I ndexing Internal Memory with
Minimal Perfect Hash Functions

Fabiano C. Botelho'2, Hendrickson R. Langbehn!,
Guilherme Vale Menezes!, and Nivio Ziviani!

!Department of Computer Science, Federal Univ. of Minas SeBelo Horizonte, Brazil

2Computing Department, Federal Center for Technologicaication, Belo Horizonte, Brazil

{f bot el ho, rei ter, gnenezes, ni vi o}@cc. uf ng. br

Abstract. A perfect hash function (PHF) is an injective function thaips keys
from a set S to unique values, which are in turn used to indeasa kable. Since
no collisions occur, each key can be retrieved from the talitle a single probe.
A minimal perfect hash function (MPHF) is a PHF with the sresilpossible
range, that is, the hash table size is exactly the numberyaf keS. MPHFs
are widely used for memory efficient storage and fast redtie¥ items from
static sets. Differently from other hashing schemes, MPEtifapletely avoid
the problem of wasted space and wasted time to deal withsaoik. In the
past, the amount of space to store an MPHF description @gdsgn) bits per
key and therefore similar to the overhead of space of othehimg schemes.
Recent results on MPHFs by [Botelho et al. 2007] changed shenario: in
their work the space overhead of an MPHF is approximatelylit® per key.
The objective of this paper is to show that MPHFs are a goodapb index
internal memory when static key sets are involved and batbessful and un-
successful searches are allowed. We have shown that MPHiv&lprthe best
tradeoff between space usage and lookup time when compételinear hash-
ing, quadratic hashing, double hashing, dense hashingkamtashing and
sparse hashing. For example, MPHFs outperforms linear mgghquadratic
hashing and double hashing when these methods have a hdslotainpancy
of 75% or higher (if the MPHF fits in the CPU cache the same hapger hash
table occupancies greater than or equal to 55%). FurthemndiPHFs also
have a better performance in all measured aspects when aechpa sparse
hashing, which has been designed specifically for efficiemony usage.

1. Introduction

Some types of databases are updated only rarely, typicapghodic batch updates. This
is true, for example, for most data warehousing applicat(see [Seltzer 2005] for more
examples and discussion). Another interesting phenomemasrthe web popularization,
which created various new challenges related to the hugetlyraf data volume and the
need to process it in order to get useful information. Seargfines are responsible for
collecting, representing, processing and disseminahiisguseful information according
to the information need of their users. Besides the qualfithe information provided,

it is essential to satisfy the user information need in arciefiit way despite the huge
amount of data to be processed and the huge amount of usgrggigsieries all the time.

Therefore, in such scenarios, it is necessary to constiatet structures that permit to

represent this data volume as compactly as possible, amddegs queries in an efficient
way over it.

In this paper we study data structures that are suitablef@xing internal mem-
ory in an efficient way in terms of both space and lookup tinpecglly when memory
intensive applications are involved. Indeed, we are istexckin applications where a
key set is fixed for a long period of time and each key is assettiwith satellite data.
For example, this happens in On-Line Analytical Proces§dgAP) and search engine
applications, which use extensive preprocessing of dasdldw very fast evaluation of
certain types of queries. More formally, givestatickey setS C U of sizen from a key
universel/ of sizeu, where each key is associated with satellite data, the ignest are
interested in is: what are the data structures that proviedést tradeoff between space
usage and lookup time?

An efficient way to represent a vocabulary in terms of lookimpetis using a
table indexed by a hash function. lash functiom. : U — M is a function that maps
the keys fromU to a given interval of integerd/ = [0,m — 1] = {0,1,...,m — 1}.
ConsideringS C U and given a key: € S, the hash functioh computes an integer in
[0, m — 1] for the storage or retrieval afin ahash table Hashing methods faron-static
key setan be used to construct data structures stofirand supporting membership
queries of the types# € S?” in expected time)(1). However, they involve a certain
amount of wasted space owing to unused locations in the éalolevasted time to resolve
collisions when two keys are hashed to the same table locatio

In the aforementioned scenarios, the key set is fixed for g pemiod of time (i.e.,
might be consideredtatic key se)s hence it is possible to compute a function as part of
the preprocessing phase to find any key in a table in one pealod; hash functions are
calledperfect Given a key set5, we shall say that a hash functiégn: U — M is a
perfect hash functio(PHF) forS if h is an injection onS, that is, there are ncollisions
among the keys if§: if z andy are inS andz # y, thenh(x) # h(y). Since no collisions
occur, each key can be retrieved from the table with a singlbe Ifm = n, that is, the
table has the same size &sthent is a minimal perfect hash function (MPHF). MPHFs
completely avoid the problem of wasted space and time. Bstite it was observed in
[Manegold et al. 2000] that MPHFs also avoid cache missedsdtise due to collision
resolution schemes like open addressing and chaining [Kb@i 3].

The objective of this paper is to show that MPHFs provide tbst radeoff be-
tween space usage and lookup time when compared to othenpasthemes. It was
not the case in the past because the space overhead to stbfeSMRSO (log n) bits per
key for practical algorithms [Czech et al. 1992, MajewskaletL996]. Therefore, a better
performace in terms of time and space was obtained by usiimgyke $rash function and
resolving collisions with linear probing [Ho 1994, Knuth7. However, new results on
MPHFs by Botelho, Pagh and Ziviani [Botelho et al. 2007] hanativated this work. In
their work, MPHFs require approximately6 bits per key of space overhead and can be
evaluated irO(1) time.

We obtained interesting results in two scenarios: (i) whenNIPHF description
fits in the CPU cache and (ii) when it cannot be entirely plaocgtie CPU cache. In the
first scenario we show that the other hashing schemes cautparéorm minimal perfect

hashing, even when the hash table occupancy is lowerihdn An MPHF requiring
just 2.6 bits per key of storage space permits to store settseoorder of 10 million keys
in a 4 MB CPU cache, which is enough for a large range of apjpdica. In the second
scenario, other hashing schemes require a hash table amyupaver tharir5% to obtain
the same performance attained by minimal perfect hashimgbéth scenarios, the space
overhead of minimal perfect hashing is within a factoxtfog n) bits lower than other
hashing schemes.

2. TheAlgorithms

In this section we describe the hashing methods we used tpa@minimal perfect
hashing with, namely, linear hashing, quadratic hashingpte hashing, dense hashing,
cuckoo hashing and sparse hashing. The hash table enttedtsims, and each item is
composed by a key and possibly some data, i.e., apaird >. All the methods analyzed
use collision resolution by open addressing, that is, tbek kt various positions of the
hash table one by one until it either finds the kdyeing searched for or it finds an empty
position [Knuth 1973]. In contrast, collision resolutiooutd also be made by chaining,
in which a linked list is used to store items that collidedhe same table position. Open
addressing is preferred over chaining if we are interestddakup time, since it has a
better locality of reference and reduces the number of catbges.

The hash table structure used by linear hashing, quadrasitiing, double hash-
ing, dense hashing and cuckoo hashing is shown in Figure gryHable position has
a pointer, initially pointing to an empty value. When an ité&rinserted in the table,
the pointer of the corresponding position starts to refat.td’he hash table structures
for sparse hashing and minimal perfect hashing are pret@mt8ections 2.5 and 2.6,
respectively.

Item Set
[Ky1D,[K, 1D, [KyiDy K,1D,

Hash Table
i

i+1

o

" NULL

m-1j

Figure 1. Hash table used for linear hashing, quadratic hash ing, double hashing,
dense hashing and cuckoo hashing.

Note that we should not insert the item itself in the table¢sithe allocated empty
positions would cause an expressive waste of memory spsegially if the item occu-
pies several bytes. Hence, the wasted space is reducedray arsy one pointer per
empty position. If we defing as the pointer size in bits, the space overhead for methods
that use the structure in Figure 1jisx m bits for a hash table of siz&. For a 64 bits
architecturep = 64 bits.

Throughout this section we shall usg, as a notation for an addition modulus
For instance, we may describe the operation- b)) mod m asa &, b.

2.1. Linear Hashing

Linear hashing is considered one of the simplest open asidgeschemes available. It
uses a hash function: S — [0, m — 1] and tests positions(k), h(k) ©,, 1, h(k) B 2, ...
sequentially until it finds the termd being searched. Otherwise, if it finds an empty
position, or if the sequential search reaches positigh) after running over all other
positions, the item being searched does not exist in the tiaadd [Knuth 1973].

The pseudocode shown below represents how this method works

Calculate = h(k).

2. If thei-th position is empty oh(k) is reached again after running over all table
positions, then the search is concluded and the item relt&di% is not in the hash
table.

3. If thei-th position contains the item with ke then the search is concluded and
the item relative td is in position;.

4. Elseji =i®,, 1. Goto step 2.

=

The efficiency of a search for a given kéye S in the linear hashing method
depends on the number of probes performed during the se@hsh.is highly sensitive
to the hash table load factar = n/m (i.e., the ratio between the number of items and
the number of entries in the hash table.) The higher,ishe larger is the number of

probes. According to Knuth [Knuth 1973] the expected nundfgrobes performed for

successful and unsuccessful searches; dte+) and3 <1 + (ﬁ)2> respectively.

The main problem with this method is that it degenerates ggaisntial search when the
number of terms: gets closer to the table size, which causes a waste of time. Another
issue is the waste of space caused by empty positions in tietalble.

2.2. Quadratic Hashing

Quadratic hashing is very similar to linear hashing, howeweises two additional pa-
rametersy andq, besides the hash functidnk) : S — [0, m — 1]. Parameter indicates
how many positions ahead the current position the next sdarche termk will be per-
formed, and parameterindicates the value which parametewill be added to after each
iteration. Quadratic hashing is expected to have a bettéompeance when compared to
linear hashing for higher load factors, since it prevenésgioduction of clusters which
delay the search for items. However, this method shares pooidems found in linear
hashing, e.g., the waste of space due to empty positiondandaste of time due to suc-
cessive collisions whemn gets closer tan [Hopgood and Davenport 1972]. The quadratic
hashing method may also have a smaller locality of refereviten compared to linear
hashing, as the paecemay become much larger than one.

The period of search is defined as the number of entries tipaapn a sequence
from a particular initial position before an entry is enctared twice. The period of
search should preferably be the same as the tableisize at least, as large as possible.
Otherwise, the table may appear to be full when there issgidice available. lin is a
prime number then the period of search for the quadratic treethod ism /2.

The pseudocode shown below represents how this method works
1. Calculate = h(k).

2. If thei-th position is empty of.(k) is reached again after running over all reach-
able positions, then the search is concluded and the itativelok is not in the
hash table.

3. If thei-th position contains the item with key then the search is concluded and
the item relative td is in position:.

4. Elseji=i®,,r,r=1r®,, q. Goto step 2.

Given a hash table load facter = n/m, the expected number of probes in
quadratic hashing is—In(1—«) — £ for successful searches agll- —In(1 —) —a for
unsuccessful searches, according to [Knuth 1973]. Furtbes, in [Knuth 1973] it was
proposed a variation of quadratic hashing, which was alsgpemed with perfect hashing
in our experiments. We used an implementation availabl&iingrstein 2007], which is
called dense hashing.

2.3. Double Hashing

Double hashing also works in a way very similar to linear lvaghbut with the difference
that, instead of one function, it uses twe:(k) andhs (k). The first one produces values
in the rangel0, m — 1], mapping the term into its position in the hash table, theesam
way as the hash function in linear hashing does. The additfomctionf, (k) produces
values in the rangél, m — 1], which are used as steps in the process of finding empty
positions. Values produced by, (k) are relatively primes to the table size. This is
necessary to ensure that the period of search will be of tivee saze as table size,
which guarantees that any given item can be inserted in dig f#osition (see, e.g.,
[Knuth 1973]). Furthermore, we can check if the table is bylicounting the number of
collisions, sincen successive collisions indicates a full structure.

This method tests positions using a distariggk), i.e., it tests positions
hi(k), hi(k) @m ha(k), hi(k) Sm 2he(k), ..., until it finds an empty position or until it
finds the termk being searched for.

The method is described bellow:

1. Calculate = hy(k), d = ha(k).

2. If thei-th position is empty ok (k) is reached again after running over all table
positions, then the search is concluded and the item reladivis not in the table.

3. If thei-th position contains the item with ke then the search is concluded and
the item relative td is in position:.

4. Else;i =i @, d. Goto step 2.

Double hashing reduces the problem of clustering in a betdgrthan quadratic
hashing does. This is because functioiik) provides a different steg for each key
k, and the multiple step sizes produce a more uniform digiohwof the used positions.
This method still shares some problems with previouslydaethods, such as the waste
of space due to unused positions and the possibility of ssoge collisions when the
structure is almost full. Knuth [Knuth 1973] estimated thpected number of successful
probes in searches for double hashing-gs. In(1 — «)), and the number of unsuccessful
probes in searches "i‘éﬁ

2.4. Cuckoo Hashing

Cuckoo hashing uses two hash functiang %) andhs(k), to get two possible table posi-
tions for a given term. When a termhas to be inserted in the structure, one of the two

possible positiong (x) or hy(z)) is chosen. If the chosen position is already occupied,
the termy contained there will be removed from the structure, yigddin empty position

to the termz being inserted. Term, in turn, has two possible positions, given byy)
andhsy(y). Consequentlyy can be inserted in a position different from its former one.
However, that position can be occupied too. Thus, this @®oeust continue until all
terms are inserted in one of their possible positions, dt smme item can not be inserted
[Zukowski et al. 2006, Pagh and Rodler 2004].

In case we need to search for a teknthe two possible positions fdr (namely
hi(k) and hy(k)) are checked. If neither one contains the term, then it isimahe
structure. Insertion in cuckoo hashing is better descrijedibw:

1. Calculate = hy(k)
2. If thei-th position is empty, insert the terinin that position
3. Else,
Swap the ternt with the termx contained in the-th position
If hl(l‘) ==1, then: = hg(l‘)
Else,i = hi(x)
Goto step 2
A problem with this method is that it is possible that it getian infinite loop
during the insertion of a term, since it can cause a sequdhims to be expelled indef-
initely in a cyclical manner. We may prevent this by allowmngy a maximum amount of
iterations during term insertion. Notwithstanding, cuakmshing still will not be able to
insert the term with the same hash function values, and tile teeeds to be rebuilt with
different functions if the term is to be inserted.

2.5. Sparse Hashing

Sparse hashing is based on a sparse array structure whighittlsenemory space. It
is implemented as an array of grougs where the number of groups in a sparse array
of m entries is calculated a8 = [m/M]. Each group stored in[g], 0 < g < G, is
responsible for)/ indexes of the hash table, i.e1]0] is responsible for the items in the
range[0, M — 1], A[1] for the items in the rangf\/,2M — 1], and so on. Each group
contains an arrayr, that stores the actual items and a bitndgpof size M. The bitmap
B, indicates the assigned indexes in the rafigéd/ — 1]. If B,[f] = 1,0 < f < M,
then indexf has a corresponding value storedAp. Note that an item in group with
an offsetf is not necessarily placed in positigrof R,, but in the positiorR,[j], where;

is the number of bits set frof¥,[0] to B,[f — 1]. Therefore, the arrag, is dynamically
reallocated when new items are inserted in it. Thus, the aiz, can differ among
groups. Figure 2 illustrates these data structures.

A lookup for an item with keyk is performed by first calculating its position
i = h(k), in whichh(k) : S — [0,m — 1]. The groupg to which the item belongs is
defined agy = [i/M |, and its offset insidg is f = i mod M. In this way, we need to
check the value oB,[f]. If it is set to0, then the item is not present in the hash table.
Otherwise, it is possibly present in grogmand we need to check if there is a collision.
This can be done by checking if the item with keys present in?,. The position; of
the item in this array is calculated by counting the numbebitsf set betwee, [0] and
B,[f — 1]. If the item in position; is not the one with key:, then there is a collision,
which will be resolved by quadratic probing oisee Section 2.2).

Bitmaps
© 1, 2 3 Hash Table Items

T T T
4" Koo 1 Doo ‘ Koa 1 Doy | Kogi Dgs

L —{ K110]

o] 7]
=] =]
o] =]

o

=]
=]
=]

T T T
"Ki,o Do ‘K\,l 1D, Kiz 1D,

+
-

—NULL

=
=
Q
.

T T
"K 61,1 D11 ‘KG—I,Z D ‘

Figure 2. Hash table used in the sparse hashing method.

Insertion is performed in a similar fashion. First, we museak if the item is
present with a lookup. If not, we shall insert the itemApin the position calculated by
counting the number of bits set betweBj0] andB,[f — 1], in the same way it is done in
the lookup. An insertion may require the displacement oitaths with internal offsej
such thatj > f. Let us take Figure 2 as an example. Suppose we want to insertaan
item with keyk for whichg = 0 andf = 1. Then the item must be inserted in positibn
of group0, but that position is already occupied. To solve this, welrteanove the items
with key K, and K 5 one position ahead of their current position. The item WAty
will be moved to the position allocated for the new term, itlee forth position. The item
with key K » will be moved to the position just left of the item with kéy, s, i.e., the
third position. Finally, the position calculated for thernt with keyk will be free and we
can place the new item there. Figure 3 shows the situatiomoafpy) after the insertion
of the item with keyK ;.

Bitmaps
0 1, 2 3 Hash Table Items

of FKooePoeKoi oK aaD o [KosDos

Figure 3. Group 0 after an insertion.

This method differs from the others in the sense that it fiizaes efficient memory
usage. It allocates as little space as possible to represassigned positions, and the
arrays containing the actual items grow only when it is ndedfeeach pointer has a size
of p bits, the space overhead of sparse hashing for a hash tasileeat andG groups is
m + G x p. That is,m bits to represent the bitmaps, aGdpointers, one for each group.

Although being very efficient in memory usage, sparse hgsisinot designed to
be efficient in time: each lookup needs to perform a sequess&ch througlB, to find
the position of an itenfk,.

2.6. Minimal Perfect Hashing

The hash table structure used by minimal perfect hashingagns in Figure 4. In this
structure there is no need for pointers, i.e., all the iteredgraserted directly in the table.
This is only possible because there are no empty entrieeihdkh table, and therefore
we will not lose any space if we increase the capacity of théetantries to fit the items
themselves. This is not the case for the other methods, ichwéiny increase in the

capacity of the table entries would cause even more space wabted. Moreover, the
minimal perfect hashing avoids the use of memory space fo tkesgpointers, which is an
additional advantage. However, there is still the needdaeshe MPHF representation in
main memory, and the space overhead for this method is ajppatedy 2.62n bits for a
set ofn keys, as can be seen in [Botelho et al. 2007].

Hash Table

o[k, 1D,
1/ K, 1D,
i| Ky 1Dy

1K, 1 D,

Figure 4. Hash table used in the perfect hashing method.

The minimal perfect hash function : S — [0,n — 1] used to index
the hash table presented in Figure 4 is taken from the fanfiliBHFs proposed
in [Botelho et al. 2007]. Their MPHFs are generated basecaadamr-partite hyper-
graphs where each edge connects 2 vertices. In our experiments we used a version
that employs hypergraphs with= 3, since it generates the fastest and most compact
MPHFs. However, for simplicity of exposition, we will nowlulstrate the MPHF con-
struction whenr = 2.

Figure 5 gives an overview of the MPHF construction/#ct 2, taking as input a
key setS C U containing the first four month names abbreviated to thetfirse letters,
i.e.,S = {jan, feb, mar, apr}. The mapping step in Figure 5(a) assumes that it is possible
to findr = 2 hash functions), andh,, with independent values uniformly distributed in
the intervals [0,3] and [4,7], respectively. These funtsiare used to assign each keysin
to an edge of an acyclic random bipartite gra&pk- (V, E)?, such thatV'| = m = 8 and
|E| = n = 4. In our example, January is mapped to edggg(jan), hi(jan)} = {2,5},
February is mapped tfhg(jan), hy(jan)} = {2,6}, and so on.

The assigning step in Figure 5(b) builds an arsasepresenting a function :
[0,m — 1] — {0, 1,2}, which is used to uniquely assign an edge with kep one of its
r = 2 incident vertices. The valueis used to represent unassigned vertices. Note that a
vertex for a keyk is either given byi,(k) or hy (k). The decision of which functioh; (k)
to be used fok is made by calculating= (g[ho(k)] + g[h1(k)]) mod 2. In our example,
January is mapped to 2 becaug€2] + ¢[5]) mod 2 = 0 andhg(jan) = 2. Similarly,
February is mapped to 6 becaug€] + ¢[6]) mod 2 = 1 andh,(feb) = 6, and so on.

The ranking step builds a data structure used to compute @idanrank(v),
which counts in0O(1) time the number of assigned positiongjibefore a given position
v € [0,m — 1]. This is a well-studied primitive in succinct data struetsifPagh 2001,
Okanohara and Sadakane 2007, Raman et al. 2002]. To itleistrak(7) = 3 means
that there are three positions assigned before positiory,/riamely0, 2 ando6.

A hypergraph is the generalization of a standard undiregtagh where each edge connects 2
vertices.
2See [Botelho et al. 2007] for details on how to obtain suchaeplywith high probability.

S

jan © @ @) @ ho (X)
"f:i Mapping o)@f ,\é‘ Fcn_" ?O, Assigning M
5
apr @ & ©® O®Owrw
7

(CY (b)

Figure 5. (a) The mapping step generates an acyclic bipartit e random 2-graph. (b)
The assigning step builds an array ¢ so that each edge is uniquely assigned to a
vertex. (c) The ranking step builds the data structure used t o compute function
rank : V — [0,n — 1] in O(1) time.

In our experiments, the MPHF is constructed based on hyaengrwithr = 3,
and we use three hash functiohs: S — [i%f, (i + 1)% — 1], in which0 < i < 3
andm = 1.23n. The valuel.23n is required to generate an acyclic rand@rpartite
hypergraph with high probability [Botelho et al. 2007]. ldeagain, the functions are
assumed to have independent values uniformly distribdied MPHF has the following
form: h(k) = rank(phf(k)), wherephf : S — [0,1.23n — 1] is a perfect hash function
defined aghf (k) = hi(k) andi = (g[ho(k)] + g[h1(k)] + g[h2(k)]) mod 3. The arrayy
is now representing a function: V- — {0, 1, 2, 3}, andrank : V' — [0,n — 1] is now the
cardinality of{u € V' | v < vAg[u] # 3}. Notice that a vertex is assigned ify[u] # 3.

3. Experimental Results

In this section we present the key sets used in the experingrt the results of the
comparative study. All experiments were carried out on apaer running Linux version
2.6, with a 1.86 gigahertz Intel Core 2 64 bits processor,galgytes of main memory
and 4 megabytes of L2 cache. All results presented are aa®i@y50 trials and were
statistically validated with a confidence level @f%. Table 1 summarizes the symbols
and acronyms used throughout this section.

Symbol Meaning

e Load factor.

n Number of keys in a key set.

N Number of keys used in the lookup step.

Probeg N Average number of probes per key during the lookup.
T(s) Average time (in seconds) spent during the lookupvdkeys.
S, (bits/key) | Space Overhead in bits per key.

LH Linear Hashing.

QH Quadratic Hashing.

DH Double Hashing.

CH Cuckoo Hashing.

SH Sparse Hashing.

DeH Dense Hashing.

MPH Minimal Perfect Hashing.

Table 1. Symbols and acronyms used throughout this section.

The linear hashing, quadratic hashing, double hashindsomulashing and mini-
mal perfect hashing structures were all implemented u$iagt language. We used the
CMPH library available at t p: / / cnph. sf . net to generate the MPHFs used in the
minimal perfect hashing structure. For sparse hashing andedhashing we used the
original implementation available in [Silverstein 2007].

It is important to notice that we are interested in the penfamce of lookups and
therefore we do not present results concerning the timeitd the data structures. Nev-
ertheless, it is important to stress that the MPHF constmds very fast, as can be seen
in [Botelho et al. 2007]. As an illustration, for a set of 3942116 keys, the construction
of the MPHF takes 1 minute and 38 seconds. We consider twatigihs: (i) when only
successful lookups are performed (i.e., the key is alwaysdan the hash table) and (ii)
when only unsuccessful lookups are involved (i.e., a keyeienfound in the hash ta-
ble). The results are evaluated for each data structurenmstef the average number of
lookups, the average lookup time and the space overhead.

The experimental results are presented in three distifstesations. First, in Sec-
tion 3.2, we compare the minimal perfect hashing structutie kimear hashing, quadratic
hashing and double hashing structures. Second, in SecBpow8 compare it with sparse
hashing and dense hashing structures. Finally, in Sectthgm& compare it with cuckoo
hashing structure. The three sets of experiments use theskegescribed in Section 3.1.

3.1. Key Sets

In our experiments we used three key sets: (i) a key s&t4¥4, 923 unique query terms
extracted from the AllTheWebquery log, referred to as AllTheWeb key set; (ii) a key
set 0f37, 294, 116 unique URLSs collected from the Brazilian Web by the Todb&zarch
engine, referred to as URLs-37 key set; and (iii) a smallgrdet of 10 million URLs
randomly selected from the URLs-37 key set, which is retetoeas URLs-10 key set.
Table 2 shows the main characteristics of each key set, yamekhortest key size, the
largest key size and the average key size in bytes.

Key Set n Shortest Key| Largest Key | Average Size of the Keys
AllTheWeb | 5,424,923 2 31 17.46

URLs-10 | 10,000,000 8 494 58.36

URLs-37 | 37,294,116 8 496 58.77

Table 2. Characteristics of the key sets used for the experim ents.

In order to test the lookup performance of the consideret kasctures in a real
world environment, we need to look up keys in a way similahtreal access patterns of
actual applications. In the case of the AllTheWeb key set pitobability distribution of
guery term lookups was extracted from the AllTheWeb quegy Bimilarly, the distribu-
tion of URL lookups must be equivalent to the access patterfopned by a web crawler
that needs to check whether a URL extracted from a web pagewsire., whether it
has not been collected before. Therefore, we decided toruseitamatic generator to
simulate these lookup patterns found in search engines.

The probability distribution of query term lookups for thé PheWeb key set is
shown in Figure 6 (a). It is plotted in a log-log scale, camgitng a power law distribution
with inclination —0.91. This same distribution was used to simulate the looku@stre
submitted to the hashing data structures in order to evathair performance, as can be

SAlITheWeb (wwv. al | t heweb. conis a trademark of Fast Search & Transfer company, which was
acquired by Overture Inc. in February 2003. In March 2004r@we itself was taken over by Yahoo!.

4TodoBr (mvw.todobr.com.br) is a trademark of Akwan Information Teclogies, which was acquired
by Google Inc. in July 2005.

seen in Figure 6 (b). We generated 10 million keys to be loakeih a hashing data
structure storing the AllTheWeb key set.

bability

the Praol

(a) Extracted from AllTheWeb query log. (b) Generated automatically.

Figure 6. Probability distribution of query term lookups

Pages arriving in a crawling system are known to have a few ypepular
URLs and many not so popular URLs, which also constituteswepdaw behavior
[Broder et al. 2000]. Consequently, we employed the santellison found for query
terms to describe the probability of arrival of a URL in a claw We generated 250
million and 20 million URLSs to be looked up in the hashing dstiaictures that store the
URLs-37 key set and the URLs-10 key set, respectively.

So far we have described how to generate key sets to perfaoessiul searches
in hashing data structures. In order to test the performahtiee data structures when
unsuccessful searches are involved, we have randomlyayedehree additional key sets:
(i) 10 million keys of average size equall®.46 bytes to be looked up when the structures
are storing the AlltheWeb key set, (ii) 20 million keys of eage size equal t68.36 bytes
to be looked up when the structures are storing the URLs-§@é&k and (iii) 250 million
keys of average size equali8.77 bytes to be looked up when the structures are storing
the URLs-37 key set. They were created based on the averggeides presented in
Table 2. The successful and unsuccessful searches cantepa lower bound and to an
upper bound of the execution time, respectively.

In our experiments we used an 8-byte fingerprint of the keteaw of the key
itself. The use of fingerprints was motivated by two reas@ifi$o guarantee that all keys
have the same size, since in this way we can allocate a fixed@izach key without
waste of space; and (ii) to reduce the amount of memory usetbte each key, as the
average key size in all key sets used is greater than 8 bytgsirAworth noting is that
each key set was stored entirely in main memory, but the satitoimatically generated
keys is too big to be stored in the same way, and had to be kejgkn

3.2. Minimal Perfect Hashing Versus Linear Hashing, Quadratic Hashing and
Double Hashing

In this section we compare the minimal perfect hashing tirecwith linear hashing,
quadratic hashing and double hashing. Linear hashing,rgtiachashing and double
hashing methods were tested with different load factorsyirag from 50 to 90% (because

of lack of space we present results for load factors of 50%4 @bd 85%). We considered
both successful and unsuccessful searches to measurestag@wumber of probes and
the amount of time spent (on average) to look up 10, 20 and Z8@mkeys in the
AllTheWeb, URLs-10 and URLs-37 key sets, respectively.

The results for successful and unsuccessful searchesemenped in Tables 3 and
4, respectively. As expected, quadratic hashing and ddwdsbing perform better than
linear hashing for high load factors, since they avoid tleaton of clusters in this case.
Furthermore, we can see that double hashing always has &smanber of collisions
per key when compared to quadratic hashing and linear hgshut it is slower since
it needs to compute two hash functions instead of one. Theageenumber of probes
measured for both successful and unsuccessful searchesrgrelose to the expected
according to the equations presented in Sections 2.1, &.2.8(this is not shown in the
tables).

LH QH DH
Key Set «a Probeg N T(s) ProbegN T(s) ProbegN T(s)
85% 378 5.67 2.40 5.27 2.17 5.42
AllTheWeb 75% 2.47 5.04 1.93 4.97 1.90 5.11
50% 1.48 4.34 1.42 4.40 1.40 4.56
85% 363 18.98 2.27 17.87 2.16 18.36
URLs-10 75% 2.37 17.69 1.87 17.29 1.83 17.69
50% 1.51 16.33 1.39 16.19 1.35 16.39
85% 3.94 269.19 2.37 25318 2.29 263.80
URLs-37 75% 2.46 247.95 1.89 24251 1.83 250.60
50% 1.55 229.62 1.43 228.92 1.37 233.79
Table 3. Load factor influence on the time to successfully loo k up 10, 20 and 250

million keys in the AllTheWeb, URLs-10 and URLs-37 key sets, respectively.

LH QH DH
Key Set «a Probeg N T(s) ProbegN T(s) ProbegN T(s)
85% 22.80 14.82 7.54 8.60 6.67 8.89
AllTheWeb 75% 8.44 8.17 4.43 6.67 4.00 6.95
50% 2.50 5.19 213 5.14 2.00 5.25
85% 22.61 34.81 7.54 22.68 7.25 2371
URLs-10 75% 8.49 21.93 4.43 18.77 4.00 19.27
50% 2.50 15.59 2.13 15.57 2.00 15.63
85% 22.53 526.05 7.55 333.49 6.67 379.17
URLs-37 75% 8.51 318.94 4.43 270.53 4.00 296.62
50% 2.50 220.64 213 217.66 2.00 222.92
Table 4. Load factor influence on the time to unsuccessfully | ook up 10, 20 and

250 million keys in the AllTheWeb, URLs-10 and URLs-37 key se ts, respectively.

We now compare the minimal perfect hashing structure witledr hashing,
guadratic hashing and double hashing. Tables 5 and 6 shovetmarkable results. First,
when the MPHF description fits in the L2 cache, which is thedasthe AllTheWeb key
set and URLs-10 key set, the minimal perfect hashing strecutperforms the others in
terms of lookup time for load factors greater than 55% fohlsatccessful and unsuccess-
ful searches. Second, in the converse situation in whictviBelF description does not
fit in the L2 cache, which is the case for the URLs-37 key set,sdame thing happens
for load factors greater than or equal to 75% and 65% for ssfokand unsuccessful
searches, respectively. Therefore, as can be seen, thé MdeHI-s saves a significant
amount of space with almost no loss in the lookup time.

Data AllTheWeb URLs-10 URLs-37
Structure | a(%) T(s) So(bitsikey) | a(%) T(s) So(bitsikey) | a(%) T(s) So (bits/key)
MPH 100 4.48 2.62 100 16.34 2.62 100 250.36 2.62
LH 55 4.46 116.36 55 16.34 116.36 75 247.95 85.33
QH 55 452 116.36 55 16.33 116.36 80 247.48 80
DH 50 4.56 128 50 16.39 128 75 250.60 85.33

Table 5. Comparison of MPH with LH, QH and DH, considering the space over-
head and the time to successfully look up 10, 20 and 250 millio n keys in the
AllTheWeb, URLs-10 and URLs-37 key sets, respectively.

Data AllTheWeb URLs-10 URLs-37
Structure | a(%) T(s) So(bitsikey) | a(%) T(s) So(bitsikey) | a(%) T(s) So (bits/key)
MPH 100 5.33 2.62 100 16.38 2.62 100 252.65 2.62
LH 55 5.48 116.36 60 16.91 106.67 65 258.15 98.46
QH 55 5.36 116.36 60 16.57 106.67 70 253.64 91.43
DH 55 5.48 116.36 60 16.70 106.67 65 257.75 98.46

Table 6. Comparison of MPH with LH, QH and DH, considering the space over-
head and the time to unsuccessfully look up 10, 20 and 250 mill ion keys in the
AllTheWeb, URLs-10 and URLs-37 key sets, respectively.

3.3. Minimal Perfect Hashing Ver sus Spar se Hashing and Dense Hashing

Sparse hashing and dense hashing were tested with theidtdetd factor only, which
is 80%. Table 7 shows the time spent to execute the lookug@teach method for suc-
cessful searches only. As expected, sparse hashing hadthepgrformance in lookup
time when compared to the other methods, as it is designed #dficient in space but
not in execution time. The same is true for unsuccessfutkear and we omit the results
to save space. It is important to note that perfect hashisgclearly outperformed the
other methods in all aspects. Experiments were performied osly the AllTheWeb and
URLs-10 key sets. We decided not to use the URLs-37 key se¢ sue did not expect
any improvements on the results.

Data AllTheWeb URLs-10
Structure | (%) T(s) So(bitsikey) | (%) T(s) So(bits/key)
MPH 100 4.48 2.62 100 16.34 2.62
SH 80 11.47 2,92 80 35.76 2,92
DeH 80 6.51 80 80 27.48 80

Table 7. Comparison of MPH with DeH and SH, considering the sp ace overhead
and the time to successfully look up 10 and 20 million keys in t he AllTheWeb and
URLs-10 key sets, respectively.

3.4. Minimal Perfect Hashing Ver sus Cuckoo Hashing

Cuckoo hashing has a different behavior when compared tofamg methods analyzed,
as it cannot work if the load factor is high, i.e., at md8¥o. Therefore, we decided to
show the comparison between this method and perfect hashthg separated subsec-
tion. Cuckoo hashing was tested with load factors rangiognf20% to the maximum
load factor with which it works.

Table 8 shows the average number of probes and the averdggltome to suc-
cessfully search for 10, 20 and 250 million keys in the AllWeb, URLs-10 and URLs-
37 key sets, respectively. We can see that cuckoo hashifgrmerslightly faster for all
key sets used, but the space overhead for the minimum péidshing structure is much

lower than for cuckoo hashing in all experiments. The sanppéas for unsuccessful
searches, as we can see in Table 9.

Data AllTheWeb URLs-10 URLs-37
Structure | a(%) T(s) So(bitsikey) | a(%) T(s) So(bitsikey) | a(%) T(S) So(bits/key)
MPH 100 4.48 2.62 100 16.34 2.62 100 250.36 2.62
CH 20 4.08 320 20 15.99 320 20 222.40 320
CH 30 4.13 213 30 16.05 213 30 224.98 213
CH 40 4.28 160 40 16.22 160 40 228.76 160
CH 50 4.38 128 50 16.34 128 50 233.89 128

Table 8. Comparison of MPH with CH, considering the space ove rhead and the
time to successfully look up 10, 20 and 250 million keys in the AllTheWeb, URLs-
10 and URLs-37 key sets, respectively.

Data AllTheWeb URLs-10 URLs-37
Structure | a(%) T(s) So(bitsikey) | a(%) T(s) So(bitsikey) | a(%) T(S) So(bits/key)
MPH 100 5.33 2.62 100 16.38 2.62 100 252.65 2.62
CH 20 5.06 320 20 15.79 320 20 222.46 320
CH 30 5.10 213 30 15.92 213 30 227.21 213
CH 40 5.30 160 40 16.07 160 40 229.58 160
CH 50 5.34 128 50 16.17 128 50 231.26 128

Table 9. Comparison of MPH with CH, considering the space ove rhead and the
time to unsuccessfully look up 10, 20 and 250 million keys in t he AllTheWeb,
URLs-10 and URLs-37 key sets, respectively.

4. Conclusions

In this paper we have presented a thorough study of datastescthat are suitable for
indexing internal memory in an efficient way in terms of bgbase and lookup time when
we have a key set that is fixed for a long period of time (i.e taickey set) and each
key is associated with a satellite data. This is widely usethita warehousing and search
engine applications (see [Seltzer 2005] for other examples

It is well known that an efficient way to represent a key seteimis of lookup
time is by using a table indexed by a hash function. For stajcsets it is possible to
pay the price of pre-computing a MPHF to find any key in a tablerie single probe. We
have shown that minimal perfect hashing has a clear advarmagemory usage when
compared to other hashing methods, since there are no emtpigsan its hash table and
thus space overhead is greatly reduced by avoiding the yseiters. This implies in a
gain of O(logn) bits.

In our study, we compared MPHFs with linear hashing, quadtetshing, dou-
ble hashing, dense hashing, cuckoo hashing and sparsenpashe have shown that
MPHFs provide the best tradeoff between space usage anaiddioke among these hash-
ing schemes. As an example, minimal perfect hashing havéter [performance in all
measured aspects when compared to sparse hashing, whinkdmedesigned specifically
for efficient memory usage. Furthermore, if the MPHF can beestin cache, minimal
perfect hashing outperforms linear hashing, quadratibihgsand double hashing in all
aspects when these methods have a hash table occupancy afr3%gher. The same
happens for hash table occupancies greater than or equaddal The MPHF does not fit
in cache. This implies in a significant memory overhead dwedceat number of unused
positions in the hash table.

5. Acknowledgements

We thank the partial support given by INFOWEB Project Grarf@ MCNPqg/CT-INFO
550874/2007-0, and CNPq Grant 30.5237/02-0 (Nivio Zijiani

References

Botelho, F., Pagh, R., and Ziviani, N. (2007). Simple andcspefficient minimal per-
fect hash functions. IProceedings of the 10th Workshop on Algorithms and Data
Structures (WADs’'07)pages 139-150. Springer LNCS vol. 4619.

Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopab., Stata, R., Tomkins,
A., and Wiener, J. (2000). Graph structure in the webmputer Network<33(1):309—-
320.

Czech, Z., Havas, G., and Majewski, B. (1992). An optimab&thm for generating
minimal perfect hash functiongnformation Processing Letterd3(5):257-264.

Ho, Y. (1994). Application of minimal perfect hashing in mamemory indexing. Tech-
nical report, Cambridge, MA, USA.

Hopgood, F. and Davenport, J. (1972). The quadratic hashadethen the table size is
a power of 2.The Computer Journall5(4):314-315.

Knuth, D. E. (1973).The Art of Computer Programming: Sorting and Searchwgj-
ume 3. Addison-Wesley, second edition.

Majewski, B., Wormald, N., Havas, G., and Czech, Z. (1996fawily of perfect hashing
methods.The Computer JournaB9(6):547-554.

Manegold, S., Boncz, P. A., and Kersten, M. L. (2000). Opting database architecture
for the new bottleneck: Memory accedthe VLDB journal 9:231-246.

Okanohara, D. and Sadakane, K. (2007). Practical entropypressed rank/select dic-
tionary. InProceedings of the Workshop on Algorithm Engineering angeErments
(ALENEX’07)

Pagh, R. (2001). Low redundancy in static dictionaries wihstant query timeSIAM
Journal on Computing31(2):353-363.

Pagh, R. and Rodler, F. F. (2004). Cuckoo hashihdlgorithms 51(2):122-144.

Raman, R., Raman, V., and Rao, S. S. (2002). Succinct inteegattionaries with appli-
cations to encoding k-ary trees and multisetsPtaceedings of the thirteenth annual
ACM-SIAM symposium on Discrete algorithms (SODA @2ges 233—-242, Philadel-
phia, PA, USA. Society for Industrial and Applied Mathenoati

Seltzer, M. (2005). Beyond relational databas®SM Queue3(3).

Silverstein, C. (2007). An extremely memory-efficient hasap implementation
(google-sparsehasMt t p: / / code. googl e. com p/ googl e- spar sehash.

Zukowski, M., Héman, S., and Boncz, P. (2006). Architeetoonscious hashing. In
Second DAMON workshop (SIGMOD 2006hicago, USA.

