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Flows in networks

Network N = (V, A, u):
D = (V, A) with capacity functionu: A— Z,.
We denote n=|V/|.

Flow x on N
X : A— Z, such that x,,, < u,y, Yvw € A.

Balance vector of a flow x:
by : V — Z given by
bx(v) = vaeA Xvw — szeA Xzv-
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The flow problem

Given N = (V, A, u) and a prescribed balance vector b,
can we decide if N has flow x s.t. by(v) = b(v), Vv € V?
Ex:

> (s, 1)-flow: 0 < by(s) = —bx(t)and bis 0, Vv € V\ {s, t}.

» s-branching flow: by(s) = n—1and by(v) = -1, Vv e V\ {s}.




The flow problem

Given N = (V, A, u) and a prescribed balance vector b,
can we decide if N has flow x s.t. by(v) = b(v), Vv € V?
Ex:

> (s, 1)-flow: 0 < by(s) = —bx(t)and bis 0, Vv € V\ {s, t}.

» s-branching flow: by(s) = n—1and by(v) = -1, Vv e V\ {s}.

Polynomial-time solvable.



Arc-disjoint flows

Two flows x, y on AV are arc-disjoint if X,y - Yyw = 0,Vvw € A.

[Bang-Jensen and Bessy, 14]

Given N, can we decide if it has multiples arc-disjoint flows each with
a prescribed balance vector?

» generalizes problems as week-k-linkage.
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Given N, can we decide if it has multiples arc-disjoint flows each with
a prescribed balance vector?

» generalizes problems as week-k-linkage.

NP-complete in general



Previous results on arc-disjoint flows
[Bang-Jensen and Bessy, 14]

Arc-disjoint flows Required balance vector | Complexity
X,y N'P-complete
Xtyoooy Xk u=1 Polynomial
X,y uy e {1,2} N'P-complete
X,y (s, t)-flows ,b(t) = —2and b(v) =0, for v ¢ {s,t} uj € {1,2}* NP-complete
X, y (s, )-flows, acyclic N b(s) = k.b(t) = —kand b(v) =0, for v ¢ {s, t} any NP-complete
X1,... X (s, )-flows, acyclic N | bi(s)) fixed value, b;(t) = —bi(si) and bi(v) =0, for v ¢ {s, t} | u; fixed value | Polynomial

X, y branching flows b(s)y=n—1andb(v)=-1,VveV-s u; € {1,2} N'P-complete
X1,..., Xk branching flows b(s)=n—1andb(v)=-1,¥veV-s u=n-1 Polynomial




Previous results on arc-disjoint flows
[Bang-Jensen and Bessy, 14]

Arc-disjoint flows Required balance vector Capacity u | Complexity
X,y by # by u=1 NP-complete
Xtyonns Xk by, =+ = by, u=1 Polynomial
X,y bx = by uy e {1,2} N'P-complete
X,y (s, t)-flows b(s) =2,b(t) = —2and b(v) =0, for v ¢ {s, t} uj € {1,2}* NP-complete
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Xtyooos X branching flows b(s)=n—1andb(v)=-1,¥veV-s u=n-1 Polynomial

[Bang-Jensen, Havet and Yeo, 16] on branching flows

» NP-complete for u = k, for a constant k > 2.
» Polynomial-time solvable for u = n — k, for a constant k > 2.

» Under ETH, 7 polynomial algorithm to decide if N with
n/2 < u < n—log(n)'* has 2 arc-disjoint branching flows.
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[Bang-Jensen, Havet and Yeo, 16] on branching flows

» NP-complete for u = k, for a constant k > 2.
» Polynomial-time solvable for u = n — k, for a constant k > 2.

» Under ETH, 7 polynomial algorithm to decide if N with
n/2 < u < n—log(n)'* has 2 arc-disjoint branching flows.

[Bessy, Horsch, M., Rautenbach, Sau, 21]

» Branching flows of networks with v = n — k is FPT with
parameter k.
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Complexity of the arc-disjoint branching flows problem

Hard ? Hard ? Easy

Figure 1: Capacity function
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An Edmonds-like property for branching flows
s-(out-)branching: tree s.t. Vv # s, d—(v) = 1.

[Edmonds, 73]
A digraph D = (V, A) with s € V(D) has k arc-disjoint s-branchings if
and only if

dp (X) > kY0 #XCV —s.

[Bang-Jensen and Bessy, 14]
Let N = (V,A,u=n—1). Then N has k arc-disjoint s-branching
flows if and only if

dy(X) > kV0#XCV—s.



An Edmonds-like property for branching flows

[Bang-Jensen and Bessy, 14]
Let N = (V,A,u=n—1). Then N has k arc-disjoint s-branching
flows if and only if

dp(X) >k VO#XCV—s

fﬁﬁ |

Figure2: u=n—-1=4,k=2



An Edmonds-like property for branching flows

» For the existence of an s-branching flow in V' = (V, A, u = \), for
X C V — s, we need at least [%W arcs entering on it.

Figure 3: u=3, k=2
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An Edmonds-like property for branching flows

Conjecture 1
Let N =(V,A;ju= ). Then, forall1 <X <n—1,N has k
arc-disjoint s-branching flows if and only if

dg(X)sziﬂ NO#EXCV—s.
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An Edmonds-like property for branching flows

Conjecture 1
Let N =(V,A,u= ). Then, forall1 <X <n—1, N hask
arc-disjoint s-branching flows if and only if

dD(X)sz))ﬂ NO#EXCV—s.

Property (1) is always necessary;
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An Edmonds-like property for branching flows

Conjecture 1
Let N =(V,A,u= ). Then, forall1 <X <n—1,N hask
arc-disjoint s-branching flows if and only if

X

dg(X)zk[J VOAXCV—s.

Property (1) is sufficient:

» A =n—1[Bang-Jensen and Bessy, 14]
> A=n-2

> A=1

> k=1

» D is a multi-path

S

0= - 0

v

D is a collection of multipaths in which we identify s and t.
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Arc-disjoint branching flows in multi-branchings

» s-multi-branchings BZ: s-branching with parallel arcs

Conjecture 1 for multi-branchings
Lemma 1

dg: (X) >k[§] VO£AXCV—sinBf =(V,A)=>
N = (V,A u= ) has k arc-disjoint s-branching flows.

10/20



Arc-disjoint branching flows in multi-branchings

Lemma 1
dgr(X) = k [BL] V0 £ X C V= sinBf = (V. A) =
N = (V,A u= ) has k arc-disjoint s-branching flows.

» Induction on the height h of B :
h=1

11/20
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Arc-disjoint branching flows in multi-branchings

Lemma 1
dE;(X)zk[% VO£XCV—sinBf =(V,A) =

N = (V,A u=)) has k arc-disjoint s-branching flows.

» Induction on the height h of B :
h=q

18/
A

» d(n) >k {

1
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A family of counterexamples

Theorem 2
VA >2and Vk >2 (even), 3N = (V,A,u=))s.t.:

(i) D satisfies Property (1);
(i) N doesn’t admits k arc-disjoint s-branching flows.

12/20
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A family of counterexamples

Theorem 2
VA >2and Vk >2(even), 3N = (V,A u=)\)st:

(i) D satisfies Property (1);
(i) NV doesn’t admits k arc-disjoint s-branching flows.

f P e

Subdivide bd, cd and ef A — 2 times;
Arcs of B, C and last arc of P: x2;
Other arcs of P: x3;

Every arc: xk/2;

vvyyywy
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A family of counterexamples

Theorem 2
YA >2and Yk >2(even), AN = (V,A u=))s.t:
(i) D satisfies dy (X) > k w] NOAXCV_s

» D[X] has a cycle;
» D[X] is acyclic.

Figure 4: Example for k =2 and A > 2

14/20
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> Xz 2x+1= k[ 5] =6;
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A family of counterexamples

Theorem 2
VA >2and Vk>2(even), 3N = (V,A u=)\)st:

(i) D satisfies dj (X) > k [% VOAXCV—s:
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A family of counterexamples

Theorem 2
VA >2and Vk>2(even), 3N = (V,A u=)\)st:

(i) V doesn’t admits k arc-disjoint s-branching flows:

Figure 7: Example for k =2 and X\ > 2
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Difficulty of finding flows in networks with Property (1)

Theorem 3
It is N'PC to decide if N = (V, A, u = \) satisfying Property (1) has k
arc-disjoint s-branching flows.

3-PARTITION
Input: S={ay,a,...,a}L, A€ZT, 4 <a <\2, Z?L aj = k\.

Question: can S be partitioned in k subsets S;, S, ... Sk so that
Za/es, g=M\1<i<k?

Figure 8: N

18/20



Difficulty of finding flows in networks with Property (1)

> Jpartitionof Sin 5;,S;... Sk s. t. 30, .5 @ = A= kflowson N’

1 1

—
V2 Vi-a

2 ) 0 0 0

Vi, % Ve -

N3k ek 3K )
\/1 v M/

19/20



Further research

On arc-disjoint branching flows:

» "Global" condition + "local" condition would be sufficient to
guarantee flows?

» Dichotomy between easy and hard cases of DAG’s.
» Study the complexity on networks without parallel arcs.

» Study the problem on networks with different capacities and
balance vectors.

20/20
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