
Primeira Lista de Exerćıcios de PAA - 2019.1
Profs. Vińıcius Fernandes dos Santos e Sebastián Urrutia

1. Leia os caṕıtulos 1 a 5 e o caṕıtulo 17 do Cormen.

2. Considere o algoritmo de ordenação descrito abaixo. Esse algoritmo recebe um vetor de números inteiros
A[1..n] distribúıdos aleatoriamente e imprime os números desse vetor em ordem crescente.

SelectionSort(int A[1..n]) {

for(i=1; i<n; i++)

midx = findMinimum(A, i);

swap(A[midx], A[i]);

print(A);

}

findMinimum(int A[1..n], int idx) {

min = idx;

for(j=idx+1; j<=n; j++)

if(A[min] > A[j])

min = j;

return min;

}

(a) Utilizando invariantes de loop, mostre que esse algoritmo funciona.

(b) Qual é a função de complexidade do número de comparações de elementos no melhor e pior caso?

3. Considere o algoritmo iterativo mostrado abaixo que encontra o maior e o menor elemento em um vetor
A[1..n]. Considere ainda que os n elementos estão distribúıdos aleatoriamente no vetor.

MaxMin(int A[1..n]){

max = A[1];

min = A[1];

for (i=2; i<=n; i++)

if (A[i]>max) max = A[i];

else if(A[i]<min) min = A[i];

print(min,max)

}

(a) Qual é a função de complexidade do número de comparações de elementos no melhor e pior caso?

(b) Utilizando análise probabiĺıstica, compute o número de comparações de elementos do vetor que serão
realizadas no caso médio.

(c) Implemente um algoritmo recursivo MaxMinRec usando o paradigma “dividir para conquistar” para
resolver esse mesmo problema. (dica: modifique o mergesort). A complexidade do seu algoritmo
deve ser inferior a n log(n).

(d) Qual é a complexidade do seu algoritmo? Para isso, determine e resolva a sua equação de recorrência.

4. Sejam f(n), g(n) duas funções assintóticas positivas. Prove que as afirmativas abaixo são verdadeiras ou
falsas, usando para isso as definições das notações assintóticas ou contra exemplos.

(a) A relação Θ é simétrica, ou seja g(n) = Θ(f(n)) se somente se f(n) = Θ(g(n)).

(b) f(n) = O(f(n/2))

(c) (n + a)b = Θ(nb)

(d) Ω(f(n) + g(n)) = max(f(n), g(n))

(e) Considerando que f(n) = ω(g(n)) então f(n) + g(n) = Ω(g(n))

5. Encontre um limite assintótico firme para as equações de recorrência abaixo. Para cada uma delas, você
deve encontrar a complexidade e demonstrar que ela está correta utilizando o método da substituição.
Em seguida, verifique que seu resultado está correto usando o teorema mestre. Considere T (1) = 1.

(a) T (n) = T (n/2) + 1



(b) T (n) = T (n− 1) + n2

(c) T (n) = 4T (n/2) + n

(d) T (n) = T (9n/10) + n

6. Considere o seguinte problema: dado um vetor A[1..n], queremos determinar a maior diferença d =
A[i]−A[j] tal que d seja par, para todos os posśıveis valores de i e j.

(a) Escreva um algoritmo para resolver o problema acima, sem ordená-lo;

(b) Analise a complexidade do seu algoritmo. Forneça um limite justo, utilizando a notação Θ;

(c) Assumindo que o vetor está ordenado inicialmente, é posśıvel resolver este problema de forma mais
eficiente. Forneça um algoritmo de tempo linear para resolver este problema e mostre que ele está
correto.

Exerćıcios Extras (Possivelmente mais dif́ıceis, para ajudar na prepapração para a prova, mas que não
devem ser entregues)

1. Resolva a recorrência T (n) = 3T (
√
n) + log n.

2. Mostre como ordenar n inteiros no intervalo [1, k] em tempo linear O(n + k).

3. Mostre como ordenar n inteiros no intervalo [1, n2] em tempo linear O(n).

4. Mostre que para fazer o merge de duas listas com n elementos é necessário realizar pelo menos 2n − 1
comparações no pior caso.

5. Seja uma matriz quadrada A com n2 números inteiros que satisfaz as seguintes propriedades:

• A[i, j] ≤ A[i + 1, j] para 1 ≤ i ≤ n− 1 e 1 ≤ j ≤ n;

• A[i, j] ≤ A[i, j + 1] para 1 ≤ i ≤ n e 1 ≤ j ≤ n− 1;

Dado um elemento x, descreva um procedimento eficiente para determinar se x pertence a A ou não.
Analise a complexidade do algoritmo proposto. Mostre que este problema tem complexidade Θ(n).


