
1

Introdução à Programação

de Computadores

Aula - Tópico 1

Algoritmos e Estruturas de Dados I (DCC/003)

2

• Considere o seguinte problema:

– Determinar o valor de y = seno(1,5).

Problema 1

3

• Para resolver um problema de computação é preciso

escrever um texto.

• Este texto, como qualquer outro, obedece regras de

sintaxe.

• Estas regras são estabelecidas por uma linguagem de

programação.

• Este texto é conhecido como:

Programa

Definições

4

Código binário

• Neste curso, será utilizada a linguagem C.

• A linguagem C é subconjunto da linguagem C++ e, por

isso, geralmente, os ambientes de programação da

linguagem C são denominados ambientes C/C++.

• Um ambiente de programação contém:

– Editor de programas: viabiliza a escrita do programa.

– Compilador: verifica se o texto digitado obedece à sintaxe da

linguagem de programação e, caso isto ocorra, traduz o texto

para uma sequência de instruções em linguagem de máquina.

Definições

5

• Que ambiente de programação iremos utilizar?

– Existem muitos, por exemplo: Microsoft Visual C++,

Borland C++ Builder, Codeblocks e DEV-C++.

• Sugestão: DEV-C++ ou Codeblocks – se quiser gcc!

Definições

6

• Porque o compilador traduz o programa escrito na

linguagem de programação para a linguagem de

máquina?

– Os computadores atuais só conseguem executar instruções que

estejam escritas na forma de códigos binários.

– Um programa em linguagem de máquina é chamado de

programa executável.

Definições

Compilador

0101010110100010011

1000101010111101111

1010100101100110011

0011001111100011100

0101010110100010011

1000101010111101111

1010100101100110011

0011001111100011100

7

• Atenção!
– O programa executável só será gerado se o texto do

programa não contiver erros de sintaxe.

– Exemplo: considere uma string. Ah?! O que é isso?!

Uma sequência de caracteres delimitada por aspas.

– Se isso é uma string e se tivéssemos escrito:

– O compilador iria apontar um erro de sintaxe nesta

linha do programa e exibir uma mensagem tal como:

printf(“y = %f,y);

undetermined string or character constant

Erros de sintaxe

8

• Se o nome do programa é p1.c, então após a

compilação, será produzido o programa

executável p1.exe.

• Executando-se o programa p1.exe, o resultado

será:

Problema

Resolvido!

Erros de sintaxe

9

• Atenção!
– Não basta obter o programa executável!! Será que ele

está correto?

– Se ao invés de:

– Tivéssemos escrito:

– O compilador também produziria o programa p1.exe,

que executado, iria produzir:

Y = sin(1.5);

Y = sin(2.5);

Erros de lógica

10

• Embora um resultado tenha sido obtido, ele não

é correto.

• Se um programa executável não produz os

resultados corretos, é porque ele contém erros

de lógica ou bugs.

• O processo de identificação e correção de erros

de lógica é denominado depuração (debug).

• O nome de um texto escrito em uma linguagem

de programação é chamado de programa-fonte.

Exemplo: o programa p1.c é um programa-fonte.

Erros de lógica

11

• Note que o programa-fonte p1.c começa com as

linhas:

• Todo programa-fonte em linguagem C começa

com linhas deste tipo.

• O que elas indicam?

– Dizem ao compilador que o programa-fonte vai utilizar

arquivos de cabeçalho (extensão .h, de header).

– E daí? O que são estes arquivos de cabeçalho?

– Eles contêm informações que o compilador precisa

para construir o programa executável.

#include <stdio.h>

#include <stdlib.h>

Arquivos de cabeçalho

12

Como assim?

• Observe que o programa p1.c inclui algumas

funções, tais como:

 sin – função matemática seno.

 printf – função para exibir resultados.

• Por serem muito utilizadas, a linguagem C

mantém funções como estas em bibliotecas.

• Atenção! O conteúdo de um arquivo de

cabeçalho também é um texto.

Arquivos de cabeçalho

13

• Ao encontrar uma instrução #include em um

programa-fonte, o compilador traduz este texto

da mesma forma que o faria se o texto tivesse

sido digitado no programa-fonte.

• Portanto, as linhas:

 indicam ao compilador que o programa p1.c

utilizará as instruções das bibliotecas stdio e

stdlib.

#include <stdio.h>

#include <stdlib.h>

Arquivos de cabeçalho

14

• O processo de compilação, na verdade, se dá

em duas etapas:

– Fase de tradução: programa-fonte é transformado em

um programa-objeto.

– Fase de ligação: junta o programa-objeto às instruções

necessárias das bibliotecas para produzir o programa

executável.

Programa

Fonte

Compilador
Programa

Objeto

Ligador
Programa

Executável

Programa

Objeto das

Bibliotecas

Processo de compilação

15

• A próxima linha do programa é:

– Esta linha corresponde ao cabeçalho da função main

(a função principal, daí o nome main).

– O texto de um programa em Linguagem C pode conter

muitas outras funções e SEMPRE deverá conter a

função main.

int main(int argc, char *argv[])

int main(int argc, char *argv[])

Indica o tipo do valor

produzido pela função.

Nome da

Função.
Lista de parâmetros

da função.

Função main

16

• A Linguagem C é case sensitive. Isto é,

considera as letras maiúsculas e minúsculas

diferentes.

• Atenção!

– O nome da função principal deve ser escrito com

letras minúsculas: main.

– Main ou MAIN, por exemplo, provocam erros de

sintaxe.

• Da mesma forma, as palavras int e char, devem

ser escritas com letras minúsculas.

Função main

17

• A solução de um problema de cálculo pode envolver

vários tipos de dados.

• Caso mais comum são os dados numéricos:

– Números inteiros (2, 3, -7, por exemplo).

– Números com parte inteira e parte fracionária (1,234 e 7,83, por

exemplo).

• Nas linguagens de programação, dá-se o nome de

número de ponto flutuante aos números com parte inteira

e parte fracionária.

• Da mesma forma que instruções, os dados de um

programa devem ser representados em notação binária.

• Cada tipo de dado é representado na memória do

computador de uma forma diferente.

Tipos de dados

18

• Existem várias maneiras de representar números

inteiros no sistema binário.

• Forma mais simples é a sinal-magnitude:

– O bit mais significativo corresponde ao sinal e os

demais correspondem ao valor absoluto do número.

• Exemplo: considere uma representação usando

cinco dígitos binários (ou bits).

Decimal

+5

-3

Binário

00101

10011

Desvantagens:

- Duas notações para o zero (+0 e -0).

- A representação dificulta os cálculos.

00101

10011

11000 Soma Que número é esse?

5 – 3 = – 8 ???

Representação de números inteiros

19

• Outra representação possível, habitualmente

assumida pelos computadores, é a chamada

complemento-de-2:

– Para números positivos, a representação é idêntica à

da forma sinal-magnitude.

– Para os números negativos, a representação se dá em

dois passos:

1. Inverter os bits 0 e 1 da representação do número positivo;

2. Somar 1 ao resultado.

– Exemplo:

1
11010

Decimal
+6

-6

Binário
00110

11001 (bits invertidos)

(somar 1)

Representação de números inteiros

20

• Note o que ocorre com o zero:

• E a soma?

Decimal
+5

-3

Binário
00101

11100 + 1 = 11101

1
00000

Decimal
+0

-0

Binário
00000

11111 (bits invertidos)

(somar 1)

Note que o vai-um daqui não é considerado,

pois a representação usa apenas 5 bits.

Somando: 00101

11101

00010 Que corresponde ao número +2!

Representação de números inteiros

21

• Números de ponto flutuante são os números reais

que podem ser representados no computador.

• Ponto flutuante não é um ponto que flutua no ar!

• Exemplo:

– Representação com ponto fixo: 12,34.

– Representação com ponto flutuante: 0,1234 x 102.

• Ponto Flutuante ou Vírgula Flutuante?

• A representação com ponto flutuante segue

padrões internacionais (IEEE-754 e IEC-559).

Números de ponto flutuante

22

• A representação com ponto flutuante tem três

partes: o sinal, a mantissa e o expoente.

• No caso de computadores, a mantissa é

representada na forma normalizada, ou seja, na

forma 1.f, onde f corresponde aos demais bits.

• Ou seja, o primeiro bit sempre é 1.

• Exemplo 1:

 Decimal

+13.25

Binário

1101.01

Binário normalizado

1.10101 x 23

Mantissa Expoente

Números de ponto flutuante

23

• Exemplo 2:

• Existem dois formatos importantes para os

números de ponto flutuante:

– Precisão simples (SP).

– Precisão dupla (DP).

Decimal

+0.25

Binário

0.01

Binário normalizado

1.0 x 2-2

Mantissa Expoente

Números de ponto flutuante

24

• Precisão Simples

– Ocupa 32 bits: 1 bit de sinal, 23 bits para a mantissa e 8

bits para o expoente (representado na notação

excesso-de-127).

– Exemplo:

– O primeiro bit da mantissa de um número de ponto

flutuante não precisa ser representado (sempre 1).

Ponto flutuante

1.10101 x 23

Representação SP

0 10000010 10101000000000000000000

Ponto flutuante

1.0 x 2-2

Representação SP

0 01111011 00000000000000000000000

Números de ponto flutuante

25

• Precisão Simples - Valores especiais

0/0 ou ∞/∞

-3/0

5/0

Números de ponto flutuante

26

• Observações – Precisão Simples:

– Dado que para o expoente são reservados 8

bits, ele poderá ser representado por 256 (28)

valores distintos (0 a 255).

– Usando-se a notação excesso-de-127, tem-se:

• para um expoente igual a -127, o mesmo será

representado por 0 (valor especial! Número Zero).

• para um expoente igual a 128, o mesmo será

representado por 255 (valor especial! Infinito).

– Conclusão, os números normalizados

representáveis possuem expoentes entre -126

e 127.

Números de ponto flutuante

27

• Precisão Dupla

 Ocupa 64 bits: 1 bit de sinal, 52 bits para a

mantissa e 11 bits para o expoente (representado

na notação excesso-de-1023).

• Exemplo: Similar ao abordado para precisão

simples...

Números de ponto flutuante

28

• A solução de um problema pode envolver dados

não numéricos.

• Por exemplo, o programa p1.c inclui strings

(sequências de caracteres delimitadas por

aspas).

Representação de dados não-numéricos

29

• Existem também padrões internacionais para a

codificação de caracteres (ASCII, ANSI,

Unicode).

• A Linguagem C adota o padrão ASCII (American

Standard Code for Information Interchange):

– Código para representar caracteres como números.

– Cada caractere é representado por 1 byte, ou seja,

uma seqüência de 8 bits.

– Por exemplo:

 Caractere Decimal ASCII

‘A’ 65 01000001

‘@’ 64 01000000

‘a’ 97 01100001

Representação de dados não-numéricos

30

• Os dados que um programa utiliza precisam ser

armazenados na memória do computador.

• Cada posição de memória do computador

possui um endereço.

1000 1001 1002 1003

1004 1005 1006 1007

1008 1009 1010 1011

1012 1013 1014 1015

1016 1017 1018 1019

Memória

8 3.25 ‘a’ ‘g’

‘q’ 2 ‘*’ ‘1’

Variáveis

31

• A partir dos endereços, é possível para o

computador saber qual é o valor armazenado

em cada uma das posições de memória.

• Como a memória pode ter bilhões de posições,

é difícil controlar em qual endereço está

armazenado um determinado valor!

• Para facilitar o controle sobre onde armazenar

informação, os programas utilizam variáveis.

• Uma variável corresponde a um nome simbólico

de uma posição de memória.

• Seu conteúdo pode variar durante a execução

do programa.

Variáveis

32

• Exemplo de variável:

A variável y irá armazenar o valor de sin(1.5).

Variáveis

33

• Cada variável pode possuir uma quantidade

diferente de bytes, uma vez que os tipos de

dados são representados de forma diferente.

• Portanto, a cada variável está associado um tipo

específico de dados.

• Logo:

– O tipo da variável define quantos bytes de memória

serão necessários para representar os dados que a

variável armazena.

Variáveis

34

• A Linguagem C dispõe de quatro tipos básicos

de dados. Assim, as variáveis poderão assumir

os seguintes tipos:

Tipo

Tamanho

(bytes)
Valor

char 1
Um caractere (ou um

inteiro de 0 a 127).

int 4 Um número inteiro.

float 4
Um número de ponto

flutuante (SP).

double 8
Um número de ponto

flutuante (DP).

Variáveis

35

• Dentro do programa, as variáveis são

identificadas por seus nomes.

• Portanto, um programa deve declarar todas as

variáveis que irá utilizar.

• Atenção!

– A declaração de variáveis deve ser feita antes que a

variável seja usada, para garantir que a quantidade

correta de memória já tenha sido reservada para

armazenar seu valor.

Variáveis

36

• Escrever um programa em Linguagem C

corresponde a escrever o corpo da função

principal (main).

• O corpo de uma função sempre começa com

abre-chaves { e termina com fecha-chaves }.

Corpo da

função

Escrevendo um programa em C

37

• A primeira linha do corpo da função principal do

programa p1.c é:

float y;

Escrevendo um programa em C

38

• Esta linha declara uma variável y para armazenar

um número de ponto flutuante (SP).

• A declaração de uma variável não armazena valor

algum na posição de memória que a variável

representa.

• Ou seja, no caso anterior, vai existir uma posição

de memória chamada y, mas ainda não vai existir

valor armazenado nesta posição.

Escrevendo um programa em C

39

• Um valor pode ser atribuído a uma posição de

memória representada por uma variável pelo

operador de atribuição = .

• O operador de atribuição requer à esquerda um

nome de variável e à direita, um valor.

• A linha seguinte de p1.c atribui um valor a y:

Escrevendo um programa em C

40

• No lado direito do operador de atribuição existe

uma referência à função seno com um parâmetro

1.5 (uma constante de ponto flutuante

representando um valor em radianos.)

Escrevendo um programa em C

41

• Em uma linguagem de programação chamamos o

valor entre parênteses da função, neste exemplo,

o valor 1.5, de parâmetro da função.

• Da mesma forma, diz-se que sin(1.5) é o valor da

função sin para o parâmetro 1.5.

• O operador de atribuição na linha y = sin(1.5)

obtém o valor da função (0.997495) e o armazena

na posição de memória identificada pelo nome y.

• Esta operação recebe o nome de: atribuição de

valor a uma variável.

Escrevendo um programa em C

42

• Atenção: O valor armazenado em uma variável

por uma operação de atribuição depende do tipo

da variável.

• Se o tipo da variável for int, será armazenado um

valor inteiro (caso o valor possua parte

fracionária, ela será desprezada).

• Se o tipo da variável for float ou double, será

armazenado um valor de ponto flutuante (caso o

valor não possua parte fracionária, ela será nula).

Escrevendo um programa em C

43

• Exemplo:

– Considere as seguintes declarações:

– Neste caso, teremos:

int a;

float b;

Operação de atribuição Valor armazenado

a = (2 + 3) * 4 20

b = (1 – 4) / (2 - 5) 1.0

a = 2.75 + 1.12 3

b = a / 2.5 1.2

Escrevendo um programa em C

44

• As próximas linhas do programa p1.c são:

• A função printf faz parte da biblioteca stdio.

printf(“y = %f”,y);

printf(“\n”);

Escrevendo um programa em C

45

• A função printf é usada para exibir resultados

produzidos pelo programa e pode ter um ou mais

parâmetros.

• O primeiro parâmetro da função printf é sempre

uma string, correspondente à sequência de

caracteres que será exibida pelo programa.

printf(“y = %f”,y);

printf(“\n”);

Escrevendo um programa em C

46

• Essa sequência de caracteres pode conter alguns
tags que representam valores. Estes tags são
conhecidos como especificadores de formato.

• Um especificaor de formato começa sempre com
o símbolo %. Em seguida, pode apresentar uma
letra que indica o tipo do valor a ser exibido.

• Assim, printf(“y = %f”,y) irá exibir a letra y,
um espaço em branco, o símbolo =, um espaço
em branco, e um valor de ponto flutuante.

printf(“y = %f”,y);

printf(“\n”); Especificador

de formato

Escrevendo um programa em C

47

• Veja:

Valor

armazenado

em y.

Escrevendo um programa em C

48

• Na função printf, para cada tag existente no

primeiro parâmetro, deverá haver um novo

parâmetro que especifica o valor a ser exibido.

• A linguagem C utiliza o símbolo \ (barra invertida)

para especificar alguns caracteres especiais:

printf(“a = %d, b = %c e c = %f”,a,’m’,(a+b));

Caractere Significado

\a Caractere (invisível) de aviso sonoro.

\n Caractere (invisível) de nova linha.

\t Caractere (invisível) de tabulação horizontal.

\’ Caractere de apóstrofo

Escrevendo um programa em C

49

• Observe a próxima linha do programa p1.c:

• Ela exibe “o caractere (invisível) de nova linha”.

Qual o efeito disso? Provoca uma mudança de

linha! Próxima mensagem será na próxima linha.

printf(“\n”);

Escrevendo um programa em C

50

• Observe agora a próxima linha do programa:

• Ela exibe a mensagem “Pressione qualquer tecla

para continuar...” e interrompe a execução do

programa.

system(“PAUSE”);

Escrevendo um programa em C

51

• A execução será retomada quando o usuário

pressionar alguma tecla.

• A última linha do programa p1.c é:

return 0;

Escrevendo um programa em C

52

• É usada apenas para satisfazer a sintaxe da

linguagem C.

• O comando return indica o valor que uma função

produz.

• Cada função, assim como na matemática, deve

produzir um único valor.

• Este valor deve ter o mesmo tipo que o declarado

para a função.

Escrevendo um programa em C

53

• No caso do programa p1.c, a função principal foi

declarada como sendo do tipo int. Ou seja, ela

deve produzir um valor inteiro.

• A linha return 0; indica que a função principal irá

produzir o valor inteiro 0.

Escrevendo um programa em C

54

• Mas e daí?!! O valor produzido pela função

principal não é usado em lugar algum!

• Logo, não faz diferença se a última linha do

programa for:

 return 0;

return 1;

return 1234;

ou

Escrevendo um programa em C

55

• Neste caso, o fato de a função produzir um valor

não é relevante.

• Neste cenário, é possível declarar a função na

forma de um procedimento.

• Um procedimento é uma função do tipo void, ou

seja, uma função que produz o valor void (vazio,

inútil, à-toa). Neste caso, ela não precisa do

comando return.

Escrevendo um programa em C

56

• Note que os parâmetros da função main também

não foram usados neste caso.

• Portanto, podemos também indicar com void que

a lista de parâmetros da função principal é vazia.

• Assim, podemos ter outras formas para p1.c:

Escrevendo um programa em C

57

• Uma conta poupança foi aberta com um depósito

de R$500,00. Esta conta é remunerada em 1% de

juros ao mês. Qual será o valor da conta após três

meses?

Problema 2

58

• Executando-se o programa, obtém-se:

• Após 3 meses: R$ 515,15

Problema 2

59

• No programa p2.c, note que o tag usado na

função printf é %.2f em vez de %f.

• Neste caso, o especificador de formato inclui

também o número de dígitos desejados após o

“ponto decimal”.

Atenção!

• É de extrema importância o uso de ponto-e-

vírgula após cada instrução.

• Com os pontos-e-vírgulas, o compilador sabe

exatamente onde termina cada uma das

instruções.

Problema 2

