
Coffee Crop Recognition Using Multi-scale
Convolutional Neural Networks

Keiller Nogueira, William Robson Schwartz, and Jefersson A. dos Santos

Department of Computer Science
Universidade Federal de Minas Gerais

Belo Horizonte, Brazil
{keiller.nogueira, william, jefersson}@dcc.ufmg.br

Abstract. Identifying crops from remote sensing images is a funda-
mental to know and monitor land-use. However, manual identification
is expensive and maybe impracticable given the amount data. Auto-
matic methods, although interesting, are highly dependent on the qual-
ity of extracted features, since encoding the spatial features in an effi-
cient and robust fashion is the key to generating discriminatory models.
Even though many visual descriptors have been proposed or successfully
used to encode spatial features, in some cases, more specific descrip-
tion are needed. Deep learning has achieved very good results in some
tasks, mainly boosted by the feature learning performed which allows
the method to extract specific and adaptable visual features depending
on the data In this paper, we propose two multi-scale methods, based on
deep learning, to identify coffee crops. Specifically, we propose the Cas-
cade Convolutional Neural Networks, or simply CCNN, that identifies
crops considering a hierarchy of networks and, also, propose the Iter-
ative Convolutional Neural Network, called ICNN, which feeds a same
network with data several times. We conducted a systematic evaluation
of the proposed algorithms using a remote sensing dataset. The experi-
ments show that the proposed methods outperform the baseline consis-
tent of state-of-the-art components by a factor that ranges from 3 to 6%,
in terms of average accuracy.
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1 Introduction

The use of Remote Sensing Images (RSIs) as a source of information is very com-
mon in several areas, such as agrobusiness. A lot of knowledge can be extracted
from these images including geolocation of events (burned forest, for example),
productivity forecast, and crop recognition. In this work, we focus on the latter
task, specifically, we aim at identifying coffee crops in RSIs.

Considering this kind of plantation, the identification of crops is essential to
know and monitor the land-use, helping to define new expansion strategies of
the land or to estimate the feasible production amount. Although interesting,



recognizing coffee regions in RSIs is not a trivial task. First, because coffee
usually grows in mountainous regions, which causes shadows and distortions in
the spectral information. Second, the growing of coffee is not a seasonal activity,
and, therefore, in the same region, there may be coffee plantations of different
ages (high intraclass variance).

The identification process, which, in our case, can be described as locate and
classify the crops, is an open problem in the pattern recognition field [5]. The
most common strategy uses a combination of segmentation algorithms, visual
features extraction techniques and machine learning methods. Some works [6]
combine these steps with a multi-scale strategy, resulting in a more robust
method. In all these cases, visual features are extracted from regions of a seg-
mented image using some auxiliary method, such as low-level or mid-level one,
and, then used with some machine learning approach. Although this method has
been successfully applied to RSIs [5], some applications require more specific de-
scriptors. In this way, the neural networks distinguish from other methods, since
it can learn specific image features depending on the problem.

As introduced, in this paper, we are particularly interested in identifying
coffee crops in RSIs. Therefore, we formulate this task by using a deep learning
strategy, i.e., we propose two multi-scale methods using Convolutional Neu-
ral Network (CNN). First, we propose the Cascade Convolutional Neural
Network, or simply CCNN, which is, in this case, composed of three network
levels that process images with same dimension. Specifically, after every level,
unclassified images are decomposed into smaller patches, which are resized into
a predefined size and given as input to the subsequent level. The resize step
changes the image composition allowing the networks to capture different fea-
tures at each level. Second, we propose the Iterative Convolutional Neural
Network, or just ICNN, which has only one neural network that processes the
input data three times, being equivalent to the the CCNN method. Actually,
after processing the data, unclassified patches are split and resized, going back
again into the same network.

Moreover, we are concerned in design a method robust enough to handle
real world data (even from different locations), so it can be a useful tool for
any activity involving crops recognition around the globe. Thus, the proposed
methods were designed and trained using real data of two entire counties, that
have distinct image characteristics (mountains, etc). Specifically, the experiments
were conducted using one county as training and the other as test.

In practice, we claim the following benefits and contributions over existing
solutions: (i) Our main contribution is two novel algorithms capable of iden-
tify region of interest in real world RSIs using deep learning paradigm, and (ii) a
systematic set of experiments, using real world data reveals that our algorithm
improves upon a baseline composed of state-of-the-art components, by a factor
that ranges from 3% to 6% in terms of average accuracy.

The paper is structured as follows. Related work is presented in Section 2.
Section 3 presents the methodology. Experimental protocol as well as obtained



results are discussed in Section 4. Finally, in Section 5 we conclude the paper
and point promising directions for future work.

2 Related Work

The development of algorithms for spatial extraction information is a hot re-
search topic in the remote sensing community [2], which has been mainly boosted
by the recent accessibility of high spatial resolution data provided by new sen-
sor technologies. Even though many visual descriptors have been proposed or
successfully used for remote sensing image processing [7], some applications de-
mand more specific description techniques. As an example, very successful low-
level descriptors in computer vision applications do not yield suitable results
for coffee crop classification, as shown in [7]. Anyway, the general conclusion is
that ordinary descriptors can achieve suitable results in most of applications,
but not all. However, higher accuracy rates are yielded by the combination of
complementary descriptors that exploits late fusion learning techniques. Follow-
ing this trend, many approaches have been proposed for combination of spatial
descriptors [9], including several ones using multi-scale strategy [6, 7]. In these
approaches, an essential step is extracting the feature at various segmentation
scales, which could be expensive, depending on the strategy, since features would
need to be extracted from each scale, for example.

However, even the combination of visual descriptors may not achieved satis-
factory results and more robust features are needed. In this way, deep learning
distinguish from other methods, since it can learn specific image features de-
pending on the problem. Many works have been proposed to learn spatial feature
descriptors [13]. Moreover, new effective hyperspectral and spatio-spectral fea-
ture descriptors [11] have been developed mainly boosted by the deep learning
growth in recently years.

The proposed methods are very different from others in the literature. First,
the proposed approach is capable of create a thematic map without any use
of auxiliary methods. For the best of our knowledge, there is no other method
capable of doing this. Second, as introduced, accuracy is highly dependent on
the quality of extracted features. Thus, a method that learns adaptable and
specific spatial features based on the images, such as the ones based on deep
learning, could exploits better the feasible information available on the data.
In this work, we experimentally demonstrate the robustness of our approach
by achieving state-of-the-art results in a challenging dataset composed of high
resolution remote sensing images.

3 Methodology

In this section, we present the proposed methods for identification of crops. The
network architecture is presented first in Section 3.1 while the proposed methods
are presented in Section 3.2.
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Fig. 1. The proposed Convolution Neural Network architecture with six layers.

3.1 Network Architecture

To achieve higher discrimination power with deep representations, the final net-
work architecture, presented in Figure 1, is composed of six stacked layers: 3 con-
volutional (followed by max pooling and Local Response Normalization (LRN)),
2 fully-connected and a final classifier layer. All layers are composed of Rectifier
Linear Units (ReLUs). Also, to prevent overfitting, the dropout method [10] was
employed. At the end of the network, a softmax was used as classification layer.
As mentioned, this architecture was used in both proposed methods, being the
base of all the methodology employed in this work, which is presented next.

3.2 Multi-scale Convolutional Neural Network

The first multi-scale method proposed is the Cascade Convolutional Neural
Network model (CCNN), which is a hierarchical model composed of three
levels1, that always process tiles of 64×64 pixels, since this is the required input
size of the proposed network. As mentioned, the same architecture was employed
in all levels but with some differences related to the classification layer and the
training data, depending on the level.

Considering the classification layer, in the first two levels, tiles must be clas-
sified into three possible classes. A threshold approach, based on the number of
coffee pixels of the patch, was employed to select the class of each tile. Thus, a tile
could be: (i) coffee, if a patch has, at least, 90% of coffee pixels, (ii) non-coffee,
if a patch has, at maximum, 10% of coffee pixels, and mixed (or undefined),
otherwise. How the last level must classify the remaining tiles, it has only two
possible classes: coffee, patches with at least, 50% of coffee pixels, and non-coffee,
otherwise. Considering all available training data, the first level network receive
a small amount of patches while the last one is trained with a large amount
of data, since between each level a tile is split and resized into a new patch,
increasing the amount of available training data for the subsequent level.

Figure 2 presents a overview of the CCNN method. The first level network
processes a small amount of tiles and, the ones classified into the mixed class are
split into patches of 32 × 32 pixels, resized, and processed by the second level

1 In this case, only three network levels were used based on a cost-benefit analysis.
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Fig. 2. A overview of the Cascade Convolutional Neural Network model. The subscript
number of the convolutional symbolizes the quantity of data available for training each
level.

network. Once more, unclassified tiles are again split into patches of 16 × 16
pixels and resized. The last level network is responsible to finally classify the
remaining tiles. At the end, a class is associated to each tile and a new image
may be recomposed, showing the regions of interest, in this case, the coffee crops.

The second method proposed is the Iterative Convolutional Neural Net-
work (ICNN), which has only one neural network that processes the input data
three times, being equivalent to the CCNN method. Actually, after processing
the data once, unclassified patches are split and resized, going back again into
the same network. Just like the CCNN, this method uses the architecture pro-
posed in Section 3.1, trained with all tiles split and resized into 64 × 64 pixels
patches. These patches has three possible classes (coffee, non-coffee and mixed)
independent of the iteration. The class of each tile were defined following the
same protocol used in the first two levels of the CCNN method. However, by
doing this, the last iteration, which must classify all remaining tiles into coffee or
non-coffee classes, could classify tiles into a unwanted mixed class. A work around
is to change the class of these tiles to the second class with higher probability.
Thus, we force the last iteration to classify the remaining tiles, as intended.

A overview of the proposed method is presented in Figure 3a. The first itera-
tion process tiles of 64×64 without resize. Unclassified tiles are split into patches
of 32× 32 pixels, resized and processed into the same network. The same occurs
for the last iteration, which split the tiles into patches of 16 × 16 pixels, resized
and processed, for the last time, into the same network.

4 Experimental Evaluation

In this section, we present the experimental setup and results.

4.1 Setup

Dataset. To evaluate the proposed methods, we used a multispectral high-
resolution scene dataset, which is composed of huge scenes taken by the SPOT
sensor in 2005 over two entire counties in the State of Minas Gerais, Brazil:
Guaranésia and Guaxupé. Figure 3 shows some samples of these classes. As



Fig. 3. (a): A overview of the Iterative Convolutional Neural Network model. (b)-(d):
Respectively, coffee, non-coffee and mixed samples of the coffee dataset.

mentioned, this dataset was partitioned into tiles of 64× 64, 32× 32 and 16× 16
pixels, generating, for Guaranésia, 21,600, 86,400 and 345,600 tiles, and, for
Guaxupé, 17,280, 69,120 and 276,480 regions. Although interesting, this dataset
has several challenges, such as: (i) high intraclass variance, caused by different
crop management techniques, (ii) scenes with different plant ages, since coffee
is an evergreen culture and, (iii) images with spectral distortions caused by
shadows, since Minas Gerais is a mountainous region.

Baselines. As baseline, we consider the most common strategy that uses a
combination of segmentation algorithms, visual features extraction techniques
and machine learning methods. In this case, we have used SLIC [1], which has
achieving good results for remote sensing images [12]. As visual features, BIC [4],
which is the most suitable descriptor to describe coffee crops, as pointed out
by [6], was employed. As machine learning technique, RBF-SVM was used. The
CCNN paradigm was simulated in the baseline by extracting three different
segmentation maps with different granularity.

Experimental Protocol. As introduced, we devised our experiments to evalu-
ate the performance of the proposed methods considering a real world scenario.
Thus, the protocol used consider one county for training and other for testing.
Since there is much more non-coffee areas than coffee ones, the metric used to
evaluate the proposed methods were the average accuracy, which is calculated by
averaging the pixel accuracy for each class. The proposed networks were built
using Caffe framework [8], since it is more suitable due to its simplicity and
support to parallel programming using CUDA. Furthermore, all computational
experiments presented were performed on a 64 bits Intel i7 4,960X machine with
3.6GHz of clock, 64 GB of RAM memory and GeForce GTX980. A drawback
of deep learning strategy is the large number of parameters, which are, in this



case, five different ones: learning rate, weight decay, momentum, maximum it-
erations and step size (which defines the number of iterations until the learning
is divided by a constant value (gamma) equals to 0.1). Select the best value for
each parameter, as well as the best network architecture, is totally experimen-
tal, which requires a high number of tests and a well-structured protocol. In this
case, the networks and its parameters were adjusted by considering a full set of
experiments guided by [3]. After all the setup experiments, the best values for
the learning rate, weight decay, step size, momentum and max iterations were
0.01, 0.001, 10,000, 0.9 and 30,000, respectively.

4.2 Results and Discussion

For the proposed methods, the processing time, for each county, took around one
hour to be completed. At the end, the CCNN method yielded average accuracy
around 57% and 63%, for Guaxupé and Guaranésia, respectively. Both results
outperforms the baseline by a factor varying from 2 to 6%, in terms of average
accuracy. The ICNN method also outperform the baseline, but was less effective
than the CCNN approach. However, the baseline is more hand-working, since
segments and features need to be extracted first to be, then, used with some
machine learning technique, while the proposed methods learns all at once. Fur-
thermore, it is worth to mention that agricultural scenes is very hard to classify
since the method must to differentiate among different vegetation [6].

Method Guaranésia Guaxupé

SLIC+BIC+SVM-RBF 57.89 55.86
CCNN 69.33 57.98
ICNN 60.22 56.08

Table 1. Results, in terms of average accuracy (%), of the proposed methods and the
baseline for the coffee dataset.

5 Conclusions and Future Work

In this paper, we propose two multi-scale methods based on Convolutional Neural
Networks to identifying coffee crops from remote sensing images, considering a
real world scenario. Experimental results show that the CCNN method is more
effective and robust than all others, achieving state-of-the-art, in terms of average
accuracy, for coffee crop identification, considering two entire counties. As future
work, we intend to evaluate new datasets and applications. We also consider to
use some different strategies, such as fine-tuning.
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