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Abstract— Face recognition has received increased attention
due to its application in biometrics and surveillance systems,
emerging two main tasks, verification and identification of
faces. The first one aims at accepting or rejecting an identity
assigned to a correct face, whereas the second aims at, given
an unknown probe face, finding the best identity to it from
a gallery of known faces. For the face identification problem,
discriminative approaches such as the one-against-all method
have achieved higher accuracy than descriptive approaches
such as eigenfaces. However, such methods have scalability
issues when new subjects are enrolled in the gallery once it
is necessary to rebuild all discriminative models to take into
account the new individuals. This work describes and evaluates
a novel method for making the process of gallery maintenance
more efficient. This method employs an association between the
one-against-some classification scheme, which differently from
the one-against-all approach that considers a random subset of
subjects as counterexamples, and the use of a priority queue
to provide a scalable approach to enrolling new subjects to the
gallery. Experimental results obtained by applying the proposed
method on publicly available face data sets demonstrate its
advantage when compared to the one-against-all approach.

I. INTRODUCTION

Face recognition is a very active research topic due to its
applications in areas such as surveillance, biometrics and hu-
man computer interaction. Face verification and identification
figure among the main tasks performed by face recognition.
While the former is responsible for accepting or denying the
identity claimed by an individual given a pair of samples, the
latter focuses on matching a sample of an unknown person
to a gallery of known subjects.

The identification task presents particular interest in sur-
veillance applications that perform face recognition in mo-
nitored areas, in which the identity of individuals needs
to be determined to provide, for example, non-intrusive
monitoring of circulation on restricted areas. Due to the
dynamic nature of these environments, in which new subjects
are incrementally added, the identification system not only
needs to be accurate, but also it is important to provide
efficient and robust enrollment mechanisms.

Due to its ability of generating discriminative subspaces
and working with few high dimensional input samples, the
statistical method Partial Least Squares (PLS) [1] has been
successfully employed to the problem of face recognition
in the past few years for both verification and identification
tasks [2]–[7]. Even though the one-against-all classification
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scheme combined with PLS has provided significant im-
provements on the recognition rates for the identification
task [2], [4], [6], it presents the drawback of not being
scalable to the enrollment of new subjects since all existing
PLS models representing the subjects in the gallery need to
be rebuilt, leading to a high computational cost proportional
to the gallery size.

To handle the enrollment of new subjects to the gallery
while maintaining the generation of highly discriminative
subspaces with PLS, we employ a classification scheme cal-
led one-against-some, which does not consider all remaining
subjects as counterexamples, but only a subset of them. The
one-against-some approach maintains a trade-off between
the discriminatory power achieved by the one-against-all, in
which all remaining subjects are set as counterexamples, and
the scalability when new subjects are enrolled in the gallery
since the PLS models used to represent subjects already
enrolled do not need to be rebuilt.

The method proposed in this work creates few PLS
models for each subject considering a random subset of
the remaining subjects already enrolled as counterexamples.
When a new subject is added to the gallery, new PLS
models are built without the need for rebuilding previously
constructed models since not all subjects are required to be
used as counterexamples. In addition, we propose the use of a
priority queue to maintain a low number of projections when
a probe sample is presented to the system. Such combination
allows a fast enrollment maintaining the accurate results
achieved by the one-against-all approach.

Experimental results obtained using two publicly available
data sets to perform face identification, FRGC [8] and
PubFig83 [9], show that even though the computational cost
for the enrollment becomes constant (different from the qua-
dratic rate obtained when the one-against-all is employed),
the recognition rates achieved and the number of projections
performed are comparable to ones achieved by the one-
against-all approach.

II. RELATED WORK

This section briefly reviews and discusses some concepts
and references related to the topic investigated in our work.

A. Face Recognition

Significant advances have been achieved over the past
decade related to the face recognition problem. Comprehen-
sive surveys on face recognition, including identification and
verification tasks, can be found in the literature [10]–[14].



Face recognition techniques can be classified into two
main categories, holistic and local approaches. Holistic ap-
proaches [15]–[17] extract information from the entire face
image to perform the recognition. To reduce the high-
dimensionality of data, face images are projected onto a
lower dimensional space. On the other hand, local approa-
ches [18]–[22] extract information from local facial features
and discriminate faces through the comparison and combi-
nation of local statistics.

Even though several proposed approaches have achieved
high recognition accuracy rates under controlled conditions,
several factors demonstrate the face recognition problem
to be more complex due to pose, occlusion, illumination,
facial expression, scalability, and other real conditions. To
perform recognition under fairly uncontrolled conditions, the
works in [23], [24] focus on illumination normalization,
approaches developed in [7], [25] deal with pose variations.
In addition, face recognition via sparse representation-based
classification has become popular [26], providing improved
results.

Another important issue in considering face identification
systems is their scalability since the problem can involve
the recognition of a large number of individuals. Thus,
search techniques for matching probe samples to the face
gallery must be efficient [27], [28]. Furthermore, the need of
dynamically rebuilding the gallery models whenever a new
subject is added can compromise the system performance.
The latter problem is the main focus of this work.

B. Feature Descriptors

A variety of feature descriptors have been employed
in face recognition. Scale-invariant feature transform
(SIFT) [29] and histogram of oriented gradients (HOG) [30]
are powerful descriptors used to extract facial features.
Local binary patterns (LBP) [31] describe texture through
histograms of labels assigned to the image pixels by
thresholding a neighborhood of each pixel with the center
value and considering the result as a binary number. LBP
features are invariant to monotonic intensity changes. Gabor
filters [32] extract facial features characterized by spatial
locality, spatial frequency, and orientation selectivity to
overcome image variabilities due to illumination and facial
expression changes. Variations or combinations based on
LBP and Gabor descriptors have also been proposed [31],
[33] for face recognition.

More recently, methods for combining several features
have been proposed for face recognition [34], [35]. Global
features, where the entire image is used to construct the
feature vector, are combined with local features extracted
from regions of the image. Since certain global and local
features are complementary to each other, results from such
combination can outperform the application of individual
features.

C. Partial Least Squares

The construction of person-specific subspaces for human
face recognition has been explored to capture variations

of a same person in order to produce more effective re-
presentations of individuals under varying illumination or
pose. Some subspace methods found in the literature in-
clude Eigenface [15], Fisherface [16], Tensorface [36] and
Bayesian algorithms [37]. These methods seek to model
face variations under illumination changes through a set of
training face set, such that new face samples can be projected
into low dimensional spaces and compared against a number
of images.

Although face recognition performance can be improved in
lower dimensional subspaces, most of these methods do not
work well in the case of unconstrained face images, that is,
they typically capture either just structure that is common to
all faces or just structure that is discriminative between two
sets of faces. Despite such difficulties, the recent application
of the subspace method based on Partial Least Squares has
achieved improved results in face recognition [2]–[7].

Partial Least Squares (PLS) is a statistical method used to
find relations between observed variables through the estima-
tion of a low dimensional latent space that maximizes the se-
paration between samples with different characteristics [38].
PLS estimates latent variables as linear combinations of the
original variables in a matrix X , composed of variables used
to describe samples, and a matrix Y containing a set of
response variables.

Let a problem with n samples described by d variables
each, stored in a mean-centered matrix Xn×d, associated
to k response variables, stored in a mean-centered matrix
Y n×k. PLS estimates a p-dimensional space by decomposing
X and Y , respectively, into X = TP T + E and Y =
UQT + F , where T n×p and Un×p are matrices composed
of the latent variables, matrices P d×p and Qk×p represent
the loadings, and matrices En×d and F n×k are the residuals.

A common method for iteratively extracting the latent
variables is the non-linear iterative partial least squares
(NIPALS) [1], so that matrices X and Y are decomposed
by subtracting their rank-one approximations as Xi+1 =
Xi − tipTi and Y i+1 = Y i − tiqTi , respectively, where
Xi and Y i are the data representation for the i-th iteration,
where ti represent the i-th columns of matrices T , X1 =X
and Y 1 = Y , and pi and qi denote the i-th columns of
the matrices P and Q, respectively. After the extraction
of p projection vectors, the p-dimensional representation
of Xn×d is given by T n×p, which is used to extract the
regression coefficients βd×k by β = W (P TW )−1T TY .
Finally, the regression responses, Yv , for a feature vector
vd×1 is obtained by Yv = Y + βTvS, where Y 1×k is the
sample mean of each variable of Y and S1×k is the standard
deviation of the variables in Y .

D. Classification Schemes

The process of matching a probe sample to a gallery of
faces can follow some strategies, including the one-against-
all scheme [39], where all training models need to be rebuilt
when a new subject si is presented to the system, since all
the remaining samples are used as counterexamples (negative
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Fig. 1. Diagram showing the steps performed in the one-against-all approach.

class) for si. Although this scheme can achieve higher
recognition rates, it is not efficient in terms of training time.

Another strategy, known as pairwise classification [40],
transforms a multi-class problem into a series of two-class
problems. Instead of constructing one binary classifier for
each class ci as in the one-against-all, so that positive training
samples are those that belong to class ci and the negative
training samples are formed by all other classes, the pairwise
classification converts an n-class problem into n(n − 1)/2
binary problems, one for each pair of classes.

A classification scheme, called one-against-some [41],
has been recently proposed in the context of person re-
identification, where only a subset of individuals are con-
sidered as negative samples, instead of remaining subjects
as in the one-against-all classification scheme. The work
in [41] presented the main concepts of the one-against-some
classification scheme without focusing on the computational
time, which is considered in this work with the employment
of a priority queue.

III. METHODOLOGY

In this section, we first describe the face identification
approach proposed by Schwartz et al. [2], which performs
face identification based on a one-against-all classification
scheme. Then, based on the method in [2], we discuss the
employed one-against-some classification scheme. Finally,
we employ a priority queue intended to speed-up the mat-
ching process for probe samples when the one-against-some
approach is used.

A. Face Identification based on One-Against-All Approach

The face identification method proposed by Schwartz et
al. [2] is structured in three main steps: feature extraction,
individual modeling for subjects in the gallery and execution
of regressions to perform the matching of probe samples to
subjects in the gallery. These steps are briefly described as

follows and illustrated in Figure 1. For more details, we refer
the reader to [2].

During the feature extraction, after cropping the face
region, it is scaled to a given size and each sample is
decomposed into a set of overlapping blocks from which
feature descriptors are extracted. A combination of different
descriptors is considered, which includes information regar-
ding to shape extracted by histograms of oriented gradients
(HOG) [30], textural information with the use of the original
local binary patterns (LBP) [20] and one of its extensions
called multi-scale local binary patterns (MSLBP) [31], color
information captured by the average of pixel colors and
salient visual properties extracted using Gabor filters [32].
After the feature extraction for all blocks, the descriptors are
concatenated in a feature vector v, used to describe the face.

The procedure to estimate PLS models for each subject
in the gallery g = {s1, s2, . . . , sN}, in which si denotes
samples of the i-th subject represented by their feature vec-
tors, is the following. In order to increase the discriminability
between classes, PLS models based on the one-against-all
classification scheme is considered. Therefore, when the i-
th subject is being modeled, the samples of the remaining
subjects, g \ si, are used as counterexamples. The PLS
estimates the discrimination ability of the descriptors in the
feature vector and returns regression coefficients βi. This
process is executed for each subject in the gallery. Therefore,
at the end, N PLS models will be estimated.

After the construction of all PLS models, their regression
coefficients are used to perform the matching between probe
samples and subjects in the gallery. When a probe sample
is presented to the identification system, its feature vector is
used to evaluate the regression response for each PLS model.
The subject associated with the highest regression response
(a high regression response indicates that feature vector of
the probe and subject’s samples are similar) is considered to
be the best match for the probe sample.

The main drawback of the one-against-all classification



Subject Modeling Probe Sample Matching

Subject i
(k-1) randomly 

chosen remaining
subjects

Update priority queue

PLSi,x

v =
feature vector for probe sample pt

PLS one-
against-all

model

PLSi,1
PLSi,k

k PLS models for the i-th subject

. . .

subject k

Repeat this procedure until stop condition has 
been reached, then:
pt ϵ si if si has the highest priority

Ex
ec

u
te

d
 k

 t
im

es

subject j

subject i

. . .

re
sp

o
n

se
 r

i,x

p
ri

o
ri

ty
 q

u
e

u
e

Fig. 2. Diagram illustrating the steps performed in the one-against-some approach. First step - Subject Modeling - shows that k different PLS models for
each subject in the gallery are built. The selection of (k − 1) subjects is performed in a such way that the distribution throughout the models is uniform.
Second step - Probe Sample Matching - describes the use of the priority queue when a probe sample is presented. Once the queue is initialized, the probe
sample is projected onto the model PLSi,x associated with the subject si with the highest priority. Then, if the response obtained, ri,x, is the current
minimum for subject si, ri,x is set as the priority of si. This step is repeated until a stopping condition has been reached.

scheme is its high computational cost to enroll new sub-
jects, once all existing PLS models need to be rebuilt to
consider samples of the new subject as counterexamples. To
avoid the reconstruction of all PLS models, we employ the
classification scheme called one-against-some. This approach
builds PLS models considering only a subset of subjects as
counterexamples, which avoids the reconstruction of the PLS
models already built.

B. One-Against-Some

Previous works employing one-against-all approach have
accomplished excellent results in terms of accuracy [2], [4]
when estimating best match for N known subjects. However,
they have failed making the scheme scalable whenever a new
subject is presented to the system, as all models require to
be rebuilt.

To overcome the scalability problem when new subjects
are enrolled, a similar method to one-against-all is employed,
called one-against-some. This approach requires only some
of the remaining subjects to be added as negative samples.
Due to this change, more PLS models are created aiming at
representing every subject accurately, resulting therefore, in
more than one regression response per subject.

The intuition to choose the one-against-some approach
comes from the fact that while the addition of all remai-
ning subjects as counterexamples might present redundant
information to build the PLS model, the application of the
pairwise approach may not be enough to emphasize the most
discriminative feature descriptors. This way, the one-against-
some presents a trade-off between computational cost to add
a new subject and high discriminability obtained when all
remaining subjects are considered.

As it will be shown in the experiments, the accuracy
is improved when more than one PLS model is estimated
for each subject (considering subjects randomly chosen as

counterexamples), which increases the number of projections
required when probe samples are presented. However, the
use of a priority queue to control which models should be
considered first, makes this problem negligible.

Figure 2 illustrates the proposed approach, which is a
variation of the one-against-all (Figure 1) with modifications
in the last two steps: subject modeling and probe sample
matching.

The subject modeling describes the creation of k PLS
models for an i-th subject, using k − 1 randomly selected
between all subjects but the i-th individual as negative class.
This step results in kN models, where N is the number of
known subjects by the time of enrollment and k denotes the
number of subjects used as counterexamples (the value of k
is estimated in Section IV-B).

The probe sample matching step aims at finding the best
matching using a priority queue to reduce the number of
projections needed since testing all models would cost N×k
projections opposed as N projections required by the one-
against-all technique. The next section discusses the use of
the priority queue.

When a new subject is enrolled in the gallery, k new
PLS models are computed, in which each model contains
samples of this new subject as the positive class and a subset
containing k− 1 individuals randomly chosen from subjects
already enrolled in the gallery as negative class. Since only a
subset of individuals is considered, there is no need to rebuild
the existing models, which would be necessary for the one-
against-all scheme once it requires the use of all remaining
subjects as counterexamples.

C. Priority Queue

After the modeling step has been executed, each subject
possesses k PLS models as positive samples. Thus, a naive
search for the best matching subject for a probe sample



would cost N×k projections, in contrast to the N projections
required by the one-against-all classification scheme. In order
to reduce that number of projections, a better technique for
evaluating the probe samples is required.

Aiming at avoiding unnecessary projections (those PLS
models associated with subjects unlikely to be the correct
match), a priority queue-based approach is proposed. This
way, the search relies on testing subjects with high chance
of being the correct match. Thus, projections onto models
associated with subjects with low priority might be avoided,
reducing the computational cost.

The proposed queue associates a priority value to each
subject. When a probe sample is presented to the system, the
priorities are initialized to be the same for all subjects. A PLS
model containing the subject with highest priority (a random
subject when the process starts) in the positive class is chosen
and the probe sample is projected onto it. The priority of the
subject is updated according to its regression response (a high
response increases the priority). Then, another PLS model
associated with the subject presenting the highest priority is
considered for projection. This process is repeated until a
stop condition has been reached. Algorithm 1 describes the
search process using the priority queue.

Algorithm 1: Querying and priority queue
Initialization:
- initialize queue with null values;
- choose randomly a subject of gallery;
- select and mark a PLS model containing this subject
as positive class;
- project the probe sample onto the model;
- update the queue with the regression response;
Main loop:
while there are unevaluated subjects do

- select the subject si with the highest priority;
if there are unmarked models for si then

- select an unmarked model, PLSi,x;
else

- break;
- project probe face onto PLSi,x, mark it, and
retrieve response ri,x;
- update the priority of si if it is greater than ri,x;

- the subject with the highest priority is nominated as
the best match.

Using the priority queue without a stop condition would
cause it to test every PLS model. Therefore, a stopping
condition was incorporated to the system: once all models
having the subject with the highest priority as positive class
have been considered, the search stops if at least one model
associated with each subject has been used to project the
probe sample.

Algorithm 1 shows that priorities are defined as the
minimum response obtained. That approach works because
regressions responses are positive for the correct class and
negative for incorrect classes. Therefore, even the minimum

response will be positive for the desired class. This way,
after evaluating all models containing a given subject in the
positive class, if this subject is still with the highest priority,
it is likely to be the best match for the probe sample.

IV. EXPERIMENTAL RESULTS

This section evaluates several aspects of the proposed
method. First, Section IV-A describes the data sets used
in the experimental validation. Then, the estimation of pa-
rameter k and the effectiveness of using a priority queue
are presented in Sections IV-B and IV-C, respectively. Sec-
tion IV-D shows results regarding the incremental enrollment
of subjects in the gallery. Finally, Section IV-E shows the
recognition rates achieved in the considered data sets and
other results from the literature are shown as reference.

A. Datasets

The proposed method is evaluated on two data sets used
for face recognition: FRGC version 1 [8] and PubFig83 [9].
These data sets present different characteristics, while FRGC
presents a challenging experiment (Experiment 4), which
considers few images acquired under controlled conditions
and frontal pose for the gallery and images acquired under
uncontrolled conditions for the probe, PubFig83 is composed
of several uncontrolled images with pose and expression
variations.

For the FRCG data set, we follow the feature extraction
procedure and the evaluation protocols used by Schwartz et
al. [2]. The FRGC version 1 for 2D still images considers
three experiments, each one with 152 subjects in the gallery:
Experiment 1 considers a single controlled sample to build
the gallery and controlled probe images; Experiment 2 con-
siders a gallery with four controlled still images per subjects;
and Experiment 4 considers a gallery with a single controlled
sample per subject to build the gallery and multiple uncon-
trolled probe images.

For the PubFig83 data set, composed of 83 different
subjects, we follow the evaluation protocol defined by Pinto
et al. [9], in which 90 samples per subject are used to build
the gallery. Due to the large number of samples used in
the gallery, we employed the feature extraction procedure
defined in [42], which considers fewer descriptors per sample
compared to the work in [2]. The samples for the PubFig83
data set were rescaled to 100 × 100 pixels and the number
of descriptors per sample is 6039. We executed the method
ten times, each time with a different split between samples
used to build the gallery and probe samples and we report
the average rank-1 recognition rates.

B. Number of Counterexamples

As described in Section III, the one-against-some approach
depends on the parameter k, which defines the number
of random subjects that will be added as counterexamples
during the PLS model estimation.

To estimate the value of k that will be used in all
remaining experiments, we have considered a subset (with
fewer samples) of the PubFig83 data set and executed the



(a) Rank-1 recognition rates (b) Average number of projections

Fig. 3. Estimation of parameter k and employment of the priority queue considering classification schemes one-against-all and one-against-some. Note
that the recognition rates and the number of projections achieved by the one-against-all approach is independent of k.

face identification for multiple values of k. The results are
shown in Figure 3(a).

We can see that the rank-1 recognition rates increase up
to k = 10, which will be used in the remaining experiments
for all data sets. It is important to note that the recognition
rates achieved by the one-against-some approach for k = 10
are very similar to those achieved by the one-against-all. In
addition, the results obtained with the one-against-some for
smaller values of k are very poor, which reflects the lack
of discriminability obtained by the PLS models when few
subjects are used as counterexamples.

C. Priority Queue

We also evaluate the reduction in computational cost
achieved through the priority queue approach proposed in
Section III-C. Figure 3(b) compares the average number of
projections required to evaluate one probe sample by the
one-against-all and the one-against-some approaches; for the
latter, the results are shown with and without the use of the
priority queue. As in previous works [2], [42], the number
of projections was chosen as metric due to its independence
regarding implementation and hardware configuration.

To test a probe sample, the original one-against-all PLS
approach requires one projection per subject in the gallery
and the one-against-some classification scheme considering
k subjects as counterexamples requires nk projections. To
reduce the number of projections, a priority queue has been
employed. According to the results shown in Figure 3(b), the
one-against-some with priority queue achieves a number of
projections very similar to the one-against-all approach for
k = 10 without reduction in the rank-1 recognition rates,
as seen in Figure 3(a). Therefore, the remaining experiments
will also consider the use of the priority queue.

D. Incremental Enrollment

In this section, we evaluate the behavior of the proposed
method when new subjects are incrementally added in the
gallery and compare the results with the original one-against-
all approach. To perform this evaluation, we build an initial
gallery with few subjects (15 subjects in this experiment) and

project probe samples to these models. Then, new subjects
are incrementally added in the gallery until all subjects have
been enrolled.

The first experiment evaluates the computational cost to
add a new subject (the m-th) in the gallery considering that
m − 1 subjects have already been added. The plots in the
left column of Figure 4 show the results. To present relative
results, the computational time is divided by the average time
spent to add one subject when the one-against-some approach
is considered. The results show that the one-against-some
approach performs the addition of a subject in constant time,
whereas the one-against-some increases in a quadratic rate as
the number of subjects increases. Therefore, the scalability
of the approach regarding the enrollment of subjects is
demonstrated once the computational cost is constant and
does not depend on the number of subjects in the gallery.

The second experiment, whose results are shown in the
second column of Figure 4, evaluates the average number
of projections required to test a probe sample. Even though
the number of projections per probe sample performed by the
one-against-some approach should be n×k, the employment
of the priority queue described in Section III-C allows the
number of projections to be very similar to the results
achieved by the one-against-all approach (n projections per
probe sample).

According to the results, we can conclude that the ap-
proach described in this work is able to handle incremental
enrollment of subjects in a scalable way and, even though
more PLS models are built, the priority queue allows the
number of projections to be comparable to the number achi-
eved by the one-against-all. Results regarding the recognition
rates are shown and discussed in the next section.

E. Recognition Rates

Since the goal of this work is to provide a scalable
strategy for adding new subjects to the gallery, we compare
the proposed method with the original one-against-all with
respect to the recognition rates. Even though the aim of this
work is not improve the best results found in the literature,
we also show some state-of-the-art results in both data sets.
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Fig. 4. Incremental enrollment of the subjects. (a) and (c) show the computational cost normalized by the average computational time to add a subject
using the one-against-some approach; (b) and (d) show the average number of projections performed when a probe samples is presented to the system.

According to the results shown in Tables I and II, the
recognition rates achieved with the proposed method and
with the one-against-all approach are very similar. When
compared to the state-of-the-art methods, the proposed ap-
proach presents lower recognition rates. That is because it
is limited to the feature descriptors and the PLS approach
defined by the one-against-all method in [2]. For example,
the method proposed by Choi et al. [4] considers an enhanced
set of feature descriptors and the work proposed by Chiachia
et al. [6] considers an SVM classifier associated with biolo-
gically inspired feature descriptors.

We have shown in the previous section that the proposed
method is able to add new subjects in the gallery at a constant
cost, the average number of projections to test a probe sample
is similar to the original one-against-all approach, and the
results described in this section demonstrated that recognition
rates are comparable to those achieved by the one-against-
all approach. Therefore, the proposed method demonstrated
to be scalable and can be employed as an alternative to the
traditional one-against-all classification scheme.

V. CONCLUSIONS

This work proposed and evaluated a new approach to
maintaining a gallery of faces in an efficient way. A one-
against-some scheme is employed in the construction of mo-
dels through random selection of a subset of individuals. The

TABLE I
PERFORMANCE COMPARISON (RANK-1 RECOGNITION RATES IN %) FOR

THE FRGC DATA SET.

Method Exp.1 Exp.2 Exp.4

LC1C2 [43] - - 75.00
ROCA [44] - 96.40 75.50
CS-POP [4] 98.00 99.80 89.00
PLS one-against-all [2] 97.90 99.80 86.20
proposed PLS one-against-some 97.20 99.30 84.70

TABLE II
PERFORMANCE COMPARISON (RANK-1 RECOGNITION RATES ± STD.

ERR. (%)) FOR THE PUBFIG83 DATA SET.

Method Recognition Rate

HT-L3-1st [9] 87.11± 0.56
PS-PLS [6] 88.75± 0.26
PLS one-against-all [2] 70.59± 0.36
proposed PLS one-against-some 73.27± 0.41

use of a priority queue is proposed to reduce the number of
projections when a probe sample is presented to the system.
Experimental results obtained on two publicly available face
data sets demonstrated that the proposed method is effective
and scalable to identify faces.
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