible
to find r = 2 hash functions,h0 andh1, with independent values uniformly distributed in
the intervals [0,3] and [4,7], respectively. These functions are used to assign each key inS
to an edge of an acyclic random bipartite graphG = (V, E)2, such that|V | = m = 8 and
|E| = n = 4. In our example, January is mapped to edge{h0(jan), h1(jan)} = {2, 5},
February is mapped to{h0(jan), h1(jan)} = {2, 6}, and so on.

The assigning step in Figure 5(b) builds an arrayg representing a functiong :
[0, m − 1] → {0, 1, 2}, which is used to uniquely assign an edge with keyk to one of its
r = 2 incident vertices. The valuer is used to represent unassigned vertices. Note that a
vertex for a keyk is either given byh0(k) or h1(k). The decision of which functionhi(k)
to be used fork is made by calculatingi = (g[h0(k)] + g[h1(k)]) mod 2. In our example,
January is mapped to 2 because(g[2] + g[5]) mod 2 = 0 andh0(jan) = 2. Similarly,
February is mapped to 6 because(g[2] + g[6]) mod 2 = 1 andh1(feb) = 6, and so on.

The ranking step builds a data structure used to compute a function rank(v),
which counts inO(1) time the number of assigned positions ing before a given position
v ∈ [0, m − 1]. This is a well-studied primitive in succinct data structures [Pagh 2001,
Okanohara and Sadakane 2007, Raman et al. 2002]. To illustrate, rank(7) = 3 means
that there are three positions assigned before position 7 ing, namely0, 2 and6.

1A hypergraph is the generalization of a standard undirectedgraph where each edge connectsr ≥ 2
vertices.

2See [Botelho et al. 2007] for details on how to obtain such a graph with high probability.

h (x)1

0
1
2
3
4
5
6
7

3
2
1
0

g

Hash Table

(c)(a)

0h (x)

(b)

Assigning

1

Mapping

1 3

54

S

jan

feb

mar

apr 6

20

0

mar
jan
feb
apr

1

0
r

r
r
r

Rankingm
ar ja

n feb

apr

7

Figure 5. (a) The mapping step generates an acyclic bipartit e random 2-graph. (b)
The assigning step builds an array g so that each edge is uniquely assigned to a
vertex. (c) The ranking step builds the data structure used t o compute function
rank : V → [0, n − 1] in O(1) time.

In our experiments, the MPHF is constructed based on hypergraphs withr = 3,
and we use three hash functionshi : S → [im

3
, (i + 1)m

3
− 1], in which 0 ≤ i < 3

andm = 1.23n. The value1.23n is required to generate an acyclic random3-partite
hypergraph with high probability [Botelho et al. 2007]. Here again, the functions are
assumed to have independent values uniformly distributed.The MPHF has the following
form: h(k) = rank(phf (k)), wherephf : S → [0, 1.23n − 1] is a perfect hash function
defined asphf (k) = hi(k) andi = (g[h0(k)] + g[h1(k)] + g[h2(k)]) mod 3. The arrayg
is now representing a functiong : V → {0, 1, 2, 3}, andrank : V → [0, n− 1] is now the
cardinality of{u ∈ V | u < v∧g[u] 6= 3}. Notice that a vertexu is assigned ifg[u] 6= 3.

3. Experimental Results

In this section we present the key sets used in the experiments and the results of the
comparative study. All experiments were carried out on a computer running Linux version
2.6, with a 1.86 gigahertz Intel Core 2 64 bits processor, 4 gigabytes of main memory
and 4 megabytes of L2 cache. All results presented are averages on 50 trials and were
statistically validated with a confidence level of95%. Table 1 summarizes the symbols
and acronyms used throughout this section.

Symbol Meaning
α Load factor.
n Number of keys in a key set.
N Number of keys used in the lookup step.
Probes/N Average number of probes per key during the lookup.
T(s) Average time (in seconds) spent during the lookup ofN keys.
So(bits/key) Space Overhead in bits per key.
LH Linear Hashing.
QH Quadratic Hashing.
DH Double Hashing.
CH Cuckoo Hashing.
SH Sparse Hashing.
DeH Dense Hashing.
MPH Minimal Perfect Hashing.

Table 1. Symbols and acronyms used throughout this section.

The linear hashing, quadratic hashing, double hashing, cuckoo hashing and mini-
mal perfect hashing structures were all implemented using the C language. We used the
CMPH library available athttp://cmph.sf.net to generate the MPHFs used in the
minimal perfect hashing structure. For sparse hashing and dense hashing we used the
original implementation available in [Silverstein 2007].

It is important to notice that we are interested in the performance of lookups and
therefore we do not present results concerning the time to build the data structures. Nev-
ertheless, it is important to stress that the MPHF construction is very fast, as can be seen
in [Botelho et al. 2007]. As an illustration, for a set of 37,294,116 keys, the construction
of the MPHF takes 1 minute and 38 seconds. We consider two situations: (i) when only
successful lookups are performed (i.e., the key is always found in the hash table) and (ii)
when only unsuccessful lookups are involved (i.e., a key is never found in the hash ta-
ble). The results are evaluated for each data structure in terms of the average number of
lookups, the average lookup time and the space overhead.

The experimental results are presented in three distinct subsections. First, in Sec-
tion 3.2, we compare the minimal perfect hashing structure with linear hashing, quadratic
hashing and double hashing structures. Second, in Section 3.3, we compare it with sparse
hashing and dense hashing structures. Finally, in Section 3.4, we compare it with cuckoo
hashing structure. The three sets of experiments use the keysets described in Section 3.1.

3.1. Key Sets

In our experiments we used three key sets: (i) a key set of5, 424, 923 unique query terms
extracted from the AllTheWeb3 query log, referred to as AllTheWeb key set; (ii) a key
set of37, 294, 116 unique URLs collected from the Brazilian Web by the TodoBr4 search
engine, referred to as URLs-37 key set; and (iii) a smaller key set of 10 million URLs
randomly selected from the URLs-37 key set, which is referred to as URLs-10 key set.
Table 2 shows the main characteristics of each key set, namely the shortest key size, the
largest key size and the average key size in bytes.

Key Set n Shortest Key Largest Key Average Size of the Keys
AllTheWeb 5,424,923 2 31 17.46
URLs-10 10,000,000 8 494 58.36
URLs-37 37,294,116 8 496 58.77

Table 2. Characteristics of the key sets used for the experim ents.

In order to test the lookup performance of the considered hash structures in a real
world environment, we need to look up keys in a way similar to the real access patterns of
actual applications. In the case of the AllTheWeb key set, the probability distribution of
query term lookups was extracted from the AllTheWeb query log. Similarly, the distribu-
tion of URL lookups must be equivalent to the access pattern performed by a web crawler
that needs to check whether a URL extracted from a web page is new, i.e., whether it
has not been collected before. Therefore, we decided to use an automatic generator to
simulate these lookup patterns found in search engines.

The probability distribution of query term lookups for the AllTheWeb key set is
shown in Figure 6 (a). It is plotted in a log-log scale, constituting a power law distribution
with inclination−0.91. This same distribution was used to simulate the lookup stream
submitted to the hashing data structures in order to evaluate their performance, as can be

3AllTheWeb (www.alltheweb.com) is a trademark of Fast Search & Transfer company, which was
acquired by Overture Inc. in February 2003. In March 2004 Overture itself was taken over by Yahoo!.

4TodoBr (www.todobr.com.br) is a trademark of Akwan Information Technologies, which was acquired
by Google Inc. in July 2005.

seen in Figure 6 (b). We generated 10 million keys to be lookedup in a hashing data
structure storing the AllTheWeb key set.

(a) Extracted from AllTheWeb query log. (b) Generated automatically.

Figure 6. Probability distribution of query term lookups

Pages arriving in a crawling system are known to have a few very popular
URLs and many not so popular URLs, which also constitutes a power law behavior
[Broder et al. 2000]. Consequently, we employed the same distribution found for query
terms to describe the probability of arrival of a URL in a crawler. We generated 250
million and 20 million URLs to be looked up in the hashing datastructures that store the
URLs-37 key set and the URLs-10 key set, respectively.

So far we have described how to generate key sets to perform successful searches
in hashing data structures. In order to test the performanceof the data structures when
unsuccessful searches are involved, we have randomly generated three additional key sets:
(i) 10 million keys of average size equal to17.46 bytes to be looked up when the structures
are storing the AlltheWeb key set, (ii) 20 million keys of average size equal to58.36 bytes
to be looked up when the structures are storing the URLs-10 key set, and (iii) 250 million
keys of average size equal to58.77 bytes to be looked up when the structures are storing
the URLs-37 key set. They were created based on the average key sizes presented in
Table 2. The successful and unsuccessful searches correspond to a lower bound and to an
upper bound of the execution time, respectively.

In our experiments we used an 8-byte fingerprint of the key instead of the key
itself. The use of fingerprints was motivated by two reasons:(i) to guarantee that all keys
have the same size, since in this way we can allocate a fixed size for each key without
waste of space; and (ii) to reduce the amount of memory used tostore each key, as the
average key size in all key sets used is greater than 8 bytes. Apoint worth noting is that
each key set was stored entirely in main memory, but the set ofautomatically generated
keys is too big to be stored in the same way, and had to be kept indisk.

3.2. Minimal Perfect Hashing Versus Linear Hashing, Quadratic Hashing and
Double Hashing

In this section we compare the minimal perfect hashing structure with linear hashing,
quadratic hashing and double hashing. Linear hashing, quadratic hashing and double
hashing methods were tested with different load factors, ranging from 50 to 90% (because

of lack of space we present results for load factors of 50%, 75% and 85%). We considered
both successful and unsuccessful searches to measure the average number of probes and
the amount of time spent (on average) to look up 10, 20 and 250 million keys in the
AllTheWeb, URLs-10 and URLs-37 key sets, respectively.

The results for successful and unsuccessful searches are presented in Tables 3 and
4, respectively. As expected, quadratic hashing and doublehashing perform better than
linear hashing for high load factors, since they avoid the creation of clusters in this case.
Furthermore, we can see that double hashing always has a smaller number of collisions
per key when compared to quadratic hashing and linear hashing, but it is slower since
it needs to compute two hash functions instead of one. The average number of probes
measured for both successful and unsuccessful searches arevery close to the expected
according to the equations presented in Sections 2.1, 2.2 and 2.3 (this is not shown in the
tables).

LH QH DH
Key Set α Probes/N T(s) Probes/N T(s) Probes/N T(s)

85% 3.78 5.67 2.40 5.27 2.17 5.42
AllTheWeb 75% 2.47 5.04 1.93 4.97 1.90 5.11

50% 1.48 4.34 1.42 4.40 1.40 4.56
85% 3.63 18.98 2.27 17.87 2.16 18.36

URLs-10 75% 2.37 17.69 1.87 17.29 1.83 17.69
50% 1.51 16.33 1.39 16.19 1.35 16.39
85% 3.94 269.19 2.37 253.18 2.29 263.80

URLs-37 75% 2.46 247.95 1.89 242.51 1.83 250.60
50% 1.55 229.62 1.43 228.92 1.37 233.79

Table 3. Load factor influence on the time to successfully loo k up 10, 20 and 250
million keys in the AllTheWeb, URLs-10 and URLs-37 key sets, respectively.

LH QH DH
Key Set α Probes/N T(s) Probes/N T(s) Probes/N T(s)

85% 22.80 14.82 7.54 8.60 6.67 8.89
AllTheWeb 75% 8.44 8.17 4.43 6.67 4.00 6.95

50% 2.50 5.19 2.13 5.14 2.00 5.25
85% 22.61 34.81 7.54 22.68 7.25 23.71

URLs-10 75% 8.49 21.93 4.43 18.77 4.00 19.27
50% 2.50 15.59 2.13 15.57 2.00 15.63
85% 22.53 526.05 7.55 333.49 6.67 379.17

URLs-37 75% 8.51 318.94 4.43 270.53 4.00 296.62
50% 2.50 220.64 2.13 217.66 2.00 222.92

Table 4. Load factor influence on the time to unsuccessfully l ook up 10, 20 and
250 million keys in the AllTheWeb, URLs-10 and URLs-37 key se ts, respectively.

We now compare the minimal perfect hashing structure with linear hashing,
quadratic hashing and double hashing. Tables 5 and 6 show tworemarkable results. First,
when the MPHF description fits in the L2 cache, which is the case for the AllTheWeb key
set and URLs-10 key set, the minimal perfect hashing structure outperforms the others in
terms of lookup time for load factors greater than 55% for both successful and unsuccess-
ful searches. Second, in the converse situation in which theMPHF description does not
fit in the L2 cache, which is the case for the URLs-37 key set, the same thing happens
for load factors greater than or equal to 75% and 65% for successful and unsuccessful
searches, respectively. Therefore, as can be seen, the use of MPHFs saves a significant
amount of space with almost no loss in the lookup time.

Data AllTheWeb URLs-10 URLs-37
Structure α(%) T(s) So(bits/key) α(%) T(s) So(bits/key) α(%) T(s) So(bits/key)

MPH 100 4.48 2.62 100 16.34 2.62 100 250.36 2.62
LH 55 4.46 116.36 55 16.34 116.36 75 247.95 85.33
QH 55 4.52 116.36 55 16.33 116.36 80 247.48 80
DH 50 4.56 128 50 16.39 128 75 250.60 85.33

Table 5. Comparison of MPH with LH, QH and DH, considering the space over-
head and the time to successfully look up 10, 20 and 250 millio n keys in the
AllTheWeb, URLs-10 and URLs-37 key sets, respectively.

Data AllTheWeb URLs-10 URLs-37
Structure α(%) T(s) So(bits/key) α(%) T(s) So(bits/key) α(%) T(s) So(bits/key)

MPH 100 5.33 2.62 100 16.38 2.62 100 252.65 2.62
LH 55 5.48 116.36 60 16.91 106.67 65 258.15 98.46
QH 55 5.36 116.36 60 16.57 106.67 70 253.64 91.43
DH 55 5.48 116.36 60 16.70 106.67 65 257.75 98.46

Table 6. Comparison of MPH with LH, QH and DH, considering the space over-
head and the time to unsuccessfully look up 10, 20 and 250 mill ion keys in the
AllTheWeb, URLs-10 and URLs-37 key sets, respectively.

3.3. Minimal Perfect Hashing Versus Sparse Hashing and Dense Hashing

Sparse hashing and dense hashing were tested with their default load factor only, which
is 80%. Table 7 shows the time spent to execute the lookup stepfor each method for suc-
cessful searches only. As expected, sparse hashing had the worst performance in lookup
time when compared to the other methods, as it is designed to be efficient in space but
not in execution time. The same is true for unsuccessful searches, and we omit the results
to save space. It is important to note that perfect hashing has clearly outperformed the
other methods in all aspects. Experiments were performed using only the AllTheWeb and
URLs-10 key sets. We decided not to use the URLs-37 key set since we did not expect
any improvements on the results.

Data AllTheWeb URLs-10
Structure α(%) T(s) So(bits/key) α(%) T(s) So(bits/key)

MPH 100 4.48 2.62 100 16.34 2.62
SH 80 11.47 2,92 80 35.76 2,92

DeH 80 6.51 80 80 27.48 80

Table 7. Comparison of MPH with DeH and SH, considering the sp ace overhead
and the time to successfully look up 10 and 20 million keys in t he AllTheWeb and
URLs-10 key sets, respectively.

3.4. Minimal Perfect Hashing Versus Cuckoo Hashing

Cuckoo hashing has a different behavior when compared to anyof the methods analyzed,
as it cannot work if the load factor is high, i.e., at most50%. Therefore, we decided to
show the comparison between this method and perfect hashingin this separated subsec-
tion. Cuckoo hashing was tested with load factors ranging from 20% to the maximum
load factor with which it works.

Table 8 shows the average number of probes and the average lookup time to suc-
cessfully search for 10, 20 and 250 million keys in the AllTheWeb, URLs-10 and URLs-
37 key sets, respectively. We can see that cuckoo hashing performs slightly faster for all
key sets used, but the space overhead for the minimum perfecthashing structure is much

lower than for cuckoo hashing in all experiments. The same happens for unsuccessful
searches, as we can see in Table 9.

Data AllTheWeb URLs-10 URLs-37
Structure α(%) T(s) So(bits/key) α(%) T(s) So(bits/key) α(%) T(s) So(bits/key)

MPH 100 4.48 2.62 100 16.34 2.62 100 250.36 2.62
CH 20 4.08 320 20 15.99 320 20 222.40 320
CH 30 4.13 213 30 16.05 213 30 224.98 213
CH 40 4.28 160 40 16.22 160 40 228.76 160
CH 50 4.38 128 50 16.34 128 50 233.89 128

Table 8. Comparison of MPH with CH, considering the space ove rhead and the
time to successfully look up 10, 20 and 250 million keys in the AllTheWeb, URLs-
10 and URLs-37 key sets, respectively.

Data AllTheWeb URLs-10 URLs-37
Structure α(%) T(s) So(bits/key) α(%) T(s) So(bits/key) α(%) T(s) So(bits/key)

MPH 100 5.33 2.62 100 16.38 2.62 100 252.65 2.62
CH 20 5.06 320 20 15.79 320 20 222.46 320
CH 30 5.10 213 30 15.92 213 30 227.21 213
CH 40 5.30 160 40 16.07 160 40 229.58 160
CH 50 5.34 128 50 16.17 128 50 231.26 128

Table 9. Comparison of MPH with CH, considering the space ove rhead and the
time to unsuccessfully look up 10, 20 and 250 million keys in t he AllTheWeb,
URLs-10 and URLs-37 key sets, respectively.

4. Conclusions

In this paper we have presented a thorough study of data structures that are suitable for
indexing internal memory in an efficient way in terms of both space and lookup time when
we have a key set that is fixed for a long period of time (i.e., a static key set) and each
key is associated with a satellite data. This is widely used in data warehousing and search
engine applications (see [Seltzer 2005] for other examples).

It is well known that an efficient way to represent a key set in terms of lookup
time is by using a table indexed by a hash function. For statickey sets it is possible to
pay the price of pre-computing a MPHF to find any key in a table in one single probe. We
have shown that minimal perfect hashing has a clear advantage in memory usage when
compared to other hashing methods, since there are no empty entries in its hash table and
thus space overhead is greatly reduced by avoiding the use ofpointers. This implies in a
gain ofO(logn) bits.

In our study, we compared MPHFs with linear hashing, quadratic hashing, dou-
ble hashing, dense hashing, cuckoo hashing and sparse hashing. We have shown that
MPHFs provide the best tradeoff between space usage and lookup time among these hash-
ing schemes. As an example, minimal perfect hashing have a better performance in all
measured aspects when compared to sparse hashing, which hasbeen designed specifically
for efficient memory usage. Furthermore, if the MPHF can be stored in cache, minimal
perfect hashing outperforms linear hashing, quadratic hashing and double hashing in all
aspects when these methods have a hash table occupancy of 55%or higher. The same
happens for hash table occupancies greater than or equal to 75% if the MPHF does not fit
in cache. This implies in a significant memory overhead due toa great number of unused
positions in the hash table.

5. Acknowledgements

We thank the partial support given by INFOWEB Project Grant MCT/CNPq/CT-INFO
550874/2007-0, and CNPq Grant 30.5237/02-0 (Nivio Ziviani).

References

Botelho, F., Pagh, R., and Ziviani, N. (2007). Simple and space-efficient minimal per-
fect hash functions. InProceedings of the 10th Workshop on Algorithms and Data
Structures (WADs’07), pages 139–150. Springer LNCS vol. 4619.

Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins,
A., and Wiener, J. (2000). Graph structure in the web.Computer Networks, 33(1):309–
320.

Czech, Z., Havas, G., and Majewski, B. (1992). An optimal algorithm for generating
minimal perfect hash functions.Information Processing Letters, 43(5):257–264.

Ho, Y. (1994). Application of minimal perfect hashing in main memory indexing. Tech-
nical report, Cambridge, MA, USA.

Hopgood, F. and Davenport, J. (1972). The quadratic hash method when the table size is
a power of 2.The Computer Journal, 15(4):314–315.

Knuth, D. E. (1973).The Art of Computer Programming: Sorting and Searching, vol-
ume 3. Addison-Wesley, second edition.

Majewski, B., Wormald, N., Havas, G., and Czech, Z. (1996). Afamily of perfect hashing
methods.The Computer Journal, 39(6):547–554.

Manegold, S., Boncz, P. A., and Kersten, M. L. (2000). Optimizing database architecture
for the new bottleneck: Memory access.The VLDB journal, 9:231–246.

Okanohara, D. and Sadakane, K. (2007). Practical entropy-compressed rank/select dic-
tionary. InProceedings of the Workshop on Algorithm Engineering and Experiments
(ALENEX’07).

Pagh, R. (2001). Low redundancy in static dictionaries withconstant query time.SIAM
Journal on Computing, 31(2):353–363.

Pagh, R. and Rodler, F. F. (2004). Cuckoo hashing.J. Algorithms, 51(2):122–144.

Raman, R., Raman, V., and Rao, S. S. (2002). Succinct indexable dictionaries with appli-
cations to encoding k-ary trees and multisets. InProceedings of the thirteenth annual
ACM-SIAM symposium on Discrete algorithms (SODA’02), pages 233–242, Philadel-
phia, PA, USA. Society for Industrial and Applied Mathematics.

Seltzer, M. (2005). Beyond relational databases.ACM Queue, 3(3).

Silverstein, C. (2007). An extremely memory-efficient hashmap implementation
(google-sparsehash).http://code.google.com/p/google-sparsehash.

Zukowski, M., Héman, S., and Boncz, P. (2006). Architecture-conscious hashing. In
Second DAMON workshop (SIGMOD 2006), Chicago, USA.

