An study of an Edmonds-like property for branching flows

Ana Karolinna Maia

C. Carvalho, J. Costa, C. Linhares Sales, R. Lopes, N. Nisse

Universidade Federal do Ceará Departamento de Computação Grupo ParGO

Seminário Brasileiro de Grafos, Algoritmos e Combinatória June 10, 2021

Flows in networks

Network $\mathcal{N} = (V, A, u)$:

D = (V, A) with capacity function $u : A \to \mathbb{Z}_+$. We denote n = |V|.

Flow x on \mathcal{N} :

 $x: A \to \mathbb{Z}_+$ such that $x_{vw} \le u_{vw}$, $\forall vw \in A$.

Balance vector of a flow x:

 $b_x:V\to\mathbb{Z}$ given by

$$b_{x}(v) = \sum_{vw \in A} x_{vw} - \sum_{zv \in A} x_{zv}.$$

Flows in networks

Network $\mathcal{N} = (V, A, u)$:

D = (V, A) with capacity function $u : A \to \mathbb{Z}_+$. We denote n = |V|.

Flow x on \mathcal{N} :

 $x: A \to \mathbb{Z}_+$ such that $x_{vw} \le u_{vw}$, $\forall vw \in A$.

Balance vector of a flow x:

 $b_x:V\to\mathbb{Z}$ given by

$$b_{x}(v) = \sum_{vw \in A} x_{vw} - \sum_{zv \in A} x_{zv}.$$

Flows in networks

Network $\mathcal{N} = (V, A, u)$:

D = (V, A) with capacity function $u : A \to \mathbb{Z}_+$. We denote n = |V|.

Flow x on \mathcal{N} :

 $x: A \to \mathbb{Z}_+$ such that $x_{vw} \le u_{vw}$, $\forall vw \in A$.

Balance vector of a flow x:

 $b_{x}:V\to\mathbb{Z}$ given by

$$b_{x}(v) = \sum_{vw \in A} x_{vw} - \sum_{zv \in A} x_{zv}.$$

The flow problem

Given $\mathcal{N} = (V, A, u)$ and a prescribed balance vector b, can we decide if \mathcal{N} has flow x s.t. $b_x(v) = b(v)$, $\forall v \in V$? Ex:

- ▶ (s, t)-flow: $0 \le b_x(s) = -b_x(t)$ and b is $0, \forall v \in V \setminus \{s, t\}$.
- ▶ s-branching flow: $b_x(s) = n 1$ and $b_x(v) = -1$, $\forall v \in V \setminus \{s\}$.

The flow problem

Given $\mathcal{N} = (V, A, u)$ and a prescribed balance vector b, can we decide if \mathcal{N} has flow x s.t. $b_x(v) = b(v)$, $\forall v \in V$? Ex:

- ▶ (s, t)-flow: $0 \le b_x(s) = -b_x(t)$ and b is $0, \forall v \in V \setminus \{s, t\}$.
- ▶ *s*-branching flow: $b_x(s) = n 1$ and $b_x(v) = -1$, $\forall v \in V \setminus \{s\}$.

Polynomial-time solvable.

Arc-disjoint flows

Two flows x, y on \mathcal{N} are arc-disjoint if $x_{vw} \cdot y_{vw} = 0$, $\forall vw \in A$.

[Bang-Jensen and Bessy, 14]

Given \mathcal{N} , can we decide if it has multiples arc-disjoint flows each with a prescribed balance vector?

generalizes problems as week-k-linkage.

Arc-disjoint flows

Two flows x, y on \mathcal{N} are arc-disjoint if $x_{vw} \cdot y_{vw} = 0$, $\forall vw \in A$.

[Bang-Jensen and Bessy, 14]

Given \mathcal{N} , can we decide if it has multiples arc-disjoint flows each with a prescribed balance vector?

▶ generalizes problems as week-k-linkage.

NP-complete in general

Previous results on arc-disjoint flows [Bang-Jensen and Bessy, 14]

Arc-disjoint flows	Required balance vector	Capacity u	Complexity
x, y	$b_x \not\equiv b_y$	<i>u</i> ≡ 1	\mathcal{NP} -complete
x_1, \ldots, x_k	$b_{x_1} \equiv \cdots \equiv b_{x_k}$	<i>u</i> ≡ 1	Polynomial
<i>x</i> , <i>y</i>	$b_x \equiv b_y$	$u_{ij} \in \{1,2\}$	\mathcal{NP} -complete
x, y (s, t)-flows	$b(s) = 2, b(t) = -2 \text{ and } b(v) = 0, \text{ for } v \notin \{s, t\}$	$u_{ij} \in \{1,2\}^*$	\mathcal{NP} -complete
$x, y (s, t)$ -flows, acyclic \mathcal{N}	$b(s) = k, b(t) = -k \text{ and } b(v) = 0, \text{ for } v \notin \{s, t\}$	any	\mathcal{NP} -complete
$x_1, \ldots x_k \ (s_i, t_i)$ -flows, acyclic \mathcal{N}	$b_i(s_i)$ fixed value, $b_i(t_i) = -b_i(s_i)$ and $b_i(v) = 0$, for $v \notin \{s, t\}$	uij fixed value	Polynomial
x, y branching flows	$b(s) = n - 1$ and $b(v) = -1, \forall v \in V - s$	$u_{ij} \in \{1,2\}$	\mathcal{NP} -complete
x_1, \ldots, x_k branching flows	$b(s) = n - 1$ and $b(v) = -1, \forall v \in V - s$	$u \equiv n-1$	Polynomial

Previous results on arc-disjoint flows [Bang-Jensen and Bessy, 14]

Arc-disjoint flows	Required balance vector	Capacity u	Complexity
x, y	$b_x \not\equiv b_y$	<i>u</i> ≡ 1	\mathcal{NP} -complete
X_1, \ldots, X_k	$b_{x_1} \equiv \cdots \equiv b_{x_k}$	<i>u</i> ≡ 1	Polynomial
x, y	$b_x \equiv b_y$	$u_{ij} \in \{1,2\}$	\mathcal{NP} -complete
x, y (s, t)-flows	$b(s) = 2, b(t) = -2 \text{ and } b(v) = 0, \text{ for } v \notin \{s, t\}$	$u_{ij} \in \{1,2\}^*$	\mathcal{NP} -complete
$x, y (s, t)$ -flows, acyclic \mathcal{N}	$b(s) = k, b(t) = -k \text{ and } b(v) = 0, \text{ for } v \notin \{s, t\}$	any	\mathcal{NP} -complete
$x_1, \ldots x_k \ (s_i, t_i)$ -flows, acyclic \mathcal{N}	$b_i(s_i)$ fixed value, $b_i(t_i) = -b_i(s_i)$ and $b_i(v) = 0$, for $v \notin \{s, t\}$	uij fixed value	Polynomial
x, y branching flows	$b(s) = n - 1$ and $b(v) = -1, \forall v \in V - s$	$u_{ij} \in \{1,2\}$	\mathcal{NP} -complete
x_1, \ldots, x_k branching flows	$b(s) = n - 1$ and $b(v) = -1, \forall v \in V - s$	$u \equiv n-1$	Polynomial

[Bang-Jensen, Havet and Yeo, 16] on branching flows

- ▶ \mathcal{NP} -complete for $u \equiv k$, for a constant $k \geq 2$.
- ▶ Polynomial-time solvable for $u \equiv n k$, for a constant $k \ge 2$.
- ▶ Under ETH, \nexists polynomial algorithm to decide if \mathcal{N} with $n/2 \le u \le n \log(n)^{1+\varepsilon}$ has 2 arc-disjoint branching flows.

Previous results on arc-disjoint flows [Bang-Jensen and Bessy, 14]

Arc-disjoint flows	Required balance vector	Capacity u	Complexity
x, y	$b_x \not\equiv b_y$	<i>u</i> ≡ 1	\mathcal{NP} -complete
X_1, \dots, X_k	$b_{x_1} \equiv \cdots \equiv b_{x_k}$	<i>u</i> ≡ 1	Polynomial
x, y	$b_x \equiv b_y$	$u_{ij} \in \{1,2\}$	\mathcal{NP} -complete
x, y (s, t)-flows	$b(s) = 2, b(t) = -2 \text{ and } b(v) = 0, \text{ for } v \notin \{s, t\}$	$u_{ij} \in \{1,2\}^*$	\mathcal{NP} -complete
$x, y (s, t)$ -flows, acyclic \mathcal{N}	$b(s) = k, b(t) = -k \text{ and } b(v) = 0, \text{ for } v \notin \{s, t\}$	any	\mathcal{NP} -complete
$x_1, \ldots x_k \ (s_i, t_i)$ -flows, acyclic \mathcal{N}	$b_i(s_i)$ fixed value, $b_i(t_i) = -b_i(s_i)$ and $b_i(v) = 0$, for $v \notin \{s, t\}$	uij fixed value	Polynomial
x, y branching flows	$b(s) = n - 1$ and $b(v) = -1, \forall v \in V - s$	$u_{ij} \in \{1,2\}$	\mathcal{NP} -complete
x_1, \ldots, x_k branching flows	$b(s) = n - 1$ and $b(v) = -1, \forall v \in V - s$	$u \equiv n-1$	Polynomial

[Bang-Jensen, Havet and Yeo, 16] on branching flows

- ▶ \mathcal{NP} -complete for $u \equiv k$, for a constant $k \geq 2$.
- ▶ Polynomial-time solvable for $u \equiv n k$, for a constant $k \ge 2$.
- ▶ Under ETH, \nexists polynomial algorithm to decide if \mathcal{N} with $n/2 \le u \le n \log(n)^{1+\varepsilon}$ has 2 arc-disjoint branching flows.

[Bessy, Hörsch, M., Rautenbach, Sau, 21]

▶ Branching flows of networks with $u \equiv n - k$ is FPT with parameter k.

Complexity of the arc-disjoint branching flows problem

Figure 1: Capacity function

s-(out-)branching: tree s.t. $\forall v \neq s, d^-(v) = 1$.

[Edmonds, 73]

A digraph D = (V, A) with $s \in V(D)$ has k arc-disjoint s-branchings if and only if

$$d_D^-(X) \ge k, \forall \emptyset \ne X \subseteq V - s.$$

[Bang-Jensen and Bessy, 14]

Let $\mathcal{N}=(V,A,u\equiv n-1)$. Then \mathcal{N} has k arc-disjoint s-branching flows if and only if

$$d_D^-(X) \ge k, \forall \emptyset \ne X \subseteq V - s.$$

An Edmonds-like property for branching flows [Bang-Jensen and Bessy, 14]

Let $\mathcal{N}=(V,A,\underline{u}\equiv n-1)$. Then \mathcal{N} has k arc-disjoint s-branching flows if and only if

$$d_D^-(X) \ge k, \forall \emptyset \ne X \subseteq V - s.$$

Figure 2: u = n - 1 = 4, k = 2

For the existence of an *s*-branching flow in $\mathcal{N}=(V,A,u\equiv\lambda)$, for $X\subseteq V-s$, we need at least $\left\lceil\frac{|X|}{\lambda}\right\rceil$ arcs entering on it.

Figure 3: u = 3, k = 2

Conjecture 1

Let $\mathcal{N}=(V,A,u\equiv\lambda)$. Then, for all $1\leq\lambda\leq n-1$, \mathcal{N} has k arc-disjoint s-branching flows if and only if

$$d_D^-(X) \ge k \left\lceil \frac{|X|}{\lambda} \right\rceil, \forall \emptyset \ne X \subseteq V - s.$$
 (1)

Conjecture 1

Let $\mathcal{N}=(V,A,u\equiv\lambda)$. Then, for all $1\leq\lambda\leq n-1$, \mathcal{N} has k arc-disjoint s-branching flows if and only if

$$d_D^-(X) \ge k \left\lceil \frac{|X|}{\lambda} \right\rceil, \forall \emptyset \ne X \subseteq V - s.$$
 (1)

Property (1) is always necessary;

Conjecture 1

Let $\mathcal{N}=(V,A,u\equiv\lambda)$. Then, for all $1\leq\lambda\leq n-1$, \mathcal{N} has k arc-disjoint s-branching flows if and only if

$$d_D^-(X) \ge k \left\lceil \frac{|X|}{\lambda} \right\rceil, \forall \emptyset \ne X \subseteq V - s.$$
 (1)

Property (1) is sufficient:

- ▶ $\lambda = n 1$ [Bang-Jensen and Bessy, 14]
- $\lambda = n-2$
- $\lambda = 1$
- k=1
- ▶ D is a multi-path

D is a collection of multipaths in which we identify s and t.

 \triangleright s-multi-branchings B_s^+ : s-branching with parallel arcs.

Conjecture 1 for multi-branchings

Lemma 1 $d_{B_s^+}^-(X) \ge k \left\lceil \frac{|X|}{\lambda} \right\rceil, \forall \emptyset \ne X \subseteq V - s \text{ in } B_s^+ = (V, A) \Rightarrow \mathcal{N} = (V, A, u \equiv \lambda) \text{ has } k \text{ arc-disjoint } s\text{-branching flows.}$

Lemma 1
$$d_{B_s^+}^-(X) \ge k \left\lceil \frac{|X|}{\lambda} \right\rceil, \forall \emptyset \ne X \subseteq V - s \text{ in } B_s^+ = (V, A) \Rightarrow \mathcal{N} = (V, A, u \equiv \lambda) \text{ has } k \text{ arc-disjoint } s\text{-branching flows.}$$

$$h = 1$$

Lemma 1
$$d_{B_s^+}^-(X) \ge k \left\lceil \frac{|X|}{\lambda} \right\rceil, \forall \emptyset \ne X \subseteq V - s \text{ in } B_s^+ = (V, A) \Rightarrow \mathcal{N} = (V, A, u \equiv \lambda) \text{ has } k \text{ arc-disjoint } s\text{-branching flows.}$$

$$h = 1$$

Lemma 1
$$d_{B_s^+}^-(X) \ge k \left\lceil \frac{|X|}{\lambda} \right\rceil, \forall \emptyset \ne X \subseteq V - s \text{ in } B_s^+ = (V, A) \Rightarrow \mathcal{N} = (V, A, u \equiv \lambda) \text{ has } k \text{ arc-disjoint } s\text{-branching flows.}$$

$$h = 1$$

Lemma 1
$$d_{B_s^+}^-(X) \ge k \left\lceil \frac{|X|}{\lambda} \right\rceil, \forall \emptyset \ne X \subseteq V - s \text{ in } B_s^+ = (V, A) \Rightarrow \mathcal{N} = (V, A, u \equiv \lambda) \text{ has } k \text{ arc-disjoint } s\text{-branching flows.}$$

$$h = 1$$

Lemma 1

$$d_{B_s^+}^-(X) \ge k \left\lceil \frac{|X|}{\lambda} \right\rceil, \forall \emptyset \ne X \subseteq V - s \text{ in } B_s^+ = (V, A) \Rightarrow \mathcal{N} = (V, A, u \equiv \lambda) \text{ has } k \text{ arc-disjoint } s\text{-branching flows.}$$

▶ Induction on the height h of B_s^+ :

$$h = q$$

$$\qquad \qquad b \quad d^-(r_i) \geq k \left| \frac{|B_{r_i}^+|}{\lambda} \right|$$

Theorem 2

- (i) D satisfies Property (1);
- (ii) N doesn't admits k arc-disjoint s-branching flows.

Theorem 2

- (i) D satisfies Property (1);
- (ii) $\mathcal N$ doesn't admits k arc-disjoint s-branching flows.

Theorem 2

- (i) D satisfies Property (1);
- (ii) N doesn't admits k arc-disjoint s-branching flows.

- ▶ Subdivide *bd*, *cd* and *ef* λ − 2 times;
- Arcs of B, C and last arc of P: x2;
- ▶ Other arcs of *P*: ×3;
- ▶ Every arc: $\times k/2$;

Theorem 2

- (i) D satisfies $d_D^-(X) \ge k \left\lceil \frac{|X|}{\lambda} \right\rceil, \forall \emptyset \ne X \subseteq V s$:
 - ▶ D[X] has a cycle;
 - D[X] is acyclic.

Figure 4: Example for k = 2 and $\lambda \ge 2$

Theorem 2

- (i) D satisfies $d_D^-(X) \ge k \left\lceil \frac{|X|}{\lambda} \right\rceil, \forall \emptyset \ne X \subseteq V s$:
 - ► D[X] has a cycle:

Figure 5: Example for k = 2 and $\lambda \ge 2$

Theorem 2

- (i) D satisfies $d_D^-(X) \ge k \left\lceil \frac{|X|}{\lambda} \right\rceil, \forall \emptyset \ne X \subseteq V s$:
 - ► D[X] has a cycle:

Figure 5: Example for k = 2 and $\lambda \ge 2$

$$|X| \ge 2\lambda + 1 \Rightarrow k \left\lceil \frac{|X|}{\lambda} \right\rceil = 6;$$

Theorem 2

- (i) D satisfies $d_D^-(X) \ge k \left\lceil \frac{|X|}{\lambda} \right\rceil, \forall \emptyset \ne X \subseteq V s$:
 - ► D[X] has a cycle:

Figure 5: Example for k = 2 and $\lambda \ge 2$

$$|X| \ge 2\lambda + 1 \Rightarrow k \left\lceil \frac{|X|}{\lambda} \right\rceil = 6;$$

Theorem 2

- (i) D satisfies $d_D^-(X) \ge k \left\lceil \frac{|X|}{\lambda} \right\rceil, \forall \emptyset \ne X \subseteq V s$:
 - ► D[X] has a cycle:

Figure 5: Example for k = 2 and $\lambda \ge 2$

$$|X| \ge 2\lambda + 1 \Rightarrow k \left\lceil \frac{|X|}{\lambda} \right\rceil = 6;$$

Theorem 2

- (i) D satisfies $d_D^-(X) \ge k \left\lceil \frac{|X|}{\lambda} \right\rceil, \forall \emptyset \ne X \subseteq V s$:
 - ► D[X] has a cycle:

Figure 5: Example for k = 2 and $\lambda \ge 2$

$$|X| \ge 2\lambda + 1 \Rightarrow k \left\lceil \frac{|X|}{\lambda} \right\rceil = 6;$$

Theorem 2

- (i) D satisfies $d_D^-(X) \ge k \left\lceil \frac{|X|}{\lambda} \right\rceil, \forall \emptyset \ne X \subseteq V s$:
 - ► D[X] has a cycle:

Figure 5: Example for k = 2 and $\lambda \ge 2$

$$|X| \ge 2\lambda + 1 \Rightarrow k \left\lceil \frac{|X|}{\lambda} \right\rceil = 6;$$

Theorem 2

- (i) D satisfies $d_D^-(X) \ge k \left\lceil \frac{|X|}{\lambda} \right\rceil, \forall \emptyset \ne X \subseteq V s$:
 - ► D[X] is acyclic:

Figure 6: Example for k = 2 and $\lambda \ge 2$

Theorem 2

 $\forall \lambda \geq 2 \text{ and } \forall k \geq 2 \text{ (even)}, \exists \mathcal{N} = (V, A, u \equiv \lambda) \text{ s.t.}$:

Figure 7: Example for k = 2 and $\lambda \ge 2$

Theorem 2

 $\forall \lambda \geq 2 \text{ and } \forall k \geq 2 \text{ (even)}, \exists \mathcal{N} = (V, A, u \equiv \lambda) \text{ s.t.}$:

Figure 7: Example for k = 2 and $\lambda \ge 2$

Theorem 2

 $\forall \lambda \geq 2 \text{ and } \forall k \geq 2 \text{ (even)}, \exists \mathcal{N} = (V, A, u \equiv \lambda) \text{ s.t.}$:

Figure 7: Example for k = 2 and $\lambda \ge 2$

Theorem 2

 $\forall \lambda \geq 2 \text{ and } \forall k \geq 2 \text{ (even)}, \exists \mathcal{N} = (V, A, u \equiv \lambda) \text{ s.t.}$:

Figure 7: Example for k = 2 and $\lambda \ge 2$

Theorem 2

 $\forall \lambda \geq 2 \text{ and } \forall k \geq 2 \text{ (even)}, \exists \mathcal{N} = (V, A, u \equiv \lambda) \text{ s.t.}$:

Figure 7: Example for k = 2 and $\lambda \ge 2$

Difficulty of finding flows in networks with Property (1)

Theorem 3

It is \mathcal{NPC} to decide if $\mathcal{N}=(V,A,u\equiv\lambda)$ satisfying Property (1) has k arc-disjoint s-branching flows.

3-PARTITION

Input: $S = \{a_1, a_2, ..., a_{3k}\}, \lambda \in \mathbb{Z}^+, \lambda/4 < a_i < \lambda/2, \sum_{i=1}^{3k} a_i = k\lambda.$

Question: can S be partitioned in k subsets $S_1, S_2 ... S_k$ so that

 $\sum_{a_i \in S_i} a_j = \lambda$, $1 \le i \le k$?

Figure 8: \mathcal{N}'

Difficulty of finding flows in networks with Property (1)

▶ \exists partition of S in $S_1, S_2 \dots S_k$ s. t. $\sum_{a_i \in S_i} a_j = \lambda \Rightarrow k$ flows on \mathcal{N}'

Further research

On arc-disjoint branching flows:

- "Global" condition + "local" condition would be sufficient to guarantee flows?
- Dichotomy between easy and hard cases of DAG's.
- Study the complexity on networks without parallel arcs.
- Study the problem on networks with different capacities and balance vectors.

