DIJKSTRA GRAPHS

Lucila S. Bento1 \hspace{1cm} Davidson Boccardo2

Raphael S. Machado2 \hspace{1cm} Flávio Miyazawa3

Vinicius G. Sá1 \hspace{1cm} Jayme L. Szwarcfiter1,2

1 Universidade Federal do Rio de Janeiro
2 Instituto Nacional de Metrologia, Qualidade e Tecnologia
3 Universidade de Campinas
Computer programming before 1970

- Elegancy: not a main issue
- No general methodology
- No structure
- Main computer languages: machine code, assembler, FORTRAN, COBOL
- Main goal: Fit the program into memory
A computer program
Structured programming appears

- E. W. Dijkstra, Go to statements considered harmful (1968)
- E. W. Dijkstra, Notes on structured programming (1972)
Structured programming spreads

- Kosaraju (1974), D-charts
- McCabe (1976), representation using graphs
- Applying structured programming to the formulation of algorithms
 - Henderson and Snowdon (1972)
 - Knuth and Szwarcfiter (1974)
Structured programming takes over

With the time became a general technique for the formulation of algorithms
A natural question

- How to tell if a given algorithm is structured?
 - Apparently not yet considered.

- How to tell if two structured algorithms have a similar structure (syntax)?
 - Apparently not yet considered.
Our proposal

- Introduce a class of graphs which corresponds to structured algorithms, named **Dijkstra graphs**.
- Answer the question of recognizing structured algorithms (i.e. Dijkstra graphs).
- Answer the question whether two structured algorithms are similar (i.e. solving the isomorphism problem for Dijkstra graphs).

The proposed algorithms for recognition and isomorphism of Dijkstra graphs have both linear time complexity.
Contents

1. Basis of structured programming
2. Dijkstra graphs
3. Recognition of Dijkstra graphs
4. Isomorphism of Dijkstra graphs
5. Generalization
6. Applications

Three types of statements:

Sequence:
Basis of Structured Programming

Selection

\[
\text{IF } C \text{ THEN } P_1 \text{ ELSE } P_2
\]
Basis of Structured Programming

Selection:

CASE C OF P₁, ..., Pₖ
Basis of Structured Programming

Iteration

WHILE C DO P

REPEAT P UNTIL C
Our Problem

Given a computer program (flowcharts) is it structured?

Approach: graph theory
Flow graphs and reducible graphs

- A flow graph is a directed graph G containing one source $s(G)$

- A reducible graph is a flow graph G such that every cycle C contains a unique entry point, for paths starting in $s(G)$
Flow graphs and reducible graphs

- Every algorithm (structured or not) corresponds to a flow graph.
- Every structured algorithm corresponds to a reducible graphs.
Reducible graphs

- Efficient Recognition: Tarjan (1974)
- Useful characterization: A graph G is reducible if and only if any DFS of G, starting from $s(G)$ determines the same set of cycle edges.
A statement graph is a directed graph H, satisfying

- Each vertex is labelled as regular (R) or expansive (X)
- H belongs to one of the following classes:
 - trivial graph
 - sequence graph
 - if graph
 - if-then-else graph
 - p-case graph, $p \geq 3$
 - while graph
 - repeat graph
Statement graphs

Note: All single source-sink
Statement graphs

Note: All single source-sink
Closed subgraphs

Let H, single source-sink subgraph of G

H closed when

1. $v \in V(H) \setminus s(H) \Rightarrow N^-[v] \subseteq V(H)$

2. $v \in V(H) \setminus t(H) \Rightarrow N^+[v] \subseteq V(H)$

3. $vs(H)$ is a cycle edge $\Rightarrow v \in N^+(s(H))$
Prime subgraphs

Let H be an induced subgraph of G. H is prime when H is

1. isomorphic to some non-trivial statement graph
2. closed

NOTE: The while and repeat graphs might be isomorphic as statement graphs, but distinguishable as prime subgraphs, even with no labels.
Expansion operation

Let G, H graphs, $V(G) \cap V(H) = \emptyset$, H single source-sink, $v \in V(G)$.

The expansion of v into H consists of replacing v by H, in G, such that

- $N_G^{-}(s(H)) := N_G^{-}(v)$
- $N_G^{+}(t(H)) := N_G^{+}(v)$
- Remaining adjacencies unchanged
Contraction operation

G graph, H prime subgraph of G

The contraction of H into a single vertex:

- Identifies the vertices if H into the source $s(H)$ of H
- Remove possible parallel edges or loops.
A Dijkstra graph (DG) is a graph with vertices labelled as X or R, recursively defined as:

1. A trivial statement graph is a DG

2. Any graph obtained from a DG, by expanding some X-vertex of it into a statement graph is also a DG. Furthermore, after expanding an X-labelled vertex into H, the vertex $s(H)$ is labelled as R.
Example
Example: Binary search

```c
void main()
{
    int c, first, last, middle, n, search, array[100];
    scanf("%d", &n); // number of elements
    c = 0;
    while (c < n){
        scanf("%d", &array[c]);
        c++;
    }
    scanf("%d", &search); // value to find
    first = 0; last = n - 1; middle = (first + last)/2;
    while( array[middle] != search && first <= last ){
        if ( array[middle] < search ){
            first = middle + 1;
            middle = (first + last)/2;
        } else{
            last = middle - 1;
            middle = (first + last)/2;
        }
    }
    if (item == a[mid]) {
        printf("Binary search successful!!\n");
    } else {
        printf("Search failed!\n");
    }
}```
Theorem 1 A graph $G$ is a DG if and only if there is a sequence of graphs $G_0, \ldots, G_k$ each of them having the vertices labelled as X or R, such that

1. $G_0$ is the trivial graph, with the vertex labelled X
2. $G_k \cong G$
3. $G_i$ is obtained from $G_{i-1}$, $i \geq 1$, by expanding some X-vertex of it into a non-trivial statement graph, whose source $s(H)$ receives label R.

Still: How to recognize?
Basic properties

Lemma 1 Let $G$ be a DG. Then

1. $G$ contains some prime subgraph
2. $G$ is single a source-sink graph
3. $G$ is a reducible flow graph
Independence

\( \mathcal{H}(G) = \) set of non-trivial prime subgraphs of \( G \),

Let \( H, H' \in \mathcal{H} \). \( H, H' \) are independent when:

1. \( V(H) \cap V(H') = \emptyset \), or
2. \( V(H) \cap V(H') = \{v\} \), where
   \[ v = s(H) = t(H'), \text{ or } v = s(H') = t(H) \]
Independent primes

Lemma 2  Let $H, H'$ be two distinct prime subgraphs of some graph $G$. Then $H, H'$ are independent.
**Images**

$G$ graph, 
$\mathcal{H}(G) = \text{set of non-trivial prime subgraphs of } G$, 
$H \in \mathcal{H}(G)$ 
$G \downarrow H = \text{graph obtained from } G \text{ by contracting } H$

Image of a vertex: 
For $v \in V(G)$, the image of $v$ in $G \downarrow H =$

$$I_{G\downarrow H}(v) = \begin{cases} 
    v, & \text{if } v \not\in V(H) \\
    s(H), & \text{otherwise.}
\end{cases}$$
Images

Image of a subset of vertices:
For \( V' \subseteq V(G) \), the (subset) image of \( V' \) in \( G \downarrow H = \)

\[
I_{G\downarrow H}(V') = \cup_{v \in V'} I_{G\downarrow H}(v)
\]

Image of subgraph:
For \( H' \subseteq G \), the (subgraph) image of \( H' \) in \( G \downarrow H = \)

\[
I_{G\downarrow H}(H') = \text{subgraph induced in } G \downarrow H \text{ by the sub-
set of vertices } I_{G\downarrow H}(V(H'))
\]
Preservation of Primes

$G$, arbitrary graph
$H, H' \in \mathcal{H}(G), H \neq H'$.

**Lemma 3** $I_{G \downarrow H}(H') \in \mathcal{H}(G \downarrow H)$
Commutative law

Lemma 4 \( H, H' \in \mathcal{H}(G) \)

\[
(G \downarrow H) \downarrow (I_{G\downarrow H}(H')) \cong (G \downarrow H') \downarrow (I_{G\downarrow H'}(H))
\]
Contractile sequences

A sequence of graphs $G_0, \ldots, G_k$ is a contractile sequence for a graph $G$, when

1. $G \cong G_0,$

2. $G_{i+1} \cong G_i \downarrow H_i,$ for some $H_i \in \mathcal{H}(G_i), i < k.$ Call $H_i$, the contracting prime of $G_i$.

$G_0, \ldots, G_k$ is maximal when $\mathcal{H}(G_k) = \emptyset$.

In particular, if $G_k$ is the trivial graph then $G_0, \ldots, G_k$ is maximal.
Iterated images

$G_0, \ldots, G_k$, contractile sequence of $G$

$H_j$, contracting prime of $G_j$

(i.e. $G_{j+1} \cong G_j \downarrow H_j$)

For $H'_j \subseteq G_j$, the iterated image of $H'_j$ in $G_q$, $q \geq j$ is

$$I_{G_q}(H'_j) = \begin{cases} 
H'_j, & \text{if } q = j \\
I_{G_q}(I_{G_{j+1}}(H'_j)), & \text{otherwise.}
\end{cases}$$
Main characterization

Theorem 2 Let $G$ be an arbitrary graph, with $G_0, \ldots, G_k$ and $G'_0, \ldots, G'_{k'}$ two contractile sequences of $G$. Then $G_k$ and $G'_{k'}$ are isomorphic. Furthermore, $k = k'$.

Notes:
1) Leads to a greedy recognition algorithm.
2) The input graph $G$ has no labels.
\[ G_{j+1} \cong G_h \downarrow H_j \text{ and } G'_{j+1} \equiv G_h \downarrow H_j \]

\[ G_0 \cong G'_0, G_1 \cong G'_1, \ldots, G_i \cong G'_i, G_{i+1} \not\cong G'_{i+1} \Rightarrow \\
H_0 \equiv H'_0, H_1 \equiv H'_1, \ldots, H_i \not\equiv H'_i \]
Corollary 1  Let $G$ be an arbitrary graph, and $G_0, \ldots, G_k$ a contractile sequence of it. Then $G$ is a DG if and only if $G_k$ is a trivial graph.
Bottom-up contractile sequences

- $G$, reducible graph
- $G_0, \ldots, G_k$, contractile sequence $\mathcal{C}$ of $G$
- $H_i$ the contracting prime of $G_i$, $0 \leq i < k$
- $\mathcal{C}$ is a bottom-up (contractile) sequence of $G$ when each contracting prime $H_i$ satisfies: $s(H_i)$ is not a descendant of $s(H)$, for any prime $H \neq H_i$ of $G_i$. 


Generating primes by contractions

Contracting a prime $H$ of $G$ may generate a (new) prime $H'$ of $G \downarrow H$. 

![Diagram showing contraction of primes $H$ and $H'$]
Relation between generator and generated primes:

**Lemma 5** \(G, \text{ reducible graph}\)
\(H \in \mathcal{H}(G), H' \in \mathcal{H}(G \downarrow H) \setminus \mathcal{H}(G), v = s(H).\)
*Then \(v\) is a descendant of \(s(H')\) in \(G \downarrow H.\)*
Recognition Algorithm

- $G$, reducible graph
- Iteratively, find a lowest vertex $v$ of $G$, s.t.
- $v$ is the source of a prime subgraph $H$ of $G$
- then contract $H$.
- Stop when no primes exist any more.

The initial graph is DG iff the final is trivial
The algorithm

\( G \), arbitrary flow graph (no labels)
\( E_C \), set of cycle edges of a DFS of \( G \), starting at \( s(G) \)
\( v_1, \ldots, v_n \), topological sorting of \( G - E_C \)

\( i := n \)

while \( i \geq 1 \) do

    if \( G \) is the trivial graph
        then return YES, stop

    if \( v_i \) is the source of a prime subgraph \( H \) of \( G \)
        then \( G := G \downarrow H \)

    \( i := i - 1 \)

return NO, stop
Avoiding to recognize reducible graphs

Lemma 6  Let $G$ be an arbitrary flow graph. If the algorithm recognizes $G$ as a Dijkstra graph then necessarily $G$ is a reducible graph.
Complexity

- Topological sorting: $O(m)$
- Deciding if vertex $v_i$ is the source of a prime: $O(|N^+(v_i)|)$
- There can be $O(n)$ primes
- Contracting a prime: $O(|N^+(v_i)|)$
- Each edge is traversed only a constant number of times, overall
- Complexity: $O(m)$
Bounding the size of a DG

**Lemma 7** Let $G$ be a DG graph. Then $m \leq 2n - 2$.

Consequence:
Complexity of the recognition algorithm:
$O(n)$
```c
void main()
{
 int c, first, last, middle, n, search, array[100];
 scanf("%d", &n); // number of elements
 c = 0;
 while (c < n)
 {
 scanf("%d", &array[c]);
 c++;
 }
 scanf("%d", &search); // value to find
 first = 0; last = n - 1; middle = (first + last) / 2;
 while (array[middle] != search && first <= last)
 {
 if (array[middle] < search)
 {
 first = middle + 1;
 middle = (first + last) / 2;
 }
 else
 {
 last = middle - 1;
 middle = (first + last) / 2;
 }
 }
 if (item == array[mid])
 {
 printf("Binary search successful!\n")
 }
 else
 {
 printf("Search failed! \n")
 }
}
```
void main()
{
    int c, first, last, middle, n, search, array[100];
    scanf("%d", &n); // number of elements
    c = 0;
    while (c < n){
        scanf("%d", &array[c]);
        c++;
    }
    scanf("%d", &search); // value to find
    first = 0; last = n - 1; middle = (first + last) / 2;
    while( array[middle] != search && first <= last ){
        if ( array[middle] < search ){
            first = middle + 1;
            middle = (first + last) / 2;
        } else{
            last = middle - 1;
            middle = (first + last) / 2;
        }
    }
}

void main()
{
    int c, first, last, middle, n, search, array[100];
    scanf("%d", &n); // number of elements
    c = 0;
    while (c < n){
        scanf("%d", &array[c]);
        c++;
    }
    scanf("%d", &search); // value to find
    first = 0; last = n - 1; middle = (first + last) / 2;
    while( array[middle] != search && first <= last ){
        if ( array[middle] < search ){
            first = middle + 1;
            middle = (first + last) / 2;
        } else{
            last = middle - 1;
            middle = (first + last) / 2;
        }
    }
}
void main()
{
    int c, first, last, middle, n, search, array[100];
    scanf("%d", &n); // number of elements
    c = 0;
    while (c < n)
    {
        scanf("%d", &array[c]);
        c++;
    }
    scanf("%d", &search); // value to find
    first = 0; last = n - 1; middle = (first + last) / 2;
    while (array[middle] != search && first <= last)
    {
    }
}

void main()
{
    int c, first, last, middle, n, search, array[100];
    scanf("%d", &n); // number of elements
    c = 0;
    while (c < n)
    {
        scanf("%d", &array[c]);
        c++;
    }
    scanf("%d", &search); // value to find
    first = 0; last = n - 1; middle = (first + last) / 2;
    while (array[middle] != search && first <= last)
    {
    }
}
void main()
{
    int c, first, last, middle, n, search, array[100];
    scanf("%d",&n);  // number of elements
    c = 0;
    while (c < n){
        scanf("%d",&array[c]);
        c++;
    }
    scanf("%d",&search);  // value to find
    first = 0;  last = n - 1;  middle = (first+last)/2;
}
void main()
{
    int c, first, last, middle, n, search, array[100];
    scanf("%d", &n); // number of elements
    c = 0;
    while (c < n) {
        scanf("%d", &array[c]);
        c++;
    }
}
void main()
{
    int c, first, last, middle, n, search, array[100];
    scanf("%d", &n); //number of elements
    c = 0;
    
    for (int i = 0; i < n; i++)
    {
        array[i] = i;
    }

    first = 0;
    last = n - 1;
    middle = (first + last) / 2;

    while (c == 0)
    {
        printf("Enter the number to search: ");
        scanf("%d", &search);
        if (search < array[middle])
        {
            last = middle - 1;
        }
        else if (search > array[middle])
        {
            first = middle + 1;
        }
        else
        {
            printf("Found at index ", middle);
            c = 1;
        }
        middle = (first + last) / 2;
    }
    printf("Array is ");
    for (int i = 0; i < n; i++)
    {
        printf(" %d", array[i]);
    }
    printf("\n");
}
void main()
{
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
}
Isomorphism of DG graphs

General idea:

- Define a code $C(G)$ for a DG graph $G$, such that $C(G)$ uniquely identifies $G$.
- $G_1 \cong G_2$ iff $C(G_1) = C(G_2)$
- $C(G)$ is a string of integers $\subseteq \{1, \ldots, \Delta(G) + 4\}$
Coding a DG graph

- Assign an integer, named $\text{type}(H)$, for each statement graph $H$,
- a code $C(v)$ for each vertex $v \in V(G)$,
- a code $C(H)$ for each prime subgraph $H$ of a bottom-up contractile sequence of $G$.
- The code $C(G)$ of the graph is defined as $C(G) := C(s(G))$.
- For a subset $V' \subseteq V(G)$, the code $C(V')$ of $V'$ is the set of strings $C(V') = \{C(v_i) | v_i \in V'\}$.
- Write $\text{lex}(C(V')) = C(v_1) || ... || C(v_r)$, whenever $V' = \{v_1, \ldots, v_r\}$ and $C(v_i)$ is lexicographically not greater than $C(v_{i+1})$. 
<table>
<thead>
<tr>
<th>statement graphs $H$</th>
<th>$type(H)$</th>
<th>$C(H)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>trivial</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>sequence</td>
<td>2</td>
<td>$2</td>
</tr>
<tr>
<td>if-then</td>
<td>3</td>
<td>$3</td>
</tr>
<tr>
<td>while</td>
<td>4</td>
<td>$4</td>
</tr>
<tr>
<td>repeat</td>
<td>5</td>
<td>$5</td>
</tr>
<tr>
<td>if-then-else</td>
<td>6</td>
<td>$6</td>
</tr>
<tr>
<td>$p$-case</td>
<td>$p + 4$</td>
<td>$p + 4</td>
</tr>
</tbody>
</table>
Setting the codes

- The types of statement graphs: table
- Encoding $C(v), v \in V(G)$: initially set to 1.
- Subsequently, if $v$ becomes the source of a prime graph $H$, assign $C(v) := C(v) \| C(H)$
- Encoding $C(H)$: table
- $C(H)$ is written in terms of $\text{type}(H)$ and $C(w)|w \in V(H)$, and so iteratively.
Isomorphism algorithm

$G$, $DG$; $E_C$, set of cycle edges

Find a topological sorting $v_1, \ldots, v_n$ of $G - E_C$

for $i = n, n - 1, \ldots, 1$ do

$C(v_i) := 1$

if $v_i$ is the source of a prime subgraph $H$ then

$C(v_i) := C(v_i)\
2||C(N^+(v_i)), \text{ if } H \text{ is a sequence graph;}
3||C(N^+(v_i) \setminus N^2(v_i))||C(N^2(v_i)), \text{ if } H \text{ is an if-then graph;}
4||C(N^+(v_i) \cap N^-(v_i))||C(N^+(v_i) \setminus N^-(v_i)),$

\hspace{1cm} \text{ if } H \text{ is a while graph,}

$5||C(N^+(v_i))||C(N^2(v_i) \setminus \{v_i\}),$

\hspace{1cm} \text{ if } H \text{ is a repeat graph;}

$6||\text{lex}(C(N^+(v_i)))||C(N^2(v_i)),$

\hspace{1cm} \text{ if } H \text{ is an if-then-else graph.}

$p + 4||\text{lex}(C(N^+(v_i)))||C(N^2(v_i)),$

\hspace{1cm} \text{ if } H \text{ is a p-case graph.}

$C(G) := C(v_1)$
Example

$G$, Dijkstra graph
Example

\[ C(v_{10}) := 12 \parallel C(v_{14}) = 121 \]
Example
Example

$$C(v_9) := 16 | lex(C(v_{11}), C(v_{12})) | | C(v_{13}) = 16111$$
Example
Example

\[ C(v_4) = 12 \mid \mid C(v_9) = 1216111 \]
Example
Example

\[ C(v_6) = 12 \parallel C(v_7) = 121 \]
Example
Example

$C(v_3) = 13 \| C(v_6) \| C(v_8) = 131211$
Example
$C(v_2) = 14 || C(v_4) || C(v_5) = 1412161111$
Example
\[ C(v_1) = 16 \| \text{lex}(C(v_2), C(v_3)) \| C(v_{10}) \]
\[ C'(v_1) = 161312111412161111121 \]
$C(G) = C(v_1) = 161312111412161111121$
Correctness

Theorem 3  Let $G, G'$ be Dijkstra graphs, and $C(G), C(G')$ their encodings, respectively. Then $G, G'$ are isomorphic if and only if $C(G) = C(G')$. 
Corollary 2  Let \( G \) be a DG and \( C'(G') \) its encoding.

1. There is a one-to-one correspondence between the 1’s of \( C(G) \) and the vertices of \( G \).

2. The encoding \( C(G) \) of \( G \) is unique and is a representation of \( G \).

Exhibiting the isomorphism function:

Corollary 3  Let \( G, G' \) be DGs and \( C(G), C(G') \) their corresponding encodings, satisfying \( C(G) = C(G') \). Then an isomorphism function \( f \) between \( G \) and \( G' \) can be determined as follows. Let \( v \in V(G) \) and \( v' \in V(G') \) correspond to 1’s at identical relative positions in \( C(G) \) and \( C(G') \), respectively. Define \( f(v) := v' \).
Complexity

Lemma 8  Let $G$ be a Dijkstra graph, and $C(G)$ its encoding; Then $|C(G)| \leq 2n - 1$.

Theorem 4  For DGs, the isomorphism algorithm terminates within $O(n)$ time.
Generalization

More useful statement graphs.

- DIVERGENT IF THEN ELSE GRAPH
- BREAK-WHILE GRAPH
- BREAK-REPEAT GRAPH
Generalization

CONTINUE-WHILE GRAPH

CONTINUE-REPEAT GRAPH
Applications

Recognition algorithm:
Graph watermarks

Isomorphism algorithm:
Code similarity analysis
THE END

THANK YOU
Edsger Wybe Dijkstra

(1930-2002)