
Fundamentos da Teoria da Computação 2014-01
Professor: Newton José Vieira DCC/ICEx/UFMG
Monitor: Reinaldo Fortes

Trabalho Prático 02 (TP02) - Algoritmo CYK

- O trabalho é Individual.

- O padrão de entrada e saída deve ser respeitado exatamente como determinado no enunciado.

- Deve ser usada uma das linguagens: C, C++ ou Java.

- A entrega do código fonte e executavel deverá ser feita através do Moodle até o dia 08/05/2014 até 23:55.

- Bom trabalho!

1 Descrição

Seja G = (V,Σ,R,S) uma gramática livre do contexto (GLC) em que V é o conjunto de variáveis, Σ o alfabeto, R
o conjunto de regras e S o símbolo de partida.

O objetivo deste trabalho prático é a implementação do algoritmo CYK, de ordem polinomial, capaz de reconhecer
palavras geradas por uma GLC na forma normal de Chomsky (FNC). O nome desse algoritmo, que data de 1965, tem
as iniciais de seus criadores J. Cocke, D. H. Younger e T. Kasami.

O algoritmo CYK, a partir de uma GLC G na FNC e uma palavra w, realiza uma análise ascendente. Ele inicia
com a palavra w, que se deseja avaliar, e a cada passo tenta deduzir qual regra da gramática leva à geração da palavra
no passo seguinte, obtendo, ao final, uma matriz triangular (M). Caso o símbolo de partida da gramática esteja na
célula no topo da matriz, a palavra pertence à linguagem gerada pela gramática, caso contrário, ela não pertence.

O algoritmo possui variadas aplicações práticas, tais como em análise sintática, em bioinformática, na verificação
de alinhamento de sequências, em linguística, na verificação de estruturas de sentenças e palavras em linguagem
natural, entre outras.

O pseudo-código do algoritmo, que pode ser usado como base para implementação, é apresentado no Algoritmo
1. Contudo, este trabalho também compreende um pequeno esforço da parte do aluno em pesquisar a respeito do
método em outras referências ou na Web. Algumas referências sugeridas:

• Hopcroft, J.E., Motwani, R., Ullman, J.D. Introduction to Automata Theory, Languages and Computation, 2nd
ed., Addison-Wesley, 2001 (Seção 7.4.4, páginas 298 - 302);

• Menezes, P.B. Linguagens Formais e Autômatos, 2a ed., Sagra Luzzatto, 2000 (Seção 3.9.2, páginas 122 - 124);

• Wikipedia: http://en.wikipedia.org/wiki/CYK_algorithm.

1.1 Ideia principal

Em termos informais, este algoritmo considera todas as subpalavras de w e define T [i, j,k] para ser verdadeiro se a
subpalavra a partir de i de comprimento j pode ser gerada a partir da variável Vk. Uma vez consideradas subpalavras de
comprimento 1, ele passa para subpalavras de comprimento 2, e assim por diante. Para subpalavras de comprimento
maior que 1, ele considera todas as possíveis partições da subpalavra em duas partes, e verifica se há alguma produção
A→ BC ∈ R tal que B corresponde à primeira parte e C corresponde à segunda parte. Se assim for, ele registra A
como combinando toda a subpalavra. Quando esse processo for concluído, w é gerada pela gramática se o símbolo de
partida foi registrado para a palavra inteira.

A matriz booleana T é uma representação da matriz triangular M, que é preenchida de baixo para cima com
símbolos variáveis. Como exemplo, seja a gramática definida por: G = {{S,A},{a,b},R,S}, com R = {S→ AA,
S→ AS, S→ b, A→ AS, A→ SA, A→ a}. Deve-se verificar se G gera a palavra abaab.

A Figura 1(A) apresenta o conteúdo da matriz após o primeiro passo do algoritmo. Ao término do primeiro passo,
a linha inferior da matriz é preenchida com todas as variáveis que geram cada símbolo da palavra. Na Figura 1, a
palavra a ser verificada é apresentada logo abaixo da matriz M.

1

Algoritmo 1: Algoritmo CYK.
input : GLC G, palavra w[1...n]
output: SIM, se w ∈ L(G) ou NAO, se w 6∈ L(G)

1 Crie uma matriz booleana T [n,n, |V |] com todas as células em Falso;

2 for i = 1 TO n do
3 for each Vj→ ai ∈ R do
4 T [i,1, j]←Verdadeiro;
5 end
6 end

7 for i = 2 TO n do
8 for j = 1 TO n-i+1 do
9 for k = 1 TO i-1 do

10 for each VA→VBVC ∈ R do
11 if T [j,k,B]∧T [j+ k, i− k,C] then
12 T [j, i,A]←Verdadeiro;
13 end
14 end
15 end
16 end
17 end

18 for each x ∈ S do
19 if T [1,n,x] then
20 Retorne SIM;
21 end
22 end

23 Retorne NAO;

Nos passos seguintes, para preencher as linhas superiores, uma variável A será colocada na matriz M se existem
duas outras variáveis B e C em que:

• A→ BC é uma regra;

• B está à esquerda de C e ambos estão “por baixo” e à direita de A.

As Figuras 1(B) e 1(C), apresentam o segundo e o quinto (e último) passos do algoritmo, respectivamente. Pode-
mos concluir que G gera a palavra abaab, já que o símbolo de partida S encontra-se no topo da matriz M.

Figura 1: Matriz M construída a partir do primeiro, segundo e quinto (e último) passos do algoritmo CYK.

2 Representação

Para simplificar um pouco o formato dos dados de entrada consideramos que: o conjunto de terminais consiste das
letras minúsculas do nosso alfabeto, ou seja, Σ = {a,b, . . . ,z}; o conjunto de variáveis consiste das letras maiúsculas
do nosso alfabeto, ou seja, V = {A,B, . . . ,Z}; e o símbolo S é o símbolo de partida da gramática.

2

2.1 Entrada

Dadas as convenções anteriores, a entrada do programa será constituída de:

• Uma linha contendo a palavra de entrada. Ela deve ter no máximo 50 símbolos.

• Uma linha contendo um inteiro positivo, r, que representa o número de regras da gramática.

• r linhas contendo as regras da gramática. Cada regra deve ter o formato X -> a1 a2 . . . an, em que X ∈V e ai

∈ (V ∪Σ), com cada ai separado de ai+1 por um único espaço.

2.2 Saída

O programa deve retornar apenas o resultado da aplicação do algoritmo dizendo:

• SIM, se a gramática gera a palavra.

• NAO, se a gramática não gera a palavra.

2.3 Exemplos de Entrada e Saída

Entrada Saida
abaab
6
S -> A A
S -> A S
S -> b
A -> A S
A -> S A
A -> a

SIM

Entrada Saida
abbabba
7
S -> S F
S -> a
A -> C C
A -> S S
A -> C S
C -> b
F -> A S

SIM

Entrada Saida
aaabbabaaaabba
8
S -> S F
S -> a
A -> C G
A -> S S
A -> C S
C -> b
F -> A S
G -> C A

NAO

3

