
Funções

Algoritmos e Estruturas de Dados I (DCC/003)

Funções

•  Funções definem operações que são
usadas frequentemente

•  Funções, na matemática, requerem
parâmetros de entrada, e definem um
valor de saída

Funções - Exemplos

•  Função quadrática y = ax2+bx+c
– Entrada: x
– Saída: y

Funções - Exemplos

•  Função z = sin(x2+y2)/(x2+y2)
– Entrada: x, y
– Saída: z

Funções na programação

•  Em linguagens imperativas, TODOS os
programas usam funções

•  No C, o programa SEMPRE começa
executando a função main.

#include <stdio.h>

int main(void)
{
 puts("Olá, Mundo!");
 return 0;
}

Funções

•  Usamos funções para evitar de escrever
várias vezes o mesmo código
– Código que será executado várias vezes em

um programa, mas com valores diferentes

– Operações comuns a um ou mais programas

Funções na programação

•  Nas linguagens de programação, as
funções possuem:

– Zero ou mais parâmetros de entrada, com ou
sem os seus tipos

– Zero ou mais parâmetros de saída, com ou
sem os seus tipos

– Código a ser executado pela função

Funções - C

•  Em C, definimos a função por:
– Zero ou mais parâmetros de entrada, com os

seus tipos
– Um parâmetro de saída com tipo, sendo que

o tipo pode ser “sem saída”
– Código da função

•  Ao chamarmos a função, devemos passar
valores para TODOS os parâmetros, sem
exceção (não é o caso no C++…)

Funções - C

•  Declarando uma função

1. tipo nome(tipo par1, tipo
par2, …)

2. {
3.  …
4.  …
5.  return VALOR;
6. }

Funções - C

•  tipo define como será o retorno da função:
–  Inteiro: int
–  Caractere: char
–  Real: float, double
– ….

•  Devemos indicar o valor de saída (guardado em
uma variável, ou uma constante) usando o
comando return.

•  Funções podem não retornar saída: void

C - Exemplo

1. double logistica(double x) {
2.  return 1.0/

(1.0+exp(-1.0*x));
3. }

Nome da função

C - Exemplo

1. double logistica(double x) {
2.  return 1.0/

(1.0+exp(-1.0*x));
3. }

Variável de entrada

C - Exemplo

1.  double logistica(double x) {
2.  return 1.0/

(1.0+exp(-1.0*x));
3. }

Saída do tipo double

C - Exemplo

1. double logistica(double x) {
2.   return 1.0/

(1.0+exp(-1.0*x));
3.  }

Código a ser executado: marcação de início e fim
de bloco usando chaves

C - Exemplo

1. double logistica(double x) {
2.  return 1.0/

(1.0+exp(-1.0*x));
3. }

Saída: “Retorne” o valor da expressão a seguir

C – Exemplo: usando funções
1. double logistica(double x) {
2.  return 1.0/

(1.0+exp(-1.0*x));
3. }
4. 
5. int main() {
6.  double entrada = 10.0;
7.  double saida =

logistica(entrada);
8. } Variável saida recebe o valor da função

Exemplo 2

int sep (int v[], int p, int r) {
 int w[1000], i = p, j = r, c = v[p], k;
 for (k = p+1; k <= r; ++k)
 if (v[k] <= c) w[i++] = v[k];
 else w[j--] = v[k];
 // agora i == j
 w[i] = c;
 for (k = p; k <= r; ++k) v[k] = w[k];
 return i;
}

Função sep: três parâmetros, retorna um inteiro

Exemplo 3 – usando o main

•  A função main é especial:
– É a primeira a ser chamada no programa

•  Todo programa tem um!

– Seu retorno indica se o programa executou
corretamente (retorno 0) ou não (retorno != 0)

– Seus parâmetros, quando existem, são os
parâmetros passados para o programa
quando foi executado

Exemplo 3 – usando o main

1.  #include <stdio.h>
2. 
3.  int main(int argc, char **argv) {
4.  int i;
5.  for(i=0;i<argc;i++) {
6.  printf(“%s”,argv[i]);
7.  }
8.  return 0;
9.  }

Exemplo 3 – usando o main

•  O programa imprime todos os argumentos
recebidos pelo main

•  Útil para mudar o funcionamento do seu
programa passando parâmetros

Funções na programação

•  Em linguagens de programação, funções
podem não ter parâmetros de entrada ou
de saída: o importante é o efeito da
execução da função

Funções sem retorno – C

•  Funções sem retorno devem ter o tipo de
retorno void.

•  Exemplo: função para imprimir mensagem
de boas-vindas do programa

1. void saudacao() {
2.  printf(“Ola usuario! Digite o comando que quer

executar, ou ? para ajuda.”);
3. }
4. int main() {
5.  saudacao();
6.  …
7.  return 0;
8. }

Porque não retornar valor?

•  Porque o importante pode ser a ação
colateral da função, e não o seu valor de
saída:
–  Impressão de uma mensagem
– Ligar/desligar um componente do hardware
– …

Funções: escopo de variáveis

•  Variáveis podem ser acessadas somente
dentro do seu escopo

•  No C, o escopo é definido do momento da
declaração até o fim do bloco

•  No C, uma variável declarada dentro de
um bloco de laço vive somente uma
iteração do laço

Funções: escopo de variáveis

•  int teste(int x) {
•  …
•  }

•  int main() {
•  int y;
•  for(int i=0;i<10;i++) {
•  if(i < 5) {
•  int a;
•  } else {
•  int b;
•  }
•  }
•  }

Funções: escopo de variáveis

•  int teste(int x) {
•  …
•  }

•  int main() {
•  int y;
•  for(int i=0;i<10;i++) {
•  if(i < 5) {
•  int a;
•  } else {
•  int b;
•  }
•  }
•  }

Escopo de x

Funções: escopo de variáveis

•  int teste(int x) {
•  …
•  }

•  int main() {
•  int y;
•  for(int i=0;i<10;i++) {
•  if(i < 5) {
•  int a;
•  } else {
•  int b;
•  }
•  }
•  }

Escopo de y

Funções: escopo de variáveis

•  int teste(int x) {
•  …
•  }

•  int main() {
•  int y;
•  for(int i=0;i<10;i++) {
•  if(i < 5) {
•  int a;
•  } else {
•  int b;
•  }
•  }
•  }

Escopo de i

Funções: escopo de variáveis

•  int teste(int x) {
•  …
•  }

•  int main() {
•  int y;
•  for(int i=0;i<10;i++) {
•  if(i < 5) {
•  int a;
•  } else {
•  int b;
•  }
•  }
•  }

Escopo de a

Funções: escopo de variáveis

•  int teste(int x) {
•  …
•  }

•  int main() {
•  int y;
•  for(int i=0;i<10;i++) {
•  if(i < 5) {
•  int a;
•  } else {
•  int b;
•  }
•  }
•  }

Escopo de b

Funções e escopo

•  As variáveis locais (variáveis de uma
função) são armazenadas em um modelo
de pilha:

•  Cada nova variável criada é adicionada ao topo da
pilha

•  Ao terminar o bloco, eliminamos todas as variáveis
daquele bloco da pilha

– O mesmo vale para chamada de funções

Módulos

Módulo

•  Um módulo é uma forma de organizar um
programa grande

•  Dividimos o programa em módulos, onde
cada um deles possui um conjunto de
tarefas bem específico:
– Módulo de entrada/saída
– Módulo de gerenciamento de memória
– Módulo de cálculo
– ….

Módulo

•  Módulos terão uma ou mais funções, que
desta forma realizam operações similares.
– Módulo de operações matemáticas

– Módulo de operações sobre o tempo

– Módulo para entrada e saída

Exemplos de módulos em C

– Módulo de operações matemáticas (log, pow,
sqrt, …)

– Módulo de operações sobre o tempo
(gettimeofday, localtime, ….)

– Módulo para entrada e saída (printf, scanf,
gets, getchar, …)

Módulos e bibliotecas

•  Módulos muito úteis podem ser
empacotados em bibliotecas, para que
possam ser utilizados em outros
programas

Módulos e bibliotecas - C

•  Em C, carregamos módulos e bibliotecas com o
comando #include

1.  #include<stdio.h>
2.  #include<math.h>
3.  #include “meumodulo.h”

•  O uso de <> ou “ ” depende da localização do módulo/
biblioteca
–  No diretório de bibliotecas do sistema: <>
–  Em outro lugar (por exemplo, no diretório onde está o meu

programa) : “ “

C - Definindo um módulo

•  O módulo consiste em:
– Arquivo de cabeçalhos de funções e

declaração de tipos de dados (extensão .h)
– Arquivo com o código das funções

(extensão .c)

C - Definindo um módulo

Arquivo simples.h
1. double media (double

a, double b);
2. 
3.  double dif(double

a, double b);
4. 

Arquivo simples.c
1. #include “simples.h”
2. 
3. double media(double

a, double b) {
4.  return (a+b)/2;
5. }
6. 
7. double dif(double a,

double b) {
8.  return a – b;
9. }

Bibliotecas padrão do C

•  Muitas funções comuns:
– stdio.h – Entrada e saída
– Math.h – Funções matemáticas mais

complexas
– stdlib.h – gerenciamento do programa: alocar

memória, sair, …
– sys/time.h – Gerenciar o tempo: imprimir

datas, ver a hora/data atual…

Bibliotecas padrão do C

•  Podemos encontrar a lista de funções em
manuais, livros e em sites Web, i.e.:
– http://www.acm.uiuc.edu/webmonkeys/book/

c_guide/

Bibliotecas padrão do C – Math.h
•  A math.h é especial: precisa de um

parâmetro na compilação

•  gcc codigo.c -lm -o programa

•  -l”nome” indica que queremos que o
programa “incorpore” código de um módulo
externo.

•  TODA biblioteca precisa do –l”nome”,
EXCETO as funções padrão do C

